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Abstract: Oleuropein (OLE) is the major phenolic secoiridoid of olive tree leaves, and its antioxidant
and anti-inflammatory activities have been demonstrated in in vitro and in vivo animal models.
The aim of this study was to investigate the activity of OLE in the colonic mucosa from patients
with ulcerative colitis (UC). Biopsies obtained during colonoscopy from 14 patients with active UC
were immediately placed in an organ culture chamber and challenged with lipopolysaccharide from
Escherichia coli (EC-LPS) at 1 µg/mL in the presence or absence of 3 mM OLE. The expression of
cyclooxygenase (COX)-2 and interleukin (IL)-17 was assessed in total protein extracts from treated
colonic biopsies by Western blotting. Levels of IL-17 were also measured in culture supernatant by
ELISA. A microscopic evaluation of the cultured biopsies was performed by conventional histology
and immunohistochemistry. The expression of COX-2 and IL-17 were significantly lower in samples
treated with OLE + EC-LPS compared with those treated with EC-LPS alone (0.80 ± 0.15 arbitrary
units (a.u.) vs. 1.06 ± 0.19 a.u., p = 0.003, and 0.71 ± 0.08 a.u. vs. 1.26 ± 0.42 a.u., p = 0.03,
respectively) as were the levels of IL-17 in culture supernatants of OLE + EC-LPS treated colonic
samples (21.16 ± 8.64 pg/mL vs. 40.67 ± 9.24 pg/mL, p = 0.01). Histologically, OLE-treated colonic
samples showed an amelioration of inflammatory damage with reduced infiltration of CD3, CD4, and
CD20 cells, while CD68 numbers increased. The anti-inflammatory activity of OLE was demonstrated
in colonic biopsies from UC patients. These new data support a potential role of OLE in the treatment
of UC.
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1. Introduction

Ulcerative colitis (UC) is a chronic bowel disease characterized by colonic mucosal inflammation
and associated with immune system dysregulation [1]. Despite promising advances in the knowledge
of the genetic, immune and inflammatory mechanisms, and potential environmental factors
contributing to the disease, the pathogenetic scenario is still not fully understood [2]. UC therapy,
whose goal is to induce and maintain remission, is presently based on anti-inflammatory nonsteroid
drugs such as mesalamine, corticosteroids, and immuno-suppressive molecules [3]. With the advent of
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the biologic era over the last decade, drugs such as infliximab and other anti-tumor necrosis factor
monoclonal antibodies have revolutionized the treatment strategy of inflammatory bowel disease
(IBD), and novel biologic agents are still emerging. Nevertheless, these drugs are much more expensive
than conventional therapy [4]. Furthermore, up to 20–30% of patients fail to respond to these drugs
and concerns also arise about their potential adverse side effects [5]. Surgery is the last option in critical
patients, but is often associated with short- and long-term complications [6]. Therefore, alternatives for
a safer, cheaper, and more efficacious approach in managing UC patients are being sought.

Nutraceutical compounds, such as bioactive peptides, phytochemicals, and omega
3-polyunsaturated fatty acids, are currently under investigation for their potentially useful activities
in IBD [7]. Dietary polyphenols are able to modulate intestinal inflammation, reducing oxidative
stress and inflammation via several pathways [8]. Beneficial effects on human health from the oil,
fruits, and leaves of the olive tree have been documented and attributed to their phenolic content [9].
Oleuropein (OLE), the major phenolic secoiridoid from the olive tree leaves, has been found to exert
antioxidant, antiangiogenic and anti-inflammatory effects [10]. Observations made in animal models
and healthy humans have shown the intraluminal stability of OLE in the small intestinal mucosa and
the rapid degradation by the colonic microflora into its active metabolite hydroxytyrosol (HT) [11,12].
No adverse effects were reported from acute toxicity studies conducted in animal species and from
human studies, supporting the safety profile of OLE and its metabolites [13,14].

In a mouse model of dextran sodium sulfate (DSS)-induced colitis, OLE reduced neutrophil,
macrophage, and eosinophil accumulation in colon tissue and inhibited COX-2 expression, which is
known to be enhanced in the colonic epithelium of UC patients [15]. In the same animal model, OLE
was found to downregulate the Th17 response, a key proinflammatory pathway activated in IBD [16].
These findings led us to hypothesize that OLE may have the potential to reverse chronic inflammation
in UC.

