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Hydrogen sulfide (H2S), a colorless gas with a characteristic smell of rotten eggs, has
been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal
production in mammalian tissues a decade ago, H2S has attracted substantial interest as
a potential inorganic gaseous mediator with biological importance in cellular functions.
Current research suggests that, next to its counterparts nitric oxide and carbon monoxide,
H2S is an important multifunctional signaling molecule with pivotal regulatory roles in
various physiological and pathophysiological processes as diverse as learning and memory,
modulation of synaptic activities, cell survival, inflammation, and maintenance of vascular
tone in the central nervous and cardiovascular systems. In contrast, there are few reports
of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role
of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway
and a potential physiological role for H2S as a gaseous neuromodulator in the eye.
Thus, understanding the role of H2S in vision-related processes is imperative to our
expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This
review aims to provide a comprehensive and current understanding of the potential role
of H2S as a signaling molecule in the eye. This objective is achieved by discussing the
involvement of H2S in the regulation of (1) ion channels such as calcium (L-type, T-type,
and intracellular stores), potassium (KATP and small conductance channels) and chloride
channels, (2) glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate
antiporter. The role of H2S as an important mediator in cellular functions and physiological
processes that are triggered by its interaction with ion channels/transporters in the eye
will also be discussed.
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INTRODUCTION
The potential role of hydrogen sulfide (H2S) as a regulatory medi-
ator has stimulated a surge of interest in its biological significance
in cellular functions in the human body. This colorless gas, known
for decades only as a toxic environmental pollutant has been
found to be produced in substantial amounts in mammalian
tissues. The endogenous production of H2S in mammalian tis-
sues is dependent on the activity of two pyridoxal-5′-phosphate
dependent-enzymes, cystathionine β-synthase (CBS; EC 4.2.1.22)
and cystathionine γ-lyase (CSE; EC 4.4.1.1). Both CBS and CSE
are enzymes of the trans-sulfuration pathway that inter-converts
L-methionine and L-cysteine but can also use L-cysteine as an
alternative substrate to form H2S (Stipanuk and Beck, 1982;
Erickson et al., 1990; Swaroop et al., 1992). Recently, a newly iden-
tified enzyme, 3-mercaptopyruvate sulfurtransferase (3MST), has
been reported to be involved in the production of H2S (Shibuya
et al., 2009a,b). Current biomedical research suggest that H2S is
an important gasotransmitter in mammals, and is involved in sev-
eral physiological and pathophysiological processes as diverse as
learning and memory, inflammation, and the regulation of blood

pressure (Abe and Kimura, 1996; Lowicka and Beltowski, 2007).
In the cardiovascular system, H2S has been shown to play a piv-
otal role in maintenance of vascular tone (Hosoki et al., 1997;
Zhao et al., 2001; Cheng et al., 2004; Webb et al., 2008) whereas
in the central nervous system (CNS) this gas was found to exert
a neuroprotective role on neurons and exhibit neurotransmitter-
like function in the modulation of synaptic activities (Zhao et al.,
2001; Kimura, 2002; Kimura et al., 2005, 2006; Szabo, 2007; Qu
et al., 2008; Webb et al., 2008). Many of the cellular effects of H2S
in the vasculature and brain have been reported to be mediated
by ion channels and transporters.

There is ample evidence that H2S targets different ion chan-
nels to modulate varied physiological functions. Extensive studies
in the vasculature and CNS demonstrate that H2S interacts with
ion channels such as ATP-sensitive potassium (KATP) channels,
calcium (Ca2+) and chloride (Cl−) channels to regulate vascu-
lar tone, and exert its neurotransmitter and neuroprotective-like
properties (Kimura and Kimura, 2004; Tang et al., 2010). In addi-
tion, there is evidence that the neuromodulatory role of H2S in
cellular functions and physiological processes are triggered by
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its interaction with several transporter systems. H2S has been
reported to enhance the activity of transporters, thereby facili-
tating the release of antioxidants that are essential for neuronal
protection against excitotoxic damage (Lu et al., 2008; Kulkarni
et al., 2009; Kimura, 2011a,b). Furthemore, through its interac-
tion with transporters, H2S plays an important role in maintain-
ing the redox balance and thus serves both as a neuroprotectant
and neuromodulator.

