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Myocardial ischemia-reperfusion (MIR) injury is a major contributor to the morbidity and mortality associated with coronary
artery disease, which accounts for approximately 450,000 deaths a year in the United States alone. Chinese herbal medicine,
especially combined herbal formulations, has been widely used in traditional Chinese medicine for the treatment of myocardial
infarction for hundreds of years. While the efficacy of Chinese herbal medicine is well documented, the underlying molecular
mechanisms remain elusive. In this review, we highlight recent studies which are focused on elucidating the cellular and molecular
mechanisms using extracted compounds, single herbs, or herbal formulations in experimental settings. These studies represent
recent efforts to bridge the gap between the enigma of ancient Chinese herbal medicine and the concepts of modern cell and
molecular biology in the treatment of myocardial infarction.

1. Introduction

Myocardial infarction (MI) and the accompanying acute
loss of viable myocardium is the leading cause of death in
industrialized countries. Even if the patient survives the acute
phase of MI, the subsequent adverse myocardial remod-
eling and impairment of cardiac function severely impact
their quality of life and 5-year survival. Early restoration
of blood flow to the ischemic myocardium is a common
treatment strategy aimed at limiting myocardial infarct size.
However, reperfusion can cause additional cell death and, in
many cases, paradoxically increase infarct size, a situation
referred to as myocardial ischemia-reperfusion (MIR) injury.
MIR is characterized by a rapid increase in cytokines and
chemokines and an influx of leukocytes into the vulnera-
ble region bordering the infarcted site. This inflammatory
response not only results in cardiomyocyte apoptosis during
the acute phase, but also results in an adverse myocar-
dial remodeling that further compromises cardiac func-
tion. Therefore, limiting ischemia-reperfusion (I/R) induced
myocardial inflammationmay not only lower the acute death
rate, but also improve long term survival and quality of life
[1]. Chinese herbal medicine, especially combined herbal

formulations, has been widely used in traditional Chinese
medicine for the treatment of MI for hundreds of years.
The purpose of this review is to highlight recent studies that
experimentally address the mechanistic effects of extracted
compounds, single herbs, or herbal formulations on several
factors and pathways known to be involved in MIR injury.

2. Myocardial Ischemia-Reperfusion Injury

2.1. Oxidative Stress. Reactive oxygen species (ROS) have
both a physiological and pathological role in cellular and
tissue adaptation to environmental factors. Normally, low
levels of oxygen radicals and oxidants are present in cells and
are important in maintaining cellular homeostasis, mitosis,
differentiation, and signaling [2]. However, duringMIR, ROS
formation is markedly increased and cellular injury occurs
(Figure 1). Although mammalian cells express endogenous
free radical scavenging enzymes, such as superoxide dis-
mutase (SOD), catalase (CAT), and glutathione peroxidase
(GPx), these antioxidative defenses are insufficient during
MIR [3, 4]. Oxidative stress during MIR injury contributes
to a vicious cycle as it promotes mitochondrial dysfunction,
excitotoxicity, lipid peroxidation, and inflammation [5–7].
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Figure 1: Effects and mechanisms of Chinese herbal medicine in myocardial ischemia-reperfusion (MIR) injury. During ischemia, oxygen is
not available to accept the electrons in the metabolic degradation of substrates, and consequently anaerobic metabolites become important
in the preservation of myocardial viability. However, free radicals and reactive oxygen species (ROS) formation is markedly increased in
this procedure. Reperfusion also generates high ROS levels which have an adverse impact on specific signal transduction systems, thereby
predisposing the heart to further oxidative cell damage.Damaged cell debris, fibrinogen, cytokines, and chemokineswill activate the receptors,
including TLRs, TNFR, and ILR, in the host inflammatory cells as well as the cardiomyocytes. This sterile inflammatory process leads to
the formation of a vicious circle, whereby the cardiomyocyte TLRs, TNFR, and ILR are activated by inflammatory cell-generated ligands.
Typically, this has an adverse impact on specific signal transduction systems (e.g., AMPK, JNK, and NF-𝜅B pathways), thereby activating the
caspase cascade. Elevated ROS levels also result in intracellular Ca2+ overload which adversely affects mitochondrial function by opening
the mitochondrial permeability transition pore (MPTP). As a result, the balance between Bax and Bcl is interrupted and the caspase cascade
is further activated, leading to apoptotic cell death and myocardial tissue damage. Injured tissue expresses SDF-1, which interacts with its
specific receptors (e.g., CXCR4) to facilitate the trafficking, adhesion, and infiltration of bone marrow derived stem cells (BMSCs). BMSCs
produce high levels of the endothelial cell-specific angiogenic factor, VEGF, which is a critical regulator of angiogenesis that includes the
stimulation of proliferation, migration, and proteolytic activity of endothelial cells and eventually leads to an increase in vessel density and
the facilitating of myocardial regeneration and remodeling. During theMIR injury process, there are seven target areas where Chinese herbal
medicine can exert protective effects on cardiomyocyte. Examples are as follows: (1) anti-oxidation actions of Palmatine, Forsythoside B,
and SiNi Decoction; (2) anti-inflammatory properties of Tanshinone IIA, Schisandrin B, and ShuMai Decoction; (3) anti-apoptosis ability
of Salidroside, Tyrosol, and Cardiotonic Pill; (4) protection of mitochondrial function by Herba Cistanches, Cistanche, and Guanxin II; (5)
increasing BMSCsmigration by Tanshinone IIA and Salvianolic acid B (6) promoting angiogenesis by Radix et Rhizoma Rhodiolae Kirilowii,
ShuMai Decoction and TongXinLuo Superfine; and (7) inhibiting Ca2+ overload by Astragaloside IV, Lycium barbarum, and Acanthopanax
senticosus injection.