2. Materials and Methods

2.1. Patients and Sampling

Fourteen outpatients (8 males, 6 females, median age 59 years, range 39–80) with UC who
underwent routine colonoscopy were enrolled in this study. Diagnosis of IBD was assessed in
accordance with current clinical guidelines and criteria based on endoscopic, radiological and
histopathologic examination [17]. Since the purpose of the study was to examine the anti-inflammatory
effects of OLE in UC, we selected patients who had mild to moderate active ulcerative colitis, defined
by a Mayo score ranging from 4 to 6, median 6 [18]. Eight UC patients had pancolitis, the remaining
6 had left-sided colitis. All the patients were treated with oral and topical mesalamine at the time
of biopsy, were not on immunomodulating medications including thiopurines or biologics and had
suspended any steroid treatment, both oral and local, at least three months earlier. None of them had
ever been treated with anti-TNF alpha agents, cyclosporine, or methotrexate. Characteristics of the
patients are summarized in Table 1. During colonoscopy, ten biopsies were taken from endoscopically
affected areas but avoiding frankly ulcerated areas. All biopsies were taken with the same biopsy
forceps and by the same endoscopist (FL) to ensure the samples were uniform in size.
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Table 1. Demographic and clinical characteristics of the 14 patients with ulcerative colitis who
underwent biopsy sampling during colonoscopy.

Characteristic Values

Sex 8 males; 6 females
Age (years) 59 (range 39–80)
Mayo Score 6 (range 4–6)
Pancolitis 8
Left-sided colitis 6
Oral/Topic Mesalamine 14
Previous azathioprine/anti-TNF alpha -
Current oral/topic Steroids -

Values are numbers or median with range, as indicated.

2.2. Ex Vivo Organ Culture

Biopsy samples were immediately placed on steel grids in the central well of an organ culture
dish containing RPMI 1640, 5% fetal bovine serum, 10 mmol/L L-glutamine, 0.25 µg/mL amphotericin
B (all obtained from Invitrogen, Carlsbad, CA, USA). Then, the dishes were placed in an organ culture
chamber at 37 ◦C in 95% O2, 5% CO2 for 4 and 20 h, and biopsies were stimulated or not (untreated
controls) with LPS from Escherichia coli (EC-LPS, Escherichia coli Serotype O127:B8 Lipopolysaccharide,
Sigma-Aldrich, Milan, Italy) at a concentration of 1 µg/mL, to induce an inflammatory response,
in the absence or presence of OLE at a final concentration of 3 mM. OLE was obtained using a novel
sustainable synthetic strategy, as described by Procopio et al. [19]. Due to its high water solubility, OLE
was dissolved in the same medium used for organ culture, to give a stock solution at a concentration
of 20 mM. One biopsy specimen from each treatment was collected after 4 h and embedded in paraffin
for histologic evaluation, while the remaining samples were snap-frozen after 20 h and then stored at
−80 ◦C for further protein extraction. To exclude direct toxicity of OLE, the viability of the biopsies
over the culture period was checked by hematoxylin/eosin (H & E) staining of frozen tissue sections.
The explants were considered viable only if the morphology of the tissue was intact with well-defined
crypts, epithelial surface and adequate and strong uptake of H & E.

Preliminary experiments in our Laboratory were performed to optimize the dose range (0.1, 0.5, 1,
3, 5, and 10 mM of OLE) and time course (6, 8, 12, 16, and 20 h).

2.3. Extraction of Total Proteins

Total proteins were extracted from biopsies after 20 h of culture, using lysis buffer (50 mmol/L
HEPES pH 7.6, 150 mmol/L NaCl, 1% Triton X-100, 1 mmol/L Na3VO4, 10 mmol/L NaF, 30 mmol/L
Na4P2O7, 10% glycerol, 1 mmol/L benzamidine, 1 mmol/L dithiothreitol (DTT), 10 lg/mL leupeptin,
and 1 mmol/L phenylmethylsulfonyl fluoride (PMSF)) (all obtained from Sigma-Aldrich S.r.l., St. Louis,
MO, USA). After incubation for 30 min in ice, the membranes were centrifuged for 30 min at 3100 g
at 4 ◦C. The supernatant containing the total proteins was retained, the protein concentration was
determined by the Bradford method to ensure equal protein loading prior to Western blot analysis,
and aliquots were stored at −80 ◦C.