In contrast to the central nervous and cardiovascular systems,
there are few reports of the involvement of H2S in the regulation
of ion channels and transporters in the eye. Given the impor-
tant modulatory effects of H2S on different ion channels and
transporter systems in cellular functions and disease conditions
in the central nervous and cardiovascular systems, there is a great
need for studies centered on the potential role of H2S as a sig-
naling molecule in ocular tissues. Indeed, we have evidence that
H2S can induce pharmacological effects in mammalian ocular tis-
sues, alter sympathetic and glutamatergic neurotransmission, and
play a regulatory role in signal transduction processes in the eye
(Monjok et al., 2008; Opere et al., 2009; Njie-Mbye et al., 2010;
Ohia et al., 2010). The presence of CBS and CSE, the biosyn-
thetic enzymes for H2S have also been reported in several ocular
tissues, (Persa et al., 2006; Pong et al., 2007) indicating the exis-
tence of a functional trans-sulfuration pathway and a potential
physiological role for H2S as a gaseous neuromodulator in the
eye. Understanding the regulatory role of H2S in ion channel and
transporter modulation in the eye is critical to our expanding
knowledge of this gasotransmitter in ocular neuropathies. In this
review article we will discuss the interaction of H2S with different
types of ion channels and transporter systems found in the eye.
Our attention will be particularly devoted on the role of H2S as a
molecule able to trigger cell signaling in ocular tissues.

HYDROGEN SULFIDE AND THE EYE
Evidence from literature supports the presence of a func-
tional trans-sulfuration pathway and a potential physiological/
pharmacological relevance for H2S in the mammalian eye (De
et al., 1974; Persa et al., 2006; Pong et al., 2007; Kulkarni
et al., 2011). CBS and CSE, the primary enzymes of the trans-
sulfuration pathway have been localized in mammalian ocular
tissues (De et al., 1974; Persa et al., 2006; Pong et al., 2007).
Moreover, deficiency of CBS has been linked to ocular disorders
such as lens dislocation, retina degeneration, retinal detach-
ment and acute glaucoma, (Kraus and Kozich, 2001) suggesting
a physiological significance for this pathway in ocular tissues.
Further support for a physiological relevance of H2S in mam-
malian ocular tissues was provided by us when we demonstrated
the endogenous production of H2S in bovine ocular tissues
(Kulkarni et al., 2011). Interestingly, the magnitude of H2S con-
tent corresponded to the reported expression of CBS and CSE
enzymes in ocular tissues (De et al., 1974; Persa et al., 2006; Pong
et al., 2007). In bovine retina, both CSE and CBS antagonists,
propargyglycine (PAG), and aminooxyacetic acid (AOA) attenu-
ated while the CBS stimulator, S-adenosyl-L-methionine (SAM)
enhanced endogenous production of H2S, (Kulkarni et al., 2011)
corroborating the involvement of these trans-sulfuration path-
way enzymes in the production of H2S in retina. In addition