2.2. Sterile Inflammation. Ischemia and reperfusion cause
sterile inflammation. Nevertheless, the consequences of MIR
share many phenotypic parallels with activation of a host
immune response directed toward invading microorganisms
[8]. This sterile inflammation is mainly triggered by the
interactions between toll-like receptors (TLRs) and their
endogenous ligands generated in ischemic and reperfused
myocardium, such as apoptotic cell debris, fibrinogen, high
mobility group box (HMGB) 1, and heat shock proteins
(HSPs) [9].The activation of immune cell and cardiomyocyte
TLR and other signaling pathways results in a vicious cycle
of inflammatory response in the I/R region and causes
significant cardiomyocyte apoptosis (Figure 1). Following the
acute I/R period, the cardiac function is further compromised
by adversemyocardial remodeling [10].Themagnitude of the

inflammation during the acute phase determines the extent to
which cardiac function is compromised during the following
myocardial remodeling phase.

During the sterile inflammation phase of MIR, TLRs play
detrimental roles as demonstrated by extensive experimental
evidence [11]. To date, 11 TLRs (TLR1–TLR11) have been
identified in mammals. It should be noted that, during MIR,
the expression of TLR4 is significantly increased in both the
failing myocardium, and infiltrated macrophages and thus
TLR4 is thought to be a central mediator of inflammation
and cardiac injury. TLR4 has been identified as a mediator
of inflammation and organ injury in several models of
sterile tissue injury including MIR, and a soluble inhibitor
of TLR4 was able to prevent contractile dysfunction in wild-
type cells [12]. Using a temporary left anterior descending
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(LAD) artery occlusion model, Oyama et al. first observed
myocardial infarct size reductions in 2 distinct strains of
mice that lack functional TLR4 signaling, accompanied with
reduced neutrophil infiltration in the affected myocardium
[13]. TLR2, which is expressed in cardiomyocytes and many
other cell types, also contributes to the pathogenesis of
cardiac dysfunction during MIR [14, 15]. Activation of TLR2,
TLR4, and TLR5 increases themyocardial level of the inflam-
matory cytokines, chemokines, and cell surface adhesion
molecules [16]. Given the known role of TLR4 and TLR2 in
MIR, inhibition of TLR4 and TLR2 signaling is a promising
approach to reduce morbidity and mortality in MI patients.