2.4. Western Blot Analysis

Levels of COX-2 and IL-17 were assessed in total protein extracts from cultured biopsy
specimens after 20 h. Total proteins (40 µg) were resolved by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis and electrophoretically transferred onto an Immobilon-P membrane
(Amersham, Life Sciences Inc., Buckinghamshire, UK); a 10% gel was used in the detection of COX-2
whilst a 12% was used in the detection of IL-17. Ponceau S staining was performed to confirm the
equal loading and transfer of proteins. The membranes were blocked for 1 h in ‘blocking buffer’
(5% nonfat dry milk in 10 mmol/L Tris-HCl, 100 mmol/L NaCl, and 0.1% Tween 20, pH 7.6). This was
followed by incubation with COX-2 and IL-17 mAbs (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
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diluted 1/500 in blocking buffer overnight at 4 ◦C, and then with horseradish peroxide-conjugated goat
anti-rabbit IgG mAb, diluted 1/2000 for 1 h (Santa Cruz Biotechnology). All the blots were stripped and
reprobed with an anti-β-actin antibody diluted 1/5000 (from Sigma), and the secondary antibody used
was horseradish peroxide-conjugated goat anti-mouse IgG mAb (Santa Cruz Biotechnology) diluted
1/2000. Chemiluminescence luminol reagent (Santa Cruz Biotechnology) was used for detection.
Bands were measured densitometrically, and their relative density calculated based on the density
of the β-actin bands in each sample. Values were expressed as arbitrary densitometric units (a.u.)
corresponding to signal intensity.

2.5. Measurement of IL-17 in the Culture Supernatants

Culture supernatants were collected after 20 h and stored at −80 ◦C. Levels of IL-17 were measured
by enzyme-linked immunosorbent assay (ELISA, R & D Systems, Minneapolis, MN, USA) following
the manufacturers’ instructions. The amount of cytokine was quantified within each supernatant in
duplicate. Results were given as pg/mL, normalized on protein content and the mean value with
standard deviation was calculated.

2.6. Histology

Preliminary data experiments in our Laboratory suggested an optimal 4 h culture in order to
minimise any alteration in gland cytoarchitecture upon microscopic evaluation. Biopsy specimens
were fixed in 4% paraformaldehyde. Following dehydration and paraffin-embedding, biopsies were
cut into 3–10 µm thick sections and stained with H & E. Colonic sections were processed through
deparaffinization, rehydration using Dako En Vision Detection™ FLEX+, Mouse, High pH system
(Peroxidase/DAB+, K5007, Dako Italia SRL, Milan, Italy), and immunohistochemical staining was
performed using a panel of rabbit monoclonal antibodies against CD3-CD4-CD20-CD68 at 1:200
dilution (Novus Biological, Milan, Italy). Antigen expression and distribution was visualized using
Dako Autostainer after 60 min at room temperature. Hematoxylin was used for counterstaining.
All the specimens fulfilled the criteria of intact morphology and H & E uptake in order to be included
in this final analysis. Conventional histology and immunohistochemistry were performed by an expert
pathologist (LT) who was blinded to the clinical and experimental data. For quantification, a blinded
scoring was used and rated with no (−), few (+), moderate (++) and intense (+++) staining.

2.7. Statistical Analysis

Mann-Whitney U test and the paired two tailed Student’s test was used for statistical analyses,
as appropriate. A p-value of less than 0.05 was considered statistically significant.

2.8. Ethical Considerations

All the patients gave informed consent to the study and for the procurement of further biopsies in
addition to those needed for clinical management during colonoscopy. The study was approved by
the local Research Ethics Committee (n. 2013.31).

3. Results

3.1. OLE Decreases COX-2 Expression in Colonic Biopsy Culture

Using a tissue culture model for biopsies of human colonic mucosa, we showed that OLE
prevents LPS-induced increase of COX-2 in LPS-treated colonic mucosa from UC patients (Figure 1).
EC-LPS challenge led to an increase in COX-2 levels at 20 h of incubation in UC colonic mucosa
compared with untreated samples (1.06 ± 0.19 a.u. vs. 0.84 ± 0.16 a.u., p = 0.01), thus confirming
this as a good model of inflammation. Moreover, in cultured biopsies treated with EC-LPS + OLE,
COX-2 production was highly reduced compared with LPS treatment alone (0.80 ± 0.15 a.u. vs.
1.06 ± 0.19 a.u., p = 0.001, Figure 1).
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Figure 2. Oleuropein (OLE) decreases interleukin (IL)‐17 expression in colonic biopsy culture. Levels of 
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ulcerative  colitis  (n  =  14)  treated  for  20  h  in  an  organ  culture  chamber with medium  (untreated 