to its in situ production, there is evidence supporting a phar-
macological role for this gasotransmitter in mammalian ocular
tissues (Figure 1). In the anterior uvea, we observed an inhibitory
action of H2S (using sodium hydrosulfide, NaHS, and/or sodium
sulfide, Na2S as donors) on both electrically evoked [3H]NE
(norepinephrine) release and endogenous catecholamine concen-
trations in porcine iris-ciliary body in a concentration-dependent
manner (Kulkarni et al., 2009). The inhibitory action of H2S
donors on NE release was reversed by CBS and CSE antagonists,
AOA and PAG respectively, suggesting that H2S attenuates sym-
pathetic neurotransmission from isolated porcine anterior uvea
by an effect that is partially dependent on its intramural biosyn-
thesis. Moreover, H2S donors may exert their inhibitory action
on sympathetic neurotransmission by a direct effect of this gaso-
transmitter on endogenous neurotransmitter release (Kulkarni
et al., 2009). In another study, H2S donors exhibited an inhibitory
action on carbachol-induced tone in isolated porcine irides that
was dependent on endogenous production of prostanoids and
the biosynthesis of H2S by CBS (Monjok et al., 2008). Whereas
the nitric oxide (NO) synthase inhibitor, N (G)-nitro-L- argi-
nine methyl ester (L-NAME) had no effect, the KATP channel
inhibitor, glibenclamide (100 and 300 μM), blocked relaxations
induced by NaHS, suggesting the involvement of KATP channels
on the H2S on response in the anterior uvea (Monjok et al.,
2008). In porcine irides, we observed an inhibitory action of
L-cysteine (H2S substrate) that was dependent upon the endoge-
nous production of H2S by CBS and CSE and was mediated
by prostanoids and KATP channels (Ohia et al., 2010). Taken
together, these data support a pharmacological role for H2S in
the anterior uvea. So far, the potential therapeutic implications of
the action of H2S in these tissues have not been fully elucidated.
In preliminary studies, H2S donors reduced intraocular pressure
(IOP) in normotensive rabbits (Ohia et al., US Patent #8,092,838,
Jan 10, 2012). Similarly, the H2S-hybrid molecule ACS67 sig-
nificantly reduced IOP in glaucomatous rabbits (Perrino et al.,
2009) suggesting a potential application for H2S in the regulation
of IOP. In spite of these findings, the exact role of the trans-
sulfuration pathway in the anterior uvea and the mechanisms
by which H2S regulates IOP remain unknown and merit further
investigation.

In addition to the anterior uvea, pharmacological actions have
been reported for H2S in mammalian retina as well (Figure 1).
H2S donors inhibited amino acid neurotransmission from both
isolated bovine and porcine retina by an effect that was depen-
dent, at least in part, on intramural biosynthesis of H2S (Opere
et al., 2009). Moreover, the gasotransmitter enhanced cyclic AMP
production in bovine and porcine isolated neural retina and reti-
nal pigment epithelial (RPE)-J cells by mechanisms that were
dependent on biosynthesis of H2S by CBS and CSE and par-
tially dependent on activation of the KATP channels (Njie-Mbye
et al., 2010, 2012). Because an increase in retinal glutamate con-
centrations has been linked to retinal excitotoxicty, the ability of
H2S to reduce glutamate release suggest a potential neuropro-
tective action in retinal neurons. Several investigators have since
confirmed the neuroprotective effect of H2S in retina (Biermann
et al., 2011; Mikami et al., 2011). Indeed, H2S donors pro-
tected mice retinal neurons from light-induced degeneration
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FIGURE 1 | A schematic representation summarizing the physiological and pharmacological effects of H2S in the eye. GSH = glutathione, ROS =
Reactive oxygen species, IOP = intraocular pressure.

(Mikami et al., 2011). Similarly, H2S preconditioning conferred
to protection of rat retina exposed to ischemia reperfusion
injury (Biermann et al., 2011). The H2S-hybrid, ACS67 increased
reduced glutathione levels, suggesting a potential neuroprotec-
tive role for this H2S-donor (Osborne et al., 2010). It is now
apparent that H2S plays a dual role in biological tissues, being
cytotoxic at higher and cytoprotective at lower concentrations of
the gas (Martelli et al., 2010). The latter action, which has been
demonstrated in various cell types and neurons, (Kimura et al.,
2006; Sivarajah et al., 2006; Elrod et al., 2007) is partially ascribed
to its ability to scavenge several reactive oxygen species (e.g.,
such as superoxide radical anion, hydrogen peroxide, peroxyni-
trie and hypochlorite) and increase GSH biosynthesis (Martelli
et al., 2010). Several questions remain to be addressed, such as the
role of molecular targets of H2S such as KATP channels in its neu-
roprotective action of H2S; integration of the trans-sulfuration
pathway in retinal neurotransmitter pathways; interaction of H2S
and transporters and other ion channels in the eye. Based upon
the known pharmaocological role and protective mechanisms of
H2S in biological systems, it is conceivable that H2S could find
a significant application in ocular neuropathies, thereby opening
up new molecular targets for management of ocular diseases.