There are a variety of TLR ligands generated during
MIR. For example, heat shock proteins (HSPs) are a class
of molecular chaperones that promote intracellular protein
folding. They may be released into the extracellular space
after cell trauma and interact with adjacent cells or distant
cells via bloodstream delivery [17]. Extracellular HSP60
induced apoptotosis via the activation of TLRs [18]. Another
example is HMGB1 which is a damage-associated molecular
pattern (DAMP) protein secreted by injured cells [19]. It
plays a major role in early MIR by binding to TLRs and
the receptor for advanced glycation end products (RAGE),
resulting in the activation of proinflammatory pathways and
enhanced myocardial injury [20]. In fact, a prerequisite for
neutrophil-mediated tissue damage is the “priming” effect
of various pro-inflammatory stimuli generated by dam-
aged tissue during MIR, such as HSP60 and HMGB1 [21].
Cytokines released by TLR-activated cells such as tumor
necrosis factor-alpha (TNF-𝛼) and IL-1 can elicit neutrophil
polarization and upregulation of cell-surface glycoproteins
such as macrophage adhesion molecule-1 (Mac-1) [22]; Mac-
1 upregulation in peripheral neutrophils is a very early event
in MIR [23].

2.3. Apoptosis and Mitochondrial Function. MIR leads to
the activation of cell death programs, including apoptosis,
autophagy-associated cell death, and necrosis [24]. Apoptosis
involves an orchestrated caspase signaling cascade, including
caspase-3 and caspase-9, which induces a self-contained
program of cell death, characterized by the shrinkage of
the cell and its nucleus, with plasma membrane integrity
persisting until late in the process [25]. The balance between
apoptotic factors Bcl-2 and Bax has been found altered in car-
diomyocytes during ischemia [26]. Autophagy is stimulated
by nutrient starvation and growth factor deprivation when
cells are unable to take up external nutrients. Autophagy is
also activated by decreases in ATP in order for the cell to
maintain energy homeostasis and survival. Autophagy may
serve primarily to maintain energy production during acute
ischemia but switch to clear up damaged organelles during
chronic ischemia or reperfusion [27].

Multiple cell signaling pathways, such as the AMPK,
JNK, and NF-𝜅B pathways, have been shown to be involved
in MIR-induced cardiomyocyte apoptosis (Figure 1). AMPK
orchestrates the regulation of energy-generating and energy-
consuming pathways; its activation has been shown to protect
the heart against ischemic injury [28, 29]. Activated JNK
signaling, especially in mitochondria, is associated with

oxidative stress, mitochondrial dysfunction, and cell death
[30]; it is a key modulation event in cell death medi-
ated by reactive oxygen and nitrogen species [31]. JNK is
also required for TNF-𝛼-stimulated ROS production and
cytochrome c-mediated cell death; Bcl-2 family members
are essential components of this mitochondrial apoptotic
machinery. Studies have suggested that blockage of JNK
mitochondrial translocation or JNK inhibition prevents ROS
production and mitochondrial dysfunction and may be an
effective treatment for I/R-induced cardiomyocyte death
[32–35]. The nuclear factor kappa B (NF-𝜅B) also modu-
lates apoptosis during ischemia and reperfusion [36]. TLR
signaling pathway leads to translocation of NF-𝜅B to the
nucleus and thus up-regulation of expression of proinflam-
matory cytokines. However, there is the possibility that a
crosstalk between the TLR/NF-𝜅B and PI3K/Akt signaling
pathways and modulation of the crosstalk could protect the
myocardium from I/R injury [37].

Within the mitochondria dependent intrinsic apoptosis
pathway, which has an important function in cardiac cell
injury under various pathological conditions [38], mitochon-
drial permeability transition pore (MPTP) opening plays a
pivotal role [39]. The event of MPTP opening is affected by
various factors including intracellular Ca2+, oxidative radi-
cals, ATP levels and the levels of Bcl-2 family proteins [40].

2.4. Bone Marrow Stem Cell Migration. Bone marrow mes-
enchymal stem cells (BMSCs) are multipotent cells that
secrete angiogenic factors. Injured tissues express specific
receptors, such as CXCR4, and/or their ligands including
stromal cell-derived factor-1 (SDF-1), to facilitate trafficking,
adhesion, and infiltration of BMSCs.DuringMIR, BMSCs are
preferentially attracted to and retained in the ischemic tissue
[41, 42]. As a result of the hypoxic microenvironment, these
BMSCs produce high levels of vascular endothelial growth
factor (VEGF), leading to an increase in vessel density and
facilitating myocardial regeneration and remodeling [43, 44]
(Figure 1).