Figure 1. Oleuropein (OLE) decreases cyclooxygenase (COX)-2 expression in colonic biopsy culture.
Levels of COX-2 observed by Western blotting of total protein extracts from colonic biopsiesof
patientswith ulcerative colitis (n = 14) treated with medium (untreated samples) or lipopolysaccharide
from Escherichia coli (EC-LPS) at 1 µg/mL, in the absence or presence of 3 mM OLE for 20 h in an organ
culture chamber. β-actin was used as loading control. Values are expressed as mean values ± SD of
arbitrary units (a.u.). The immunoblot panel is one representative experiment.

3.2. OLE Suppresses IL-17 in Both Mucosa and Supernatant of Colonic Biopsy Culture

To assess whether OLE was able to switch off the mucosal inflammation in human EC-LPS
stimulated colonic mucosa, we analyzed the expression of the pro-inflammatory cytokine IL-17 in
colonic tissue and its release in the supernatant from cultured biopsies (Figures 2 and 3). An increased
expression of IL-17, along with its high secretion, was observed in samples following stimulation
with EC-LPS compared with the non-stimulated samples (1.26 ± 0.42 a.u vs. 0.80 ± 0.09 a.u.,
p = 0.03 and 40.67 ± 9.24 pg/mL vs. 25.9 ± 6.92 pg/mL, p = 0.02, respectively, Figures 2 and 3).
The enhanced production of IL-17 in EC-LPS stimulated samples was efficiently lowered with the
addition of OLE, in both mucosa and culture supernatant (0.71 ± 0.08 a.u. vs. 1.26 ± 0.42 a.u., p = 0.03,
and 21.16 ± 8.64 pg/mL vs. 40.67 ± 9.24 pg/mL, p = 0.01, respectively, Figures 2 and 3).
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Figure 2. Oleuropein (OLE) decreases interleukin (IL)-17 expression in colonic biopsy culture.
Levels of IL-17 observed by Western blotting of total protein extract from colonic biopsies of patients
with ulcerative colitis (n = 14) treated for 20 h in an organ culture chamber with medium (untreated
samples) or lipopolysaccharide from Escherichia coli (EC-LPS) at 1 µg/mL, in the absence or presence of
3 mM OLE. β-actin was used as loading control. Values are expressed as mean values ± SD of arbitrary
units (a.u.). The immunoblot panel is one representative experiment.
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Figure 3. Oleuropein (OLE) decreases interleukin (IL)-17 levels in supernatant of colonic biopsy culture.
Levels of IL-17 by ELISA observed in supernatant from colonic biopsies of patients with ulcerative
colitis (n = 14) treated for 20 h in an organ culture chamber with medium (untreated samples) or
lipopolysaccharide from Escherichia coli (EC-LPS) at 1 µg/mL, in the absence or presence of 3 mM OLE.
Values are given in pg/mL as scattered plots with mean values.

