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Abstract

Background

Ethiopia is one of the high multidrug-resistant tuberculosis (MDR-TB) burden countries.

However, phenotypic drug susceptibility testing can take several weeks due to the slow

growth of Mycobacterium tuberculosis complex (MTBC) strains. In this study, we assessed

the performance of a Sanger sequencing approach to predict resistance against five anti-

tuberculosis drugs and the pattern of resistance mediating mutations.

Methods

We enrolled 226 MTBC culture-positive MDR-TB suspects and collected sputum specimens

and socio-demographic and TB related data from each suspect between June 2015 and

December 2016 in Addis Ababa, Ethiopia. Phenotypic drug susceptibility testing (pDST) for

rifampicin, isoniazid, pyrazinamide, ethambutol, and streptomycin using BACTEC MGIT

960 was compared with the results of a Sanger sequencing analysis of seven resistance

determining regions in the genes rpoB, katG, fabG-inhA, pncA, embB, rpsL, and rrs.

Result

DNA isolation for Sanger sequencing was successfully extracted from 92.5% (209/226) of

the MTBC positive cultures, and the remaining 7.5% (17/226) strains were excluded from

the final analysis. Based on pDST results, drug resistance proportions were as follows: iso-

niazid: 109/209 (52.2%), streptomycin: 93/209 (44.5%), rifampicin: 88/209 (42.1%),
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ethambutol: 74/209 (35.4%), and pyrazinamide: 69/209 (33.0%). Resistance against isonia-

zid was mainly mediated by the mutation katG S315T (97/209, 46.4%) and resistance

against rifampicin by rpoB S531L (58/209, 27.8%). The dominating resistance-conferring

mutations for ethambutol, streptomycin, and pyrazinamide affected codon 306 in embB (48/

209, 21.1%), codon 88 in rpsL (43/209, 20.6%), and codon 65 in pncA (19/209, 9.1%),

respectively. We observed a high agreement between phenotypic and genotypic DST, such

as 89.9% (at 95% confidence interval [CI], 84.2%–95.8%) for isoniazid, 95.5% (95% CI,

91.2%–99.8%) for rifampicin, 98.6% (95% CI, 95.9–100%) for ethambutol, 91.3% (95% CI,

84.6–98.1%) for pyrazinamide and 57.0% (95% CI, 46.9%–67.1%) for streptomycin.

Conclusion

We detected canonical mutations implicated in resistance to rifampicin, isoniazid, pyrazina-

mide, ethambutol, and streptomycin. High agreement with phenotypic DST results for all

drugs renders Sanger sequencing promising to be performed as a complementary measure

to routine phenotypic DST in Ethiopia. Sanger sequencing directly from sputum may accel-

erate accurate clinical decision-making in the future.

Background

Tuberculosis (TB) is still a major public health problem with 10 million incident cases and 1.5

million TB deaths in 2019 globally, of which 24% of the cases are reported from Africa [1].

Efforts to control TB have been confronted by the emergence and transmission of drug-resis-

tant MTBC strains in many geographical areas (e.g., developing countries) [2]. Multidrug-

resistant tuberculosis (MDR-TB) is one of the major global threats and is defined as resistance

to at least rifampicin (RIF) and isoniazid (INH). According to the WHO report, 3.4% of new

and 18% of previously treated cases had MDR-TB or RIF resistant (RR)-TB worldwide, and

2.6% of new and 11% of previously treated cases were estimated to have MDR-TB/RR-TB in

Africa [1].

Ethiopia is one of the countries with the highest TB, TB/HIV, and MDR TB burdens, with

an estimated national TB incidence of 132 per 100,000 population and 108,714 notified new

and relapse cases in 2019 [1, 2]. According to WHO, the prevalence of MDR/RR TB was esti-

mated at 0.71% in new cases and 12% in previously treated cases [1]. Despite this, studies con-

ducted in the country revealed that the prevalence of MDR-TB ranged from 5% in the

Northwestern part of the country to 46.3% in the central part (i.e., Jima and Addis Ababa) [3–

6]. Moreover, our published report from this cohort population showed that the prevalence of

MDR-TB among MDR-TB suspect patients in Addis Ababa, Ethiopia was 39.4%, with more

than 58% of these patients being resistant to all first-line TB drugs [7].

Drug resistance in MTBC strains arises from mutations in functional genes [8]. These

mutations often lead to changes of specific protein regions, e.g. drug binding sites, or occur in

promoter regions of genes, resulting in increased transcription [8]. For instance, RIF resistance

is associated with mutations found in an 81 bp "hot-spot" region of the gene rpoB, including

codons 507 to 533 [9, 10]. Mutations associated with INH resistance occur mainly in the gene

katG that encodes for a catalase-peroxidase enzyme activating the drug or in the promoter

region of the fabG1/inhA operon, which increases the transcription of the drug target protein

(InhA) [10, 11]. While mutations in the genes rpsL, rrs, and gidB can confer resistance to
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streptomycin (STR), resistance to ethambutol (EMB) is mediated by mutations found in embB
[11–13]. Moreover, mutations in the gene pncA are associated with resistance to pyrazinamide

(PZA) [11–13].