2.5. Angiogenesis. Angiogenesis refers to the sprouting,
bridging, intussusception, and/or enlargement of capillaries.
In the late stage of MI repair, enhancement of blood flow
to ischemic myocardium can result from either true angio-
genesis or the recruitment of preexisting coronary collat-
erals [45]. VEGF is an endothelial cell-specific angiogenic
factor and also a critical regulator of angiogenesis that
stimulates proliferation,migration, and proteolytic activity of
endothelial cells [46]. Ischemia or coronary artery occlusion
induces myocardial VEGF expression, which leads to an
angiogenesis-induced restoration of tissue blood flow and the
prevention of further tissue damage (Figure 1). In addition,
VEGF is a potent survival factor during physiological and
tumor angiogenesis, and has been shown to induce expres-
sion of anti-apoptotic proteins in endothelial cells [47, 48].

2.6. Other Factors. Theactivation ofATP-sensitive potassium
(KATP) channel subunits and ATPase, and calcium (Ca2+)
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overload are also involved in MIR (Figure 1). Ischemia-
reperfusion may activate some ion channels that do not open
under normal physiological conditions. One such channel is
the KATP channel, whose activation facilitates potassium ion
efflux, hyperpolarization, and action potential repolarization.
The resulting shortening of the action potential duration
decreases the total influx of sodium and calcium, which
alleviates overloading of intracellular calcium (Ca2+) which
in turn weakens myocardial contraction force and reduces
myocardial oxygen consumption. Therefore, the opening of
KATP channels plays an active role in protecting the heart
against MIR injury.

3. Effects and Mechanisms of Chinese Herbal
Medicine in MIR

The typical symptoms of cardiovascular diseases induced
by MIR have been recorded in several ancient books of
Traditional Chinese Medicine (TCM), such as Inner Canon
of Huangdi and Treatise on Febrile Diseases. In TCM, Qi
(energy) and Blood (material) are the main components
compromised in MIR, whereby the principal mechanism is
considered to be a disorder or deficiency ofQi and a disorder
of the circulation (blood stasis) that results in severe pain
and even death. Therefore, the main aims of Chinese herbs
and herbal formulations in MIR treatment are to regulate
or replenish Qi, and to unblock circulation or resolve blood
stasis. In Tables 1–4, we list four categories of Chinese herbal
medicine that have been used in the practice of TCM and/or
recent research, including compounds extracted from herbs
(Table 1), single herbs (Table 2), decoctions (Table 3), and
patent drugs made up of Chinese herbs (Table 4). All of the
abbreviations used in these tables are listed at the end of the
paper, and the main mechanisms and the representatives of
Chinese herbal medicine in MIR treatment are schematized
in Figure 1. In the following sections, these herbal medicines
are grouped according to their efficacy in TCM terminol-
ogy, and the underlying cellular and molecular mechanisms
demonstrated by experimental investigations are discussed.

3.1. Anti-Oxidation. Many Chinese herbal medicines,
including extracted compounds, single herbs, decoctions,
and patent drugs, exert their beneficial effects on MIR
via their anti-oxidative activity. A number of biomarkers
have been used to evaluate the antioxidative effects of
these Chinese herbal medicines, such as ROS, SOD,
GPx, CAT, nitric oxide synthase (NOS), malondialdehyde
(MDA), myeloperoxidase (MPO), heme oxygenase (HO)-1,
superoxide anion, GOT, 15-F2t-isoprostane (15-F2t-IsoP),
ET-1, cycloxygenase-2 (COX-2), thioredoxin-1 (Trx-1),
thioredoxin-related protein-32 (TRP32), redox-sensitive
PKC𝜀/mKATP pathway, glutathione (GSH), oxidized
glutathione (GSSG), glutathione reductase (GRD), CuZn-
superoxide dismutase (CuZn-SOD), and Mn-SOD.