3.3. OLE Attenuates Inflammatory Damage in Colonic Biopsy Samples

EC-LPS challenged samples showed a dense inflammatory infiltrate of leukocytes in the lamina
propria, with epithelial damage, necrosis of the surface cells, and loss of mucin secretion (Figure 4A).
A decreased infiltration of leukocytes, mainly mononuclear cells, with preservation of mucin
secretion and the presence of goblet cells in the superficial portion of the glands was found in
biopsy specimens treated with OLE + EC-LPS (Figure 4B). Using immunohistochemistry, a greater
number of intra-epithelial and sub-mucosal T lymphocytes (Figure 4C) and T helper lymphocytes
(Figure 4E) was observed in biopsy specimens treated with EC-LPS alone compared with that found in
biopsy specimens treated with the addition of OLE (Figure 4D,F). Similarly, the greater number of B
lymphocytes, as the dominant cell types in the aggregates in biopsy specimens treated with EC-LPS
alone (Figure 4G), were significantly reduced and confined in the submucosa in biopsy specimens
treated with the addition of OLE (Figure 4H). Conversely, and in attempting to repair, the histiocytic
infiltrate significantly increased in biopsy specimens treated with OLE (Figure 4J) compared with that
found in biopsy specimens treated with EC-LPS alone (Figure 4I).
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Figure 4. Anti-inflammatory effects of oleuropein (OLE) in colonic biopsies from patients with
ulcerative colitis. Representative images of tissue sections of OLE-treated and untreated samples
from the same patient. (A) Dense inflammatory infiltrate of leukocytes in the lamina propria,
with epithelial damage, necrosis of the surface cells, and loss of mucin secretion (score +++; H & E stain,
400× magnification) in a biopsy specimen treated with lipopolysaccharide from Escherichia coli (EC-LPS)
alone; (B) Decreased infiltration of leukocytes, mainly mononuclear cells, preservation of mucin
secretion and presence of goblet cells in the superficial portion of the glands (score +; H & E stain,
400× magnification) in a biopsy specimen treated with OLE + EC-LPS; (C) A greater number of
intra-epithelial and sub-mucosal T lymphocytes infiltration (score +++; immunohistochemical stain
for CD3, 400× magnification) in a biopsy specimen treated with EC-LPS alone; (D) Decreased
T lymphocytosis in the submucosa and lamina propria, and preservation of mucin secretion
(score +; immunohistochemical stain for CD3, 400× magnification) in a biopsy specimen treated
with OLE + EC-LPS; (E) Enhanced infiltration of intraepithelial and sub-mucosal T helper lymphocytes
in a biopsy specimen treated with EC-LPS alone (score +++; immunohistochemical stain for CD4,
40× magnification); (F) Decreased infiltration of intraepithelial and sub-mucosal T helper lymphocytes
in a biopsy specimen treated with OLE + EC-LPS (score +; immunohistochemical stain for CD4,
40× magnification); (G) A greater number of B lymphocytes are observed as the dominant cell types
in the aggregates of biopsies treated with EC-LPS alone (score ++; immunohistochemical stain for
CD20, 200× magnification); (H) The aggregates are significantly reduced in size and are confined in
the submucosa as inflammatory residuals in biopsy specimens treated with OLE + EC-LPS (score +;
immunohistochemical stain for CD20, 200× magnification); (I) Histiocytic infiltration consistent with
the degree of the inflammation in the submucosa of the biopsy specimens treated with EC-LPS
(score +; immunohistochemical stain for CD68, 400× magnification); (J) Increased histiocytic infiltration
along with restoration of mucin secretion in biopsy specimens treated with OLE + EC-LPS (score ++;
immunohistochemical stain for CD68, 400× magnification).

4. Discussion

In this study, we demonstrated that OLE exerts broad anti-inflammatory actions in inflamed
colonic tissue from UC patients. Little information is available on the benefits of OLE, the main olive
oil secoiridoid phenol, in human health [20]. Data from animal models indicate that OLE attenuates
the inflammatory process in DSS-induced colitis by downregulating the expression of COX-2 and
pro-inflammatory cytokines, such as TNF-alpha, IL-1β, IL-6 and IL-17 [15,21,22]. Nevertheless, there
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are no studies on the anti-inflammatory activity of OLE in patients with UC. With this in mind, OLE was
used to treat colonic biopsies taken from UC patients with active disease in an organ-culture system.

The role of COX-2 in mediating the barrier dysfunction that contributes to colonic inflammation
has been demonstrated in mice as has its overexpression in the colonic epithelium of UC patients [23,24].
As the key enzyme regulating the production of prostaglandins (PG), COX-2 is considered a central
mediator of the inflammation process. Indeed, the therapeutic action of 5-aminosalicylic acid in
treatment of UC patients relies on its inhibition of COX-2 activation [25,26]. Since we found that the
expression of COX-2 was significantly reduced in OLE-treated colonic samples, this suggests that the
OLE-induced anti-inflammatory effects in colonic tissue from UC patients could be mediated, at least
in part, by the inhibition of COX-2 activity.

Inflammatory mediators such as the nuclear factor kappa-light-chain enhancer of activated B cells
(NF-κB), TNF-α, and IL-1β have been demonstrated to enhance COX-2 expression [27–29]. Since data
have been produced to show that OLE may significantly inhibit the activation of NF-κB along with
the production of TNF-α and IL-1β [30,31], it may be argued that, in our setting, the OLE-induced
inhibition of COX-2 activity may be mediated through the suppression of these factors.