Accurate and rapid drug susceptibility testing (DST) is crucial for appropriate TB treatment

[14]. However, the use of phenotypic DST (pDST) is confined to reference or central laborato-

ries in many developing countries [15]. Molecular assays or genotypic DST (gDST), such as

Cepheid GeneXpert and Hain MTBDRplusv2.0, on the other hand, interrogate only a few

canonical mutations. Thus, it is important to identify which mutations are most prevalent in

Ethiopia. For instance, resistance mediating mutations that are not interrogated by commer-

cial molecular tests may lead to false negative results, or particular combinations of mutations

may lead to false resistant interpretations [15].

Therefore, the aim of this study was to characterize mutations associated with resistance

against first-line anti-TB drugs in MTBC strains isolated from suspected MDR-TB patients in

Addis Ababa, Ethiopia, and to compare the performance of DNA-sequencing for detection of

resistance in comparison to the routine phenotypic DST method.

Materials and methods

Study design and setting

A cross-sectional study was conducted from June 2015 to December 2016 in all health facilities

that provide MDR-TB diagnosis services in Addis Ababa city, namely Addis Ababa Regional

Referral Laboratory, Saint Peter Hospital, and Teklehaimnot Health Center. We enrolled 226

MDR-TB suspect cases who were culture positive and consented to participate in the study,

including TB treatment failure cases, smear-positive cases who had known close contact with a

confirmed MDR-TB patient, and new or retreatment cases who remained smear-positive for

at least two or three months of treatment, respectively [16].

Besides sputum specimens, we collected socio-demographic, epidemiological, and clinical

data from each study participant using a questionnaire. Mycobacterial culture and pDST were

performed at the Ethiopian Public Health Institute, National Reference TB Laboratory,

whereas Sanger sequencing was performed at the Research Center Borstel in Germany (Fig 1).

Specimen collection and laboratory analysis

Specimen collection. A minimum volume of 5 ml of sputum specimen produced by a

deep cough was collected into a sterile wide mouth 50 ml falcon tube from each study partici-

pant. All specimens were stored at 2–8˚C at collection sites until transported to the National

TB Reference Laboratory using a cold chain [7].

Microscopy examination. All collected samples were subjected to Ziehl-Neelsen (ZN)

staining as described previously [7]. Briefly, a smear was prepared using a slide from the muco-

purulent part of the sputum, air-dried, and stained. The stained slides were examined using a

light microscope for the presence of Acid Fast Bacilli (AFB) [17].

Specimen decontamination and culture. For better yield, Lowenstein Jensen (LJ) and

Mycobacteria Growth Indicator Tube (MGIT) culture methods were used. All sputum samples

were decontaminated with 4% sodium hydroxide-N-acetyl-l-cysteine (NaOH-NALC) and

then neutralized with phosphate-buffered saline (PBS). The decontaminated samples were

then inoculated into Mycobacteria Growth Indicator Tubes (MGIT BACTEC™ MGIT 960

tubes (BD Diagnostics, Sparks, MD, USA) at 37˚C [18], and onto LJ slants at 37˚C [19]. The

incubated specimens in the BACTEC™ MGIT 960 tube were inspected daily for 42 days maxi-

mum to check growth [18]. Similarly, an inspection of the specimens incubated in LJ media

was done weekly for eight weeks based on colony growth and morphology [19].
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Identification of mycobacteria. Identification of the grown mycobacteria species was

done by using MPT64 antigen detection methods (Capilia TB-neo Becton, Dickinson Diag-

nostic Systems; Sparks, MD, USA). Briefly, the test device consisted of a sample area, a test

area containing the anti-MPB64 antibodies, and a control area where anti-species immuno-

globulin antibodies are fixed. The testing method is based on immune-chromatographic prin-

ciples, in which antibodies labeled with colloidal particles react with target antigens to form a

migrating antigen-antibody complex, which is captured by a second fixed antibody. A color

reaction takes place when the labeled particles are fixed. The result is interpreted as positive for

the MTBC if the color reaction takes place in the test and control areas [20].

Phenotypic drug susceptibility testing. The DST for RIF, INH, EMB, STR, and PZA was

performed using the BACTEC™ MGIT 960 method as described previously [7]. Briefly, 0.1 ml

of a bacilli suspension with a McFarland standard was inoculated into a vial supplemented

with reconstitution solution, and containing 1.0 μg/ml of RIF, 0.1 μg/ml of INH, 5.0 μg/ml of

EMB, 1.0 μg/ml of STR, and 100 μg/ml of PZA [18].Mycobacterium tuberculosis strain H37Rv

was used as a sensitive control for susceptibility testing. The result was interpreted when the

growth unit value of the growth control reached 400 or more within 4 to 13 days. If the growth

unit value of the tube containing the drug being tested was 100 or more, the strain was classi-

fied as resistant; if the growth unit value was less than 100, the strain was classified as

susceptible.