Through in vivo and in vitro experiments, Kim et al.
revealed that palmatine, a compound extracted from the
Chinese herb, Coptidis rhizome, markedly reduced serum
MDA level, and the activity of SOD and CAT in the cardiac

tissues, as well as the COX-2 and iNOS expressions in
MIR myocardium of rats [49]. Jiang et al. reported that
the MDA content and MPO activity in ischemic myocardial
tissue of rats treated with Forsythoside B, a compound
derived from the Chinese herb, Lamiophlomis rotate (Benth.)
Kudo, were both significantly reduced. These reductions
were accompanied by a significantly improved recovery
in myocardial function [50]. Hwa et al. reported that 2-
Methoxycinnamaldehyde (2-MCA), a compound derived
from the Chinese herb, Cinnamomum cassia, significantly
increased HO-1 induction by promoting the translocation of
Nrf-2 from cytosol to nucleus in endothelial cells in an MIR
model [51]. In addition, Hu et al. demonstrated that cyclovi-
robuxine D, a compound derived from the Chinese herb,
Buxus microphylla, significantly protected rat aorta endothe-
lial cells against hypoxia-induced injury and enhanced nitric
oxide (NO) release from endothelial cells; these effects were
inhibited by nitric oxide synthase (NOS) inhibitor N-nitro-
L’argininemethyl ester (L-NAME) [52]. Das et al. studied
the effects of a single herb, Makhana, and demonstrated
that the cardioprotective properties ofMakhana were linked
to its ability to scavenge ROS [53]. Some decoctions and
patent drugs made up of Chinese herbs have also been
shown to exert the anti-oxidative effects on MIR. Zhao et
al. found that SiNi Decoction (SND), composed of Chinese
herbs,Aconite, Ginger and Licorice, could enhance the activity
of myocardial and myocyte mitochondrial SOD and reduce
MDA by increasing the expression of Mn-SOD mRNA [54].
Wang et al. reported that in rats treated with Acanthopanax
Senticosus Injection (ASI) at doses of 25, 50, and 100mg/kg
via femoral vein infusion 30min after coronary occlusion, the
content of myocardial MDA was decreased significantly and
dose-dependently and the activities of myocardial SOD and
GSH-Px were increased dramatically [55].

3.2. Anti-Inflammation. The manifestation of MIR shares
many phenotypic similarities with the activation of a host
immune response directed toward invadingmicroorganisms.
HSPs and HMGB1 are both involved in the initiation of host
defense and tissue repair. Molecules derived from immune
cells and cardiomyocytes have been utilized as biomarkers
to evaluate the anti-inflammatory effects of Chinese herbal
medicine on MIR, including IL-6, MCP-1, TGF-𝛽1, TNF-𝛼,
CRP, IL-1𝛽, VCAM-1, ICAM-1, HMGB1, HSP25 and Hsp70,
macrophage adhesionmolecule-1 (Mac-1), troponinT (Tn-T),
phosphorylated p38, activated MAPK, and tissue inhibitor of
matrix metalloproteinase (TIMP)-1.

Ren et al. indicated that Tanshinone IIA (Tan IIA), a
compound extracted from the Chinese herb, Salvia mil-
tiorrhiza Bunge, attenuated expression of MCP-1, TGF-𝛽1,
and TNF-𝛼 as well as macrophage infiltration in rats when
administered intragastrically at a dose of 60mg/kg/day [56].
Jiang et al. reported that treatment with Forsythoside B
significantly decreased the levels of TNF-𝛽, IL-6, andHMGB1
in a rat MIR model [24, 50]. Results of a study by Chiu
and Ko indicated that the reduction of Hsp25 and Hsp70
expression by Schisandrin B (Sch B), a compound extracted
fromChinese herb, Schisandra chinensis, inMIR rats resulted
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Table 2: Efficacy and mechanism of single Chinese herbs in the treatment of MIR.