Experiments of this study were also focused on IL-17, the key cytokine of the Th17 response
which mediates pro-inflammatory functions such as the recruitment of neutrophils and the secretion
of metalloproteinases [32]. IL-17 expression has been found to be increased in the colonic mucosa and
serum of UC patients and this has been associated with the unbalanced immune response and the
related inflammatory process which take place in the colonic mucosa [33,34]. In both protein extracts
and supernatants from colonic biopsies taken from UC patients which were challenged with OLE, we
found a significant decrease in IL-17 levels. Since the production of IL-17 has been associated with the
activation of NF-κB [35], it could be hypothesized that OLE-induced inhibition of NF-κB is one of the
mechanisms responsible for decreasing levels of IL-17 in our experiments.

In order to verify whether the OLE-induced decrease in expression of COX-2 and IL-17 was
associated with an amelioration of the inflammatory process, we analyzed the samples at a microscopic
level and using conventional histology and immunohistochemistry.

UC tissue usually exhibits a microscopic pattern of chronic active colitis, diffuse and uniform in
distribution, which combines the presence of active inflammation and the features of chronic mucosal
injury. Activity is defined as the presence of neutrophil-mediated epithelial injury, which may take
the form of neutrophils infiltrating the crypt epithelium (cryptitis), gathering of neutrophils within
crypt lumens (crypt abscesses), or by infiltration of surface epithelium with or without mucosal
ulceration. Chronicity is defined by crypt architectural distortion, mainly represented by shortening of
the crypts, and basal lymphoplasmacytosis [36]. Histologic remission is crucial in UC since prolonged
inflammation promotes cellular damage and an uncontrolled regeneration process, which could lead
to errors in DNA duplication and genetic mutation supporting cancer development [37]. Interestingly,
treatment of biopsy samples with OLE led to an almost complete disappearance of the microscopic
features of UC with a prominent decrease in the inflammatory infiltrate, absence of focal cryptitis/crypt
abscesses and restoration of mucin-forming goblet cells.

The CD3+ and CD4+ subset of T lymphocyte cells are key players in UC tissue, promoting
inflammation and tissue destruction; this is confirmed by their enhanced activation and decreased
apoptosis leading to an increased infiltration which has been documented in the colonic mucosa of
UC patients [38,39]. B lymphocytes also play an important role in the antibody-induced inflammatory
process which takes place in this setting [40]. Using immunohistochemistry, we demonstrated
a dramatic reduction in all of these cells, which was responsible for the overall attenuation of the
inflammatory damage in OLE-treated colonic samples from UC patients.

The expression of CD68 is a marker of tissue macrophages/monocytes (histiocytes) in the
colon [41]. Comparative analysis showed that the number of histiocytes in the mucosa of newly
diagnosed and chronic UC patients increases with the chronicity and is not related to the severity of
damage [42]. Since in UC tissue histiocytes represent a reaction to crypt rupture with extravasation of
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mucin, the increased infiltration of CD68+ cells we detected by immunohistochemistry in OLE-treated
colonic samples may well be interpreted as an attempt to repair by those cells enhanced by the presence
of OLE.

The data of this study confirm and extend previous in vitro and in vivo animal model observations
regarding the anti-inflammatory effects of OLE. Nonetheless, up to now, no study has specifically
dealt with the human gastrointestinal mucosa. The mechanisms by which OLE decreases levels of
COX-2 and IL-17 in colonic tissue have not yet been elucidated, but this is beyond the scope of the
study. Indeed, the entire modulatory process of inflammation in the organ culture model we used is
more complex than that occurring in in vitro experiments, but is better in representing the intricate
environment that would be found in an in vivo setting. OLE is generally the most prominent phenolic
compound in olive cultivars and can reach concentrations of up to 140 mg g−1 on a dry matter basis in
young olives and 60–90 mg g−1 of dry matter in the leaves [43]. The powder preparation of OLE which
has been used here contains a very high proportion (>95%) of the active compound [19]. Many other
commercially available preparations contain far less OLE, therefore presumably would have a lower
anti-inflammatory effect. Furthermore, regarding the concentration used, it would be difficult to
directly extrapolate from the ex vivo results obtained in this study to what may occur in vivo in the
human colon. The EU Register of nutrition and health claims made on foods stated that olive oil
polyphenols contribute to the protection of blood lipids from oxidative stress. For olive oil, which
contains at least five milligrams of hydroxytyrosol and its derivatives (e.g., oleuropein complex and
tyrosol) per 20 g, the beneficial effect is obtained with a daily intake of 20 g of olive oil [44]. Nonetheless,
ad hoc designed pharmacodynamic and pharmacokinetic studies would elucidate these aspects.

Collectively, the findings of this study suggest that OLE has the potential to be used as
a therapeutic agent in patients with UC.
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