Fig 1. A flowchart explaining the steps of the study.

https://doi.org/10.1371/journal.pone.0271508.g001
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Genomic DNA extraction. Genomic DNA was extracted from MTBC strains by a

method described by Somerville et al. [21]. Briefly, a loop full of MTBC colonies was sus-

pended in 400 μl of 10 mM Tris–HCl, 1 mM ethylene-diamine-tetra-acetic acid (EDTA) and

heated for 20 minutes at 80˚C. Then 1 mg/ml of lysozyme was added and incubated for 2

hours at 37˚C. This was followed by the addition of proteinase K (0.2 mg/ml) and 10% sodium

dodecyl sulfate in distilled, deionized water (1.1%) and incubated at 65˚C for 20 minutes after

vortex. After incubation, a mixture of N-acetyl-N, N, N-trimethyl ammonium bromide [40

mM], and NaCl (0.1 M) was added, and then NaCl (0.6 M) was immediately added. The mix-

ture was vortexed until it turned milky and incubated at 65˚C for 10 minutes. A 750 μl chloro-

form-isoamyl alcohol (24:1) was added, vortexed, and then centrifuged at 13,000 rpm in a

microcentrifuge for 5 minutes at room temperature. Then the extracted DNA was precipitated

with 70% ethanol and re-suspended in a volume of 30 μl TE buffer. Finally, DNA quality and

concentration were determined by a spectrophotometer at an optical density of 260 nm and

280 nm.

Polymerase Chain Reaction and drug target gene sequencing

Polymerase Chain Reaction (PCR) amplification and sequencing of the RIF, INH, EMB, PZA,

and STR drugs’ targets in MTBC strains was done by using gene-specific primers as described

below in Table 1. The PCR reactions were conducted in a volume of 25 μL final reaction mix

of 2.5 μl of 10x PCR buffer (10 mM Tris-HCl, pH 8.3; 50 mM KCl; 0.001% gelatin), 0.5 μl of

0.2 mM dNTPs, 0.75 μl of 25 mM magnesium chloride solution, 0.125 μl of 2 U AmpliTag

Gold polymerase (Perkin Elmer, USA), 1.25 μl each of the 10 μM primers (forward and reverse

primers), 1.25 μl of DMSO, 15.3 μl of double distilled water and 2 μl of genomic DNA. The

amplification was done by programming the thermocycler of Eppendorf™ at the following con-

ditions: 95˚C for 3 minutes for initial denaturation; followed by 40 cycles of denaturation at

95˚C for 1 minute, annealing ranged from 55˚C to 65˚C for 30 seconds or 1 minute (summa-

rized in Table 1 for each gene), and extension at 72˚C for 30 seconds, and the final extension

was at 72˚C for 5 minutes. The PCR amplified products were examined on a 1.5% agarose gel

electrophoresis using a 100 base pair DNA ladder.

Finally, EXOSAP cleanup of PCR products for sequencing was performed under the follow-

ing conditions: 5 μl PCR products were mixed with 1μl exonuclease and 1μl alkaline

Table 1. Primers that were used for PCR amplification and sequence of drug target genes for analysis of the mutation in MTBC strains.

Gene Primer Sequence (5’!3’) Amplicon size Annealing (Time) Reference

rpoB Forward TCGCCGCGATCAAGGAGT 157bp 65˚C (30 sec) [22]

Reverse GTGCACGTCGCGGACCTCCA

katG Forward TCGGCGATGAGCGTTACAGC 543bp 65˚C (30 sec) [23]

Reverse CCCGCAGCGAGAGGTCAGTGG

fabG1-inhA Forward CCTCGCTGCCCAGAAAGGGA 230bp 55˚C (1 min) [24]

Reverse ATCCCCCGGTTTCCTCCGGT

rpsL Forward CGGCGGGTATTGTGGTTGCTCGTG 801bp 55˚C (1 min) [25]

Reverse CCTCCAGGGCGGGTTTGACATTG

rrs Forward CCATTGCCGGATTTGTATTAGACT 843bp 55˚C (1 min) [26]

Reverse GCGGGCGATACGGGCAGACTA

embB Forward TGGACGGGCGGGGCTCAAT 334bp 65˚C (30 sec) [22]

Reverse CCAGCGCCGCCGGTGTGAGC

pncA Forward GCTGGTCATGTTCGCGATCG 665bp 60˚C (30 sec) [27]

Reverse CGCTCCACCGCCGCCAACAG

https://doi.org/10.1371/journal.pone.0271508.t001
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phosphatase, and then the mix was placed in a thermal cycler with the hot lid off. The cycles

were performed for 30 min at 37˚C and 15 min at 80˚C [22], and followed by a Sephadex

cleanup of the sequence-PCR products. The resulting products were sequenced with their

gene-specific forward and reverse single primer extensions to get optimal coverage of the tar-

get regions using a Big dye-terminator kit and an ABI Prism 3500lL Genetic Analyzer (Applied

Biosystems, USA).