Mechanism of action in
TCM terminology Herb Mechanism Biomarker/Targets In vivo/In vitro References

Replenishing and moving
Qi

Rhodiola Promote angiogenesis VEGFR (Flt-1, KDR, and
Tie-2) In vivo [106]

Euryale ferox (Makhana) Antioxidant TRP32, ROS, and Trx-1 Both [53]

Aurantii Fructus Recovery of contractile
dysfunction

Perfusion pressure,
aortic flow, and coronary

flow
In vivo [107]

in cardioprotection [57]. Shen et al. reported that neutrophils
from MIR animals displayed a significant morphological
change and Mac-1 up-regulation, both of which could be
prevented by Tetrandrine (TTD), a compound extracted
from the Chinese herb, Stephania tetrandra [23].

Decoctions and patent drugs made up of Chinese herbs
have also been demonstrated to exert anti-inflammatory
effects in MIR. Yin et al. showed that a significant reduction
in TIMP-1 and TNF levels and improved cardiac function in
MIR rats were achieved by treatment with ShuMai Decoction
consisting of Astragalus mongholicus Bunge, Salvia miltior-
rhiza Bge, and Eupolyphaga sinensis, in a dose-dependent
manner [58]. Zhang et al. studied the patent drug Xiong-
shao Capsule (XSC), comprised of Chinese herbs, Rhizoma
Chuanxiong and Radix Paeoniae Rubra, and found that it
reduced levels of MCP-1 and TNF-𝛼 as well as inflammatory
cell infiltration (ICI) in the ischemic myocardium [59].

3.3. Anti-Apoptosis. Alterations of pro and antiapoptotic
signaling pathways, including changes in the levels of
apoptosis-modulating molecules and induction of caspases,
have been used to examine the anti-apoptotic effects of
Chinese herbal medicine in MIR. Levels and/or activities
of caspase-3, caspase-9, Bcl-2/Bax, p-JNK, p-AMPK, p-p38,
phosphatidylinositol 3-kinase (PI3 K), Akt, p-I𝜅B-𝛼, NF-𝜅B,
p65, Bcl-2-associated X protein, cytochrome c, and forkhead
transcription factor 3 (FOXO3) are among the commonly
used biomarkers.

Sun et al. revealed that Salidroside and Tyrosol, two
compounds extracted from the Chinese herb, Rhodiola,
separately or in combination, significantly reduced caspase-
3 activity, cytochrome c release, and JNK activation in an in
vitro study [60]. Liu et al. reported that 3,5-Dimethoxy-4-
(3-(2-carbonyl-ethyldisulfanyl)-propionyl)-benzoic acid 4-
guanidino-butyl ester, derived from the Chinese herb, Leonu-
rus, inhibited apoptosis by increasing the ratio of Bcl-2/Bax,
decreasing the level of cleaved-caspase-3, and enhancing the
phosphorylation of Akt [61]. An in vivo study by Jiang et al.
demonstrated that rats treated with Forsythoside B showed
a significant recovery in myocardial function due to down-
regulated phosphorylation of IkB-𝛼 and NF-𝜅B [50].

Ling et al. studied the effects of the patent drug, Car-
diotonic Pill (CP) combined with the Chinese herb, Salvia
miltiorrhiza, and found that CP treatment (50mg/mL) sig-
nificantly inhibited TNF-𝛼-induced apoptosis in cardiomy-
ocytes through activating Akt signaling [62]. Others have
showed that Guan xin er hao (Guanxin II), which consists of

the Chinese herbs, Safflower, red peony, salvia, Chuanxiong,
and Dalbergiae Odoriferae, tilted the balance between Bax
and Bcl-2 toward an anti-apoptotic state, decreased mito-
chondrial cytochrome c release, reduced caspase-9 activation,
and attenuated subsequent caspase-3 activation and postis-
chemic myocardial apoptosis in rats [63, 64].

3.4. Protecting Mitochondrial Function. MPTP has been
used as a target for protecting mitochondrial function
by Chinese herbal medicine in the treatment of MIR.
ATP-generation capacity, mitochondrial uncoupling, cAMP
response element-binding protein (CREB), cytochrome c,
cytochrome P-450, mitochondrial glutathione (GSH), mito-
chondrial Ca2+, and mitochondrial MDA have been used as
biomarkers to evaluate the effects of Chinese herbalmedicine.