REGULATION OF ION CHANNELS BY H2S IN THE EYE
CALCIUM CHANNELS (Ca2+) IN OCULAR TISSUES
Calcium (Ca2+) is an essential ion that is involved in the regu-
lation of several processes in the body such as signal transduc-
tion pathways, contraction, secretion, blood coagulation, gene

expression, apoptosis, necrosis, cell division, and endocytocis
(Williams, 1974; Shuttleworth, 1997; Berridge, 2005; Carafoli,
2005; Wimmers et al., 2007). Within the cell, free intracel-
lular [Ca2+]I content is tightly regulated at about 100 nM to
maintain a steep inwardly directed concentration and electro-
chemical gradients across the cell membrane by an interplay
of several Ca2+ channels, pumps, transporters, buffering sys-
tems and intracellular storage organelles (Bogeski et al., 2011).
Several ion channels facilitate transmission of [Ca2+] ions across
the membranes: the voltage-gated calcium channels (CaV), tran-
sient receptor potential (TRP) ion channels, transmitter-gated
Ca2+ permeant ion channels and the store operated Ca2+ entry
(SOCE) and Ca2+ released-activated Ca2+ (CRAC/Orai) chan-
nels (Bogeski et al., 2011). Although various potential molecu-
lar targets for calcium channels have been identified, only the
L-type voltage-activated calcium channels have found wide ther-
apeutic beneficial application. There is evidence in the eye for
the existence of a calcium transport system. Ca2+ has been
reported to play a key role in mammalian lens physiology and
pathology. Excessive levels of Ca2+ have been implicated in cor-
tical cataract and there is presence of Ca2+ linked receptors
in the lens (Rhodes and Sanderson, 2009). Voltage-gated Ca2+
channels: transient (T-type) and dihydropyridine-sensitive long-
lasting (L-type) channels, have been reported to be expressed in
muller cells of the retina (Puro and Mano, 1991; Puro et al., 1996;
Bringmann et al., 2000). The retinal pigment epithelium (RPE)
has also been reported to expresses voltage- and ligand-gated
Ca2+conducting channels (Wimmers et al., 2007). These channels
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act as regulators of secretory activity, and thus contribute to RPE
function. Changes in Ca2+ channel function, or activity has been
shown to lead to degenerative diseases of the retina (Wimmers
et al., 2007).

EFFECTS OF H2S ON CALCIUM CHANNELS (Ca2+) IN OCULAR TISSUES
Despite the implication of Ca2+ in ocular physiology and pathol-
ogy, there is a great need for studies centered on the regulatory
role of H2S and its interaction with calcium channels. Only
one study to date, has addressed the possible interaction of H2S
and Ca2+ channels in the eye. In this study the authors’ report
that the production of H2S in retinal neurons is regulated by
intracellular Ca2+, (Mikami et al., 2011) and in turn H2S can
suppress Ca2+ channels by activating vacuolar type H+-ATPase
(V-ATPase). Furthermore, the study also demonstrated that H2S
can suppress the elevation of Ca2+ in photoreceptor cells by
activating V-ATPase in horizontal cells and thus maintain Ca2+
homeostasis. From these observations, the authors conclude that
H2S protects photoreceptor cells from the insult caused by exces-
sive levels of light. Clearly results from this study provides a new
insight into the regulation of H2S production and the modulatory
interaction of H2S and Ca2+ channels in retinal transmission. In
addition, the study postulates a cytoprotective effect of H2S on
retinal neurons and provides a basis for the therapeutic target for
retinal degeneration. Increasing knowledge about the properties
of Ca2+channels in ocular tissuess especially the retina will not
only provide a new understanding of ocular function but could
also provide a better understanding of the role of H2S in ocular
health and vision.