Data analysis

The sequencing data obtained from the ABI3730XL DNA analyzer were imported into SeqS-

cape1 software version 2.7 (Applied Biosystems, Foster City, CA) and consensus sequences

were generated. The SeqScape1 was used for DNA sequence comparisons, and mutations

were detected in the respective genes by comparing them with the reference Mycobacterium
tuberculosis strain H37Rv sequence. Likewise, all patient-related information collected, pheno-

typic drug profiles, and drug target gene mutation data were compiled, entered into an excel

sheet, cleared, and categorized as necessary. Descriptive statistics were computed, including

frequency and percentage of the socio-demographic, TB exposure and treatment history, anti-

biotic treatment history, HIV status, alcohol consumption and smoking history, phenotypic

drug profiles, and mutations identified from drug target gene data using SPSS version 23 statis-

tical package software (SPSS Inc., Chicago, IL).

Performance of Sanger sequencing for the prediction of drug resistance

Sensitivity, specificity, and overall agreement were calculated in comparison to the phenotypic

DST results from the reference standard BACTEC MGIT960 (Becton Dickinson). Any identi-

fied mutation in the selected resistance determining regions (Table 1) was considered a geno-

typic drug resistance determinant. Sensitivity was calculated as the number of true positives

divided by the number of true positives plus the number of false positives. Calculating specific-

ity was done by dividing the number of true negatives by the number of true negatives plus the

number of false positives. Overall agreement was calculated as the number of true positives

plus the number of true negatives divided by the number of all examined samples (true nega-

tives and positives plus false negatives and positives).

Ethical considerations

Scientific and ethical approval for the study was obtained from the Research and Ethical

Review Committee of Addis Ababa University and the Ethiopian Public Health Institute. We

obtained written and/or oral informed consent from study participants. Confidentiality of the

participants’ data and test results was maintained throughout the study period using codes.

Results

Overall, we enrolled a total of 226 MTBC MDR-TB suspected cases and successfully isolated

MTBC strains from all cultured samples (100%). However, from these, we were able to extract

DNA with enough quantity and quality for gDST from 209 (92.5%) strains. Therefore, we

excluded 17 strains (study participants) from the final analysis of this study.

Socio-demographic and clinical characteristics

Some socio-demographic and clinical characteristics data of the study participants used in this

report were included in our previous report [7]. As shown in Table 2, the majority of MDR-TB

suspects were males (59.3%, 124/209), married (59.3%, 124/209), and HIV positive (58.9%,
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Table 2. Socio-demographic and TB-related characteristics of MDR-TB suspected and confirmed cases.

Variable All DR-TB suspected Cases

Number (%) (n = 209)

MDR-TB confirmed Cases

Number (%) (n = 88)

Sex

Male 124 (59.3) 37 (42.0)

Female 85 (40.7) 51 (58.0)

Age Group

15–24 25 (12.0) 4 (4.5)

25–34 94 (45.0) 53 (60.2)

35–44 62 (29.7) 22 (25.0)

45–54 19 (9.1) 6 (6.8)

Above 54 9 (4.3) 3 (3.4)

Marital Status

Married 124 (59.3) 53 (60.2)

Unmarried 75 (35.9) 31 (35.2)

Divorced 7 (3.3) 2 (2.3)

Widow 3 (1.4) 2 (2.3)

Living Region

AA 193 (92.3) 82 (93.2)

Amhara 1 (0.5) 0 (0)

Dire Dawa 2 (1.0) 2 (2.3)

Oromia 11 (5.3) 4 (4.5)

SNNPR 2 (1.0) 0 (0)

Residence

Rural 12 (5.7) 4 (4.5)

Urban 197 (94.3) 84 (95.5)

Previously TB infected

No 61 (29.2) 16 (18.2)

Yes 148 (70.8) 72 (81.8)

Treatment history of previously TB

infected cases

No 0 (0) 0 (0)

Yes 148 (100) 72 (100)

Treatment interruption previously TB

treated cases

No 126 (85.1) 62 (86.1)

Yes 22 (14.9) 10 (13.9)

TB Treatment History

New 61 (29.2) 16 (18.2)

Previously treated 148 (70.8) 72 (81.8)

Previously treated cases ((among

retreatment cases)

Defaulter 5 (3.4) 3 (4.2)

Relapse 134 (90.5) 62 (86.1)

Treatment Failure 9 (6.1) 7 (9.7)

ZN Microscopy Results

Negative 28 (13.4) 2 (2.3)

Positive 181 (86.6) 86 (97.7)

HIV Status

Positive 123 (58.9) 70 (79.5)

(Continued)
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123/209). The largest age group of patients was between 24 and 34 years old (94/209, 45.0%).