Wong and Ko reported that a semipurified fraction
of Herba Cistanches (HCF1) increased mitochondrial ATP-
generation capacity and ADP-stimulated state respiration
in H9c2 cardiomyocytes during MIR. HCF1 pretreatment
could protect againstMIR injury in rats presumablymediated
by the induction of glutathione antioxidant [65]. Siu and
Ko studied the single Chinese herb, Cistanche, and found
it enhanced mitochondrial glutathione status, decreased
mitochondrial Ca2+ level, and increased the mitochondrial
membrane potential and respiration rate in rat hearts [66].
Others reported that the patent drug, Guanxin II, decreased
mitochondrial cytochrome c release and attenuated caspase-3
activation in rat MIR myocardium [63, 64].

3.5. Increasing BMSCs Migration. Bone marrow mesenchy-
mal stem cells (BMSCs) are preferentially attracted to and
retained in ischemic tissue. SDF-1 and CXCR4 have been
used as targets for increasing BMSC migration to protect
cardiomyocytes against MIR.

Tong et al. studied the effect of Tan IIA on MIR both
in vitro and in vivo. Their data showed that combination
treatment with Tan IIA and BMSCs significantly reduced the
infarct size and improved cardiac function after MI, which
primarily resulted from Tan IIA induced increase of the
migration of BMSCs to ischemic region [67].

3.6. Promoting Angiogenesis. Angiogenesis limits MIR dam-
age by restoring tissue blood flow. Related molecules such
as VEGF, von Willebrand factor (vWF), hypoxia-inducible
factor 1𝛼 (HIF-1𝛼), VEGFR (Flt-1, KDR, and angiopoietin
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receptor (Tie-2)), platelet-derived growth factor (PDGF-
BB), and phosphatidylinositol 3-kinase (PI3K) have been
used as the targets for angiogenesis promotion to protect
cardiomyocytes against MIR.

Xu et al. found that the compound, Tanshinone IIA,
elicited a significant cardioprotective effect by up-regulating
VEGF expression in MI rats and enhancing HIF-1𝛼 expres-
sion [68]. Experiments of Gao et al. showed that the expres-
sions of vWF, HIF-1𝛼, HIF-1𝛽, and VEGF were significantly
increased in myocardium treated with Radix et Rhizoma
Rhodiolae Kirilowii Decoction [69].

3.7. Up-Regulating KATP Channel Subunits and ATPase, and
Inhibiting Calcium Overload. KATP channel subunits Kir6.1,
Kir6.2, SUR2A and SUR2B, Na+-K+-ATPase, Ca2+-ATPase
and intracellular calcium (Ca2+), and L-type calcium current
(I-CaL) have been used to assess the effects of Chinese herbal
medicine in protecting cardiomyocytes against MIR.

Han et al. examined the effects of Astragaloside IV (As
IV), a compound extracted from the Chinese herb, Astra-
galus membranaceus. They found that As IV significantly
up-regulated mRNA and protein levels of KATP channel
subunits Kir6.1, Kir6.2, and SUR2A and SUR2B [70]. Lu
and Zhao reported that Lycium barbarum polysaccharides,
extracted from the Chinese herb, Lycium barbarum, signifi-
cantly increased Na+-K+-ATPase and Ca2+-ATPase activities
in myocardium of ischemia-reperfusion rats [71].

4. Summary and Perspective

In summary, significant progress has been made regarding
the mechanistic research into the efficacy of Chinese herbal
medicine for the treatment of MIR. However, much work
remains. Most clinical studies were of limited extrapolatable
value because of the small sample sizes and/or incomplete
data. Experimental studies have focused mainly on single
compounds extracted fromChinese herbs. Studies of Chinese
decoctions or formulations are relatively scarce, although
decoction and formulations are the main forms of therapy
in TCM practice. Capitalization of the interactions between
the different components and herbs is the essence of TCM.
Many herbs are paired together to attenuate toxicity as well
as to enhance efficacy. Encouragingly, the number of studies
on patent Chinese herbs has been gradually increasing.These
studies help us to understand the mechanisms underlying
the use of Chinese herbs and formulations for the treatment
of MIR. Accordingly, there is a strong likelihood that such
ongoing researchwill lead to novel therapies for the treatment
of myocardial ischemia and reperfusion injury using Chinese
herbs and herbal formulations.
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