POTASSIUM (K+) CHANNELS IN OCULAR TISSUES
Potassium ion (K+) channel family represents one of the most
prominent and ubiquitous ion channels in living organisms
where their physiological role range from regulation of the action
potentials in excitable cells to regulation of transepithelial trans-
port processes, intracellular pH, cell survival and growth factor
secretion in non-excitable cells (Ashcroft and Gribble, 1999;
Bauer et al., 1999; MacDonald and Wheeler, 2003; Warth, 2003;
Masi et al., 2005). K+ channel family consists of four subfam-
ilies, the inwardly rectifying K+ (Kir)-channels, voltage-gated
K+ channels, Ca2+-activated K+ channels, and two-pore or leak
K+-channels that are classified based upon number of trans-
membrane domains and electrophysiological properties. In the
eye, K+ channels play central roles in maintaining ion, fluid
balance and membrane potential. Several K+ channel subtypes
such as voltage-gated K+ (Kv) channels and 4-aminopyridine (4-
AP)-sensitive K+ channels are expressed in mammalian corneal
epithelial cells (Rae, 1985; Rae et al., 1990; Rae and Farrugia,
1992). Studies have shown that changes in K+ channel activity
modulate essential corneal epithelial functions needed for tis-
sue homeostasis (Wolosin and Candia, 1987; Klyce and Wong,
1977). Furthermore, emerging evidence suggest that K+ chan-
nels play a crucial role in controlling apoptosis and proliferation
in corneal epithelial cells (Lu et al., 2003; Roderick et al., 2003).
Three major potassium currents (an outwardly rectifying current,
an inwardly rectifying current, and a calcium-activated current)
have been characterized in several mammalian lens epithelial cells

(Rae, 1986; Cooper et al., 1991). These potassium conductances
are essential for the maintenance of lens volume and transparency.
Inwardly rectifying potassium (Kir) channel was reported to be
highly expressed in bovine and human trabecular meshwork cells,
(Llobet et al., 2001) as well as muller glial cells of the retina (Kofuji
et al., 2002). K+ channels (Kv11; ether à-go-go related gene; erg)
belonging to the family of voltage-gated K+ channels are present
in mouse and human retina with the most abundant expression in
rod bipolar cells. These channels are also found in the inner and
outer plexiform layer, inner segments of photoreceptors, as well
as the retina pigment epithelium (Cordeiro et al., 2011). These
channels are vital for the control of the membrane potential in
retinal neurons. Given the importance of K+ channel modula-
tion in ocular tissues, evidence of an interaction between H2S and
these channels in the eye is imperative for understanding the role
of H2S as a signaling molecule in ocular functions.

EFFECTS OF H2S ON POTASSIUM (K+) CHANNELS IN OCULAR TISSUES
The pharmacological effects of H2S in the vasculature and brain,
has been reported to involve K+ channels. To the best of our
knowledge there are no studies in the literature pertaining to
the effects of H2S on K+ channels in the eye, except for those
generated from our laboratory. In previous studies we have
demonstrated that the pharmacological effects of H2S (using
H2S–releasing compounds) in ocular tissues are partly mediated
by KATP channels (Monjok et al., 2008; Kulkarni et al., 2009;
Opere et al., 2009; Ohia et al., 2010). With the use of specific
channel blockers, we report that H2S interacts with KATP chan-
nels to relax ocular smooth muscle, and alter sympathetic and
glutamergic neurotransmission in the anterior uvea and retina
(Monjok et al., 2008; Kulkarni et al., 2009; Opere et al., 2009; Ohia
et al., 2010). Furthermore, we recently show that KATP channels
are involved in the regulatory role of H2S in signal transduction
processes in retina pigment epithelium cells (Njie-Mbye et al.,
2012). It is reported that K+ channels play vital roles in cellular
functions including vascular tone regulation, mediating neuro-
transmitter release, and neuroprotection in cardiovascular and
CNSs (Yamada and Inagaki, 2005). Thus it is tempting to spec-
ulate a physiological role of H2S in ocular tissues that involves the
activation of K+ channels.