Of note, 86.6% (181/209) of the study participants were ZN smear positive. The majority of the

investigated patients had a previous TB treatment history (70.8%, 148/209). Out of these,

90.5% (134/148) were relapsed cases and 9.5% (14/209) were treatment failures and defaults.

Seventy-nine (79/209, 37.8%) cases had an antibiotic treatment history, and more than one-

third (28/79, 35.4%) of these cases interrupted antibiotic treatment more than once. Moreover,

41/209 (19.6%) of the participants reported frequent alcohol consumption and 26/209 (12.4%)

cigarette consumption (Table 2).

Phenotypic drug susceptibility tests

The pDST data used herein was included in our previously published report [7]. Table 3 shows

the details of all the pDST results and the identified resistance mediating mutations. Overall,

122/209 (58.4%) of the strains showed resistance to at least one of five anti-TB drugs tested

(RIF, INH, PZA, EMB, and STR), and the proportion of resistance to INH, STR, RIF, EMB,

and PZA was 109 (52.2%), 93 (44.5%), 88 (42.1%), 74 (35.4%), and 69 (33.0%), respectively. Of

these, 88 (72.1%) stains were MDR-TB and the remaining 34/122 (27.9%) strains had mono or

polydrug resistance. Interestingly, 53/88 (60.2%) MDR-TB strains were resistant to all five

anti-TB drugs (RIF, INH, PZA, EMB, and STR), as shown in Table 3. Most of the MDR TB

strains were from ZN smear-positive cases, i.e., 86/88 (97.7%) [Table 2].

Genotypic drug susceptibility testing

A total of 110/209 (52.6%) strains had a mutation either in the rpoB, KatG, fabG-inhA, embB,

pncA, rpsL, and or rrs genes. Of these, 85/209 (40.7%) strains were confirmed as MDR-TB

Table 2. (Continued)

Variable All DR-TB suspected Cases

Number (%) (n = 209)

MDR-TB confirmed Cases

Number (%) (n = 88)

Negative 86 (41.1) 18 (20.5)

Antibiotic treatment history

No 130 (62.2) 45 (51.1)

Yes 79 (37.8) 43 (48.9)

Antibiotic treatment interruption

(among treated cases)

No 51 (64.6) 28 (65.1)

Yes 28 (35.4) 15 (34.9)

Alcohol drinking frequently

No 168 (80.4) 60 (68.2)

Yes 41 (19.6) 28 (31.8)

Alcohol drinking during treatment

(among drinkers)

No 32 (78.0) 22 (78.6)

Yes 9 (22.0) 6 (21.4)

Cigarettes Smoking

No 183 (87.6) 72 (821.8

Yes 26 (12.4) 16 (18.2)

SNNPR: Southern Nations, Nationalities, and Peoples’ Region, HIV: Human Immunodeficiency Virus ZN: Ziehl-

Neelsen

https://doi.org/10.1371/journal.pone.0271508.t002
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(Table 3). Mutations in the rpoB associated with resistance against RIF were detected in 90/209

(43.1%) of the strains, while the mutation rpoB S531L was most prevalent (57/90, 63.3%). In

15/90 (16.7%) of the strains with Rifampicin Resistant Determinant Region (RRDR) muta-

tions, codon 526 was affected by different mutations (H526Y, H526S, H526D, and H526L).

Other mutations, including the rpoBD516V, Q513P, L533P, and L538P/V, were also observed,

in addition to one base pair insertion at codon 513.

Among all the genotypic RIF resistant strains, 84/90 (93.3%) were also phenotypically resis-

tant at 1.0 μg/ml (MGIT960). However, the six phenotypically susceptible strains harbored

mutations in the rpoB R529P (one strain), L533P (two strains), and L538PV (two strains), and

one strain had a silent mutation, i.e., S531S (TCG to TCC). Moreover, four phenotypic resis-

tant strains did not have any mutations in the interrogated rpoB gene region (Table 4).

Table 3. Phenotypic and genotypic drug resistance patterns in MTBC strains.

Phenotypic Pattern of Drug Resistance Genotypic Pattern of Drug Resistance

Drug Resistance All strains (n = 209) n (%) Drug target Genes Mutation All strains (n = 209) n (%)

Any Resistance 122 (58.4) Any Mutation 110 (52.6)

INH 109 (52.2), KatG 100 (47.8)

RIF 88 (42.1) rpoB 90 (43.1)

STR 93 (44.5) fabG-inhA 7 (3.3)

EMB 74 (35.4), embB 73 (34.9)

PZA 69 (33.0) pncA 68 (32.5)

rpsL 49 (23.4)

rrs 10 (4.8)

Mono Resistance 16 (7.7) Single Mutation 13 (6.2)

INH 8 (3.8) rpoB 5 (2.4)

STR 7 (3.3) KatG 5 (2.4)

PZA 1 (0.5) rpsL 2 (1.0)

fabG-inhA 1 (0.5)

Multi drug Resistance (MDR) 88 (42.1) Multiple Mutation with MDR 85 (40.7)

RIF + INH 3 (1.4) rpoB + KatG 5 (2.4)

RIF + INH + EMB 3 (1.4) rpoB + KatG + embB 5 (2.4)

RIF + INH + STR 7 (3.3) rpoB + KatG + rpsL 5 (2.4)

RIF + INH + PZA 4 (1.9) rpoB + KatG + pncA 6 (2.9)

RIF + INH + EMB + STR 10 (4.8) rpoB + KatG + pncA + rpsL 4 (1.9)

RIF + INH + EMB + PZA 3 (1.4) rpoB + KatG + embB + rpsL 5 (2.4)

RIF + INH + STR + PZA 5 (2.4) rpoB + KatG + embB + pncA 19 (9.1)

RIF + INH + EMB + STR + PZA 53 (25.4) rpoB + KatG + fabG-inhA + embB + pncA 2(1.0)

rpoB + KatG + embB + pncA + rrs 3(1.4)

rpoB + KatG+ embB + pncA + rpsL 26 (12.5)

rpoB + KatG + embB + pncA + rpsL + rrs 2 (1.0)

rpoB + KatG + fabG-inhA + embB + pncA + rpsL 2 (1.0)

rpoB + KatG + fabG-inhA + embB + pncA +rrs 1 (0.5)

Poly Resistance� (Non MDR) 14 (6.7) Multiple Mutation without MDR 9 (4.3)

EMB + INH 3 (1.4) rpoB + embB + pncA + rrs 1 (0.5)

INH + STR 6 (2.9) KatG+ embB + pncA 1 (0.5)

EMB + INH + STR 2 (1.0) KatG+ embB + rpsL 1 (0.5)

INH + STR + PZA 2 (1.0) KatG+ embB 3 (1.4)

EMB + INH + STR + PZA 1 (0.5) KatG+ rpsL 2 (1.0)

KatG+ pncA 1 (0.5)

https://doi.org/10.1371/journal.pone.0271508.t003
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A total of 100/209 (47.9%) strains had a mutation in the katG gene, with 98/100 (98.0%)

strains harboring the katG S315T mutation and 1/100 (1%) strains having a double mutation,

i.e., katG S315T and T275A. Moreover, mutations in the promoter region of the INH drug tar-

get (InhA) were identified in 5/209 (2.4%) strains, i.e., -8 t/c and -15 c/t relative to the gene

start. Interestingly, most 4/5 (80.0%) of these strains also had a mutation katG S315T, mediat-

ing high level INH resistance (Table 4). Likewise, 2/209 (1.0%) strains had other distinct muta-

tions in katG in combination with katG S315T, i.e., V14G & S315T, and G28R & S315T.

Genotypic EMB resistance was detected in 74/209 (35.4%) strains mediated by mutations in

the embB gene. The most common mutations were observed at codon 306 in 48/74 (64.9%) of

the strains, and of these, 66/74 (89.2%) of the embBmutations were found in MDR-TB strains

(Table 4). Additional mutations associated with EMB resistance were detected in 13/74

(17.6%) strains with embBG406A (GGC to GCC), 1/74 (1.4%) strains with a frameshift muta-

tion at codon 368, and 4/74 (5.4%) strains with a frameshift at codon 347. Moreover, other

unique mutations in embB were observed in 7/74 (9.5%) strains (Table 4).

With regard to PZA resistance, a total of 68/209 (30.1%) strains had a mutation in the pncA
gene. Among PZA susceptible strains, we identified 5/209 (2.4%) strains with pncA A102V,

one strain with pncA V130G, and one strain with pncA V130M. Of note, 5/209 (2.4%) strains

with pncA V130G and 2/209 (1.0%) strains with pncA V130M tested PZA resistant in

MGIT960.

The most prevalent mutation was a single base pair insertion at position 193, which was

found in 19/209 (9.1%) of the strains. Other mutations were identified in 20/209 (9.6%) strains

as follows: pncA T76P, A102V and V139A, Y41Stop, Y103H, G108E, G108A, and L182W.

Moreover, the following frameshift mutations were found in pncA 300insG, 301insC, 380–

388del AGGTCGATG, and 530delA. All pncA mutations co-occurred in strains that had

mutations in rpoB, katG, fabG1, embB, rpsL, or rrs (Table 3).