CHLORIDE (Cl−) CHANNELS IN OCULAR TISSUES
Chloride (Cl−) is one of the most prominent anions in the
body that is involved in the regulation of a variety of important
physiological and cellular functions such as volume homeostasis,
organic solute transport, cell migration, cell proliferation, cell dif-
ferentiation, and apoptosis. Unlike most physiological ions whose
levels are tightly regulated within a limited range, the resting Cl−
ion concentration varies in different mammalian cell types and in
developing cells (Wimmers et al., 2007). Cl− conductance across
membranes is facilitated by several pumps and co-transporters
that are localized in plasma membranes and membranes of intra-
cellular organelles. For example, chloride influx is facilitated by
the Na+/K+/Cl− co-transporters, Cl−/HCO3-exchangers, and
Na+/-Cl− co-transporters while efflux is achieved by the cell K+/-
Cl−co-transporters and Na+-dependent Cl−/ HCO3 – exchanger.
Other channels and transporters expressed in intracellular
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membranes as well as Cl− -binding proteins regulate intra-
vesicular pH and Cl− concentration (Duran et al., 2010). Several
channels mediate passive flow of Cl− ions across membranes.
With exception of the transmitter-gated GABA and glycine recep-
tors, these Cl− channels are broadly classified into five sub-
families, the voltage-sensitive ClC subfamily, calcium-activated
channels, high- (maxi) conductance channels, the cystic fibro-
sis transmembrane conductance regulator (CFTR) and volume-
regulated channels (Verkman and Galietta, 2009). So far, only
the voltage-sensitive ClC subfamily, CFTR and the transmitter-
gated channels have been well described. In general, Cl− channels
are fairly non-selective for inorganic ions. Dysfunctional Cl−
channels have been linked to channelopathies such as myotonia
congenita and cystic fibrocis (Duran et al., 2010). Cl− channels
are more abundantly expressed in the anterior segment of the
eye due to Cl− being the principal anion of aqueous humor
secretion. Studies show that chloride efflux plays an impor-
tant role in aqueous humor production and chloride channels
present in the ocular ciliary epithelium are involved in aqueous
humor homeostasis. Chloride currents have been reported to be
present in bovine non-pigmented ciliary epithelium (NPE) and
in transformed cultured human NPE (Chen and Sears, 1997).
High-(maxi) conductance chloride channels are expressed in cil-
iary pigmented epithelial (PE) cells, (Do et al., 2004) whilst
cAMP-activated Cl− channels are present in the basolateral mem-
brane of nonpigmented (NPE) ciliary epithelium (Edelman et al.,
1995). CFTR is functionally expressed in corneal and conjunc-
tival epithelium, corneal endothelium, and RPE (Shiue et al.,
2002; Sun and Bonanno, 2002; Turner et al., 2002; Blaug et al.,
2003; Levin and Verkman, 2005; Reigada and Mitchell, 2005).
CFTR expression patterns in these tissues suggest the involve-
ment of these chloride channels in regulation of tear film volume,
corneal hydration and transparency, aqueous humor volume and
IOP, and subretinal compartment size and ionic composition. In
the retina, several Cl− transporter and channels including the
Na+/K+/Cl− cotransporters, CFTR, and the voltage-sensitive ClC
subfamily were reported to be highly expressed in the pigment
epithelial layer (Zhang et al., 2011).

EFFECT OF H2S ON CHLORIDE (Cl−) CHANNELS IN OCULAR TISSUES
The activation of Cl− channels by H2S in the CNS has been shown
as a protective mechanism for neurons from oxytosis (Tang
et al., 2010). Electrophysiological evidence demonstrates that H2S
interacts with Cl- channels in the vasculature (Tang et al., 2010).
To the best of our knowledge there are no studies reporting the
interaction of H2S with Cl− channels in the eye. The observation
of the presence of chloride channels in ocular tissues especially in
the anterior uvea, coupled with evidence of channel activation by
H2S in non-ocular tissues, suggest possible regulation of chloride
fluxes by H2S in the eye with neuroprotective consequences and
IOP lowering effects.

REGULATION OF TRANSPORTERS BY H2S IN THE EYE
EXCITATORY AMINO ACID TRANSPORTER/GLUTAMATE
ASPARTATE TRANSPORTER (EAAT/GLAST) IN OCULAR TISSUES
Glutamate is the major excitatory neurotransmitter in the
mammalian CNS. Under normal physiological conditions,

extracellular glutamate is tightly regulated (resting levels ≤1 μM)
by five distinct excitatory amino acid transporters, EAAT1 (gluta-
mate/aspartate transporter [GLAST]); EAAT2 (glutamate carrier
[GLT-1]), EAAT3 (excitatory amino acid carrier 1 [EAAC1]),
EAAT4 and EAAT5 (Zerangue and Kavanaugh, 1996; Levy et al.,
1998). Excessive extracellular glutamate is known to lead to exci-
totoxicty in neuronal tissues. Thus, EAAT transporters play the
essential role of rapidly terminating synaptic transmission, main-
taining low ambient extracellular glutamate while simultaneously
conserving neuronal glutamate for reuse via the glutamate-
glutamine cycling system (Copenhagen et al., 2002; Zou and
Crews, 2005). Glutamate transporter uptake activity is accom-
panied by a net inward movement of positive ions (3Na+:1H+
co-transport versus K+ counter-transport) (Kanner, 2006) and
could be coupled to Na, K-ATPase pump (Rose et al., 2009).
Glutamate transporters exhibit differential distribution in differ-
ent tissues. In the mammalian retina, using immunocytochem-
ical studies, EAAT1 (GLAST) has been shown to be localized
in Muller cells (Rauen et al., 1996; Pow and Barnett, 1999).
EAAT2 have been identified in cone photoreceptor and bipo-
lar cells (Rauen and Kanner, 1994) while EAAT3 (EAAC1) in
inner retinal neurons (Rauen et al., 1996). EAAT4 is localized in
retinal astrocytes (Ward et al., 2004) and EAAT5 in photorecep-
tors, bipolar cells and in some muller cells (Arriza et al., 1997;
Pow and Barnett, 2000). Interestingly, EAAT5 is found exclu-
sively in retina (Pow and Barnett, 2000). The sodium-dependent
glutamate–aspartate transporter (GLAST or EAAT1) is the major
glutamate transporter in muller cells. This glutamate transporter
(EAAT1/GLAST) maintains extracellular glutamate at a low level
to ensure a high signal-to-noise ratio for glutamatergic neuro-
transmission and thus shield neurons from excitotoxic damage.
To the best of our knowledge there are no studies till date that have
examined the effect of H2S on glutamate transporter in ocular
tissues. Only one study, by our laboratory has demonstrated that
H2S donors caused an attenuation of glutamatergic transmission
in mammalian retinae (Opere et al., 2009). Although the exact
mechanism of action is not clear, it is feasible that H S donors2

could decrease glutamatergic transmission in mammalian retinae
due to involvement of EAAT.

CYSTINE/GLUTAMATE ANTIPORTER (SYSTEM X−
C

) IN OCULAR
TISSUES
The cystine/glutamate antiporter (System x−

C ) is responsible for
the Na+ independent electroneutral exchange of cystine and glu-
tamate. It is a member of the heteromeric amino acid transporter
family which is composed of a heavy subunit and a corresponding
light subunit linked by a disulfide bridge (Lim and Donaldson,
2011). System x−

C is regulated by extra- and intracellular gradi-
ents of glutamate which drives the import of cystine coupled to
export of glutamate (Fiorucci et al., 2006; Lowicka and Beltowski,
2007). System x−

C has two major functions. First, it mediates cel-
lular uptake of cystine for the maintenance of intracellular levels
of glutathione, essential for protection of cells from oxidative
stress. Second, it is instrumental in maintaining the redox bal-
ance between extracellular cystine and cysteine (Lo et al., 2008).
In the eye, system x−

C has been identified in veterbrate lens) (Lim
et al., 2005) and different parts of the mamamlian retina including
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the retinal endothelial cells, outer plexiform of retina, muller
cells, retinal pigment cells and retinal ganglion (Kato et al., 1993;
Bridges et al., 2001; Hosoya et al., 2002; Tomi et al., 2002; Dun
et al., 2006). Oxidative damage of proteins is believed to under-
lie several major eye diseases such as age related nuclear (ARN)
cataract, age related macular degeneration (AMD) and diabetic
retinopathy (Lo et al., 2008). GSH, a major and potent antioxi-
dant in the cells may prevent or slow down the progression of such
diseases by protecting the thiol groups of proteins and minimiz-
ing oxidation-induced protein aggregation formation. However,
oxidative stress alters rate of conversion of cysteine to glutathione
and leads to depletion of glutathione levels (Fiorucci et al., 2006).
System x−

C plays an important role in maintaining elevated intra-
cellular levels of glutathione and serves as a potential therapeutic
target for a number of ocular diseases.

EFFECTS OF H2S ON CYSTINE/GLUTAMATE ANTIPORTER
(SYSTEM X−

C
) IN OCULAR TISSUES

In the CNS, H2S demonstrates cytoprotective effect by protecting
neurons and astrocytes, major type of glial cells from oxidative
stress (Kimura, 2011a,b). H2S enhances the activity of system x−

C
and thus significantly increases the transport of cystine into neu-
rons to increase the levels of substrate cysteine, for glutathione
synthesis. Even in the presence of glutamate, H2S significantly
reverses the inhibition of cystine transport by glutamate (Kimura
and Kimura, 2004). Based on the conclusions from these stud-
ies (Kimura and Kimura, 2004; Kimura, 2011a,b) in CNS, it
will be interesting to investigate the effect of H2S on system x−

C

transporter in astrocytes and muller cells in retina under oxidative
stress. Since, muller cells are the primary sites of glutathione
localization in the retina, and the retina is extremely vulnera-
ble to oxidative stress, understanding the function of H2S on
system x−

C in muller cells could play a pivotal role in protect-
ing the retina from a variety of retinal diseases, such as diabetic
retinopathy, age-related macular degeneration, and glaucoma. In
the eye, there is evidence from few studies that demonstrate an
increase in GSH production, following application of H2S releas-
ing drugs such as ACS67, ACS1. Although the mechanism of
action is not clear, the authors suggest that intracellular cysteine
levels are enhanced indirectly to form GSH by H2S stimulation
of glutamate/cystine antiporters (Sparatore et al., 2009; Perrino
et al., 2009; Osborne et al., 2010). Moreover, as mentioned
above, a study by Opere and Ohia (1997) had demonstrated
the inhibitory action of H2S donors on glutamatergic transmis-
sion in mammalian retinae. So, it is plausible that H2S donors
can render there cytoprotective effects by upregulating system
x−

C transporter in the retina and thereby increasing the produc-
tion of glutathione. As the exact mechanism of action needs
to be investigated, there is very demanding need to understand
the potential role of H2S on the system x−

C transporter in the
eye.

CYSTEINE TRANSPORTER IN OCULAR TISSUES
Cysteine transporters are widely distributed in various cell types
including the muller cells of retina. Cysteine transporters readily
import cysteine into the cell for direct conversion to glutathione

FIGURE 2 | The effects of H2S on ion channels and transporters in the

eye. Solid arrow, stimulatory; dotted arrow, inhibitory. Studies on the effects
of ion channels and transporters in the eye and/or their interaction with H2S
is lacking. H2S which is formed by CBS and CSE activities, stimulates KATP

channels and the cystine/glutamate antiporter thereby regulating ocular

smooth muscle relaxation, neurotransmitter release and oxidant/antioxidant
balance (solid arrow). The production of H2S can be regulated by intracellular
Ca2+, and in turn H2S can suppress Ca2+ channels to exert its neuronal
effects (dotted arrow). Whether H2S activates or inhibits glutamate aspartate
transporter, cysteine transporter and Cl− channels remains to be determined.
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(Bringmann et al., 2009; Mathai et al., 2009; Kimura, 2010). So far
only one study by Kimura (2010) on brain cortex has shown the
effect of H2S on cysteine transporters. The study demonstrates
that H2S (acting as a reducing agent) reduces cystine into cysteine
in the extracellular space and makes cells efficiently transport cys-
teine into cells for GSH production. Moreover authors state that,
the contribution of cysteine transport to the production of GSH
is much greater than that of cystine transport. This production
of GSH is further enhanced by H2S under conditions of oxidative
stress caused by excessive glutamate toxicity. To the best of our
knowledge there is a lack of studies on cysteine transporters in the
eye and no evidence of the effect of H2S on these transporters in
ocular tissues. Although the production of H2S in the eye is not
well understood as there is only one study, from our laboratory
showing that this gasotransmitter is endogenously produced in
ocular tissues (Kulkarni et al., 2011), it is possible that the release
of H2S may regulate the transport of cysteine in ocular tissues,
thus facilitating the production of GSH. This increase in the levels
of GSH by H2S may contribute to