Mutations associated with resistance to STR were detected in 57/209 (27.3%) of the strains,

and the most prevalent mutations were rpsL K88R 22/209 (10.5%) and the rpsL K88T 21/209

(10.0%), and the rpsL K43R 7/209 (2.9%). Furthermore, mutations in the rrs gene were identi-

fied in 10/209 (4.8%) strains at positions 514 (A to C), 517 (C to T), 613 (A to C), 891 (G to A),

906 (A to G), and 1010 (A to C). Overall, 43/57 (87.8%) strains with mutations in rpsL had an

additional mutation in rpoB and katG, i.e., co-occurred with an MDR genotype.

Performance of Sanger sequencing

We further investigated the sensitivity and specificity of the prediction of individual drug resis-

tances and overall agreement (proportion of resistant and susceptible strains) of Sanger

sequencing DST for RIF, INH, PZA, EMB, and STR, compared to the phenotypic standard

method BACTEC™ MGIT 960 as described in Table 5. Our finding showed that the sensitivity

and specificity for RIF were 95.5% with a 95% confidence interval (CI) of 91.2% to 99.8% and

95.9% (95%, CI, 92.4% to 99.4%), respectively, resulting in a concordance of 95.7% (95%, CI,

92.9% to 98.5%). Six discordant resistant results were linked to the mutations in rpoB R529P,

L533P, L538P/V, and S531S (silent mutation) (Table 4).

The sensitivity of the INH resistance prediction was 89.9% (95%, [CI], 84.2% to 95.6%), and

specificity was 98% (95%, CI, 95.3% to 100%). The overall agreement between the genotypic

and phenotypic DST assays was 93.8% (95%, CI 90.5% to 97.1%) (Table 5). Discordant resis-

tant results of two strains linked to katG S315T mutations (Table 4).

Regarding the prediction of EMB resistance, 74 strains were classified as having EMB resis-

tance with a sensitivity of 98.6% (95% CI, 95.9 to 100%) and a specificity of 99.3% (95% CI,
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97.9 to 100%). The overall agreement of the EMB resistant diagnosis was 99.0% (95% CI,

97.7% to 100%). One discordant resistant result was linked to the mutation embBD311G.

The sensitivity of the prediction of resistance to PZA by gDST was 91.3% (95% CI, 84.6 to

98.0%), whereas the specificity was 96.4% (9% CI, 93.3 to 99.5%). In addition, the overall corre-

lation between pDST and gDST test results was found to be 94.7% (95% CI, 91.7 to 97.7%).

However, the mutations in pncA A102V (3 strains), V130G (one strain), and V130M (one

strain) were linked to the discordant resistance result. The sensitivity of STR resistance was

57.0% (95% CI, 46.9 to 67.1%) with a 96.6% (95% CI, 93.3 to 99.9%) specificity and an overall

agreement of 78.9% (95% CI, 73.4 to 84.4%). Interestingly, no mutation in rpsL or rrs was

found in 40 pDST resistant strains. In addition to this, four discordant streptomycin-resistant

results were linked to the mutations in rpsL 88 and 906, (Table 4).

Discussion

We employed Sanger sequencing of MTBC strains from MDR-TB suspects in Ethiopia to

investigate the genomic mutations implicated in resistance against RIF, INH, PZA, EMB, and

STR. Overall, Sanger sequencing showed high accuracy that ranged from 78.9% for detection

of STR resistance to 99.0% for detection of EMB resistance when compared to the phenotypic

standard method, the BACTEC MGIT 960 system. This implies that Sanger sequencing has

the potential to predict first-line drug resistance among MDR-TB suspects and can be used as

a complementary approach to pDST to detect low-level drug resistance in resource-limited

countries.

Drug resistance TB is a very important public health threat globally. It is an alarming obsta-

cle to TB care, treatment, and prevention, especially in resource-limited countries [28]. More-

over, it often leads to poor outcomes for TB patients [28]. In this study, the majority of the

phenotypic resistance against RIF could be explained by mutations in the rpoB target region.

The mutation in rpoB S531L was dominant and detected in 67% of the strains. This finding is

similar to the findings of [28] in South Africa. However, in Sudan, a neighboring country to

Table 5. Sensitivity, specificity, and overall accuracy of gDST results to predict resistance against RIF, INH, PZA

EMB, and STR.

Phenotypic DST Result using BACTEC™ MGIT 960

RIF INH PZA EMB STR

R S R S R S R S R S

Genotypic DST using Sanger Sequencing R 84 6 98 2 63 5 73 1 53 4

S 4 115 11 98 6 135 1 134 40 112

Total 88 121 109 100 69 140 74 136 93 116

Sensitivity (95% CI) 95.0%

(91.2% to

99.8%)

89.9%

(84.2% to

95.6%),

91.3%

(84.6 to

98.0%),

98.6%

(95.9 to

100%)

57.0%

(46.9 to

67.1%)

Specificity (95% CI) 95.0%

(92.4% to

99.4%)

98% (95.3%

to 100%).

96.4%

(93.3 to

99.5%)

99.3%

(97.9 to

100%)

96.6%

(93.3 to

99.9%)

Overall agreement, (95% CI) 95.2

(92.9% to

98.5%).

93.8%

(90.5% to

97.1%)

94.7%

(91.7 to

97.7%)

99.0%

(97.7% to

100%)

78.9%

(73.4 to

84.4%)

R: Resistance; S: Susceptible; CI: Confidence Interval. We investigated each drug by comparing the phenotype result

of MGIT960 with the genotypic result of Sanger and sequencing and sensitivity specificity and accuracy are

calculated as weighted means at 95% CIs.

https://doi.org/10.1371/journal.pone.0271508.t005
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Ethiopia, resistance to RIF was mediated by the rpoB Ser450Leu, His445Tyr, His445Asn, and

His445Asp mutations [29]. Moreover, we found mutations in the rpoB gene in six phenotypic

RIF susceptible strains, including, four of the mutations detected within the RRDR at R529P

(n = 1), L533P (n = 2), and S531S (n = 1) silent mutation) and two outside the RRDR at

L538P/V. This could be explained by low-level RIF resistance [30]. The mutations detected

within the RRDR at S531S and L533P have been associated with false resistance when using

the probe-based gDST method (e.g., GeneXpert MTB/RIF), which may lead to the administra-

tion of unnecessary treatment (i.e., overtreatment) [30].

The most prevalent mutation conferring resistance against INH was katG S315T, and it was

found in 97% of the MDR-TB strains. The katG S315T mutation has also been found to be

dominant elsewhere in the world in countries like Sudan, South Africa, and Vietnam [29, 31,

32]. It is associated with a low-fitness cost but with clinically significant levels of INH resis-

tance [32, 33]. Moreover, strains harboring the katG S315T mutation produce active catalase-

peroxidase, tend to be in molecular clusters (i.e., transmissible from patient to patient), and

are virulent in TB mouse models [33].

Furthermore, four of the five strains with INH resistance conferring mutations in the pro-

moter region of the fabG1-inhA operon had an additional mutation at katG S315T. The co-

occurrence of the katG S315T and the fabG1-inhA promoter mutations would lead to a further

increase in the INH resistance level and render ethionamide or prothionamide treatment

unsuccessful. Another possibility could be a compensatory effect of the fabG1-inhA promoter

mutations in catalase deficient and INH resistant strains. The co-selection of the fabG1-inhA

promoter mutations has also been observed in other studies [34–36].

Encouragingly, our Sanger sequencing approach, using the presence of mutations in the

interrogated embB and pncA genes with regions, resulted in overall sensitivities (> 90%) and

specificities (> 95%) for the prediction of EMB and PZA resistance. It is usually difficult to

predict with genotypic tests of both drugs due to breakpoint artefacts in EMB resistant strains

[37] and the diversity of pncAmutations in combination with challenging PZA test conditions

[38–41].

Moreover, identical pncAmutations in MDR-TB strains from epidemiologically related

patients might point towards ongoing transmission [42]. In this study, nearly 28% of the

strains harbored the mutation pncA 64fs, while other patient strains showed very diverse and

mostly unique pncA mutations. PZA is one of the essential drugs for the treatment of TB,

including MDR TB [43]. However, currently, there is no reliable and rapid diagnostic method

for the detection of PZA resistant TB, and the pDST method depends on acid PH and has a

long turnaround time [43]. Thus, it is important to design or explore a reliable and rapid

method. Interestingly, our findings showed that more than 97% of the genetic variants identi-

fied in the pncA gene were correlated with phenotypic resistance. Hence, Sanger sequencing

could be a reliable and accurate method for the rapid diagnosis of PZA resistant TB [44, 45].

Regarding STR, the sensitivity of predicting resistance against this drug was most likely

reduced due to the presence of a gidBmutation, which could not be interrogated in this study

[46, 47].

Conclusion

Overall, our study revealed that Sanger sequencing results can be used as a surrogate marker

for pDST against all first-line drugs (INH, RIF, EMB, and PZA) in MDR-TB suspects with

high accuracy. We showed that the sensitivity and specificity of this method are within the

WHO recommendation for molecular assays. Moreover, Sanger sequencing is able to detect

mutations that mediate only a low or moderate resistance increase. It detected many known
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canonical resistance-associated mutations implicated in resistance against RIF, INH, and

EMB, as well as diverse mutations in the pncA gene associated with resistance against PZA.

Further studies evaluating the performance of Sanger Sequencing to predict drug resistance

profiles from direct patient specimens, e.g., sputum and other body fluids, are desirable. The

ability to predict rare mutations (not covered by commercial molecular tests), especially pncA
mutations and low-level resistance mutations, such as in rpoB, renders Sanger Sequencing a

promising tool to complement routine pDST in MDR-TB suspects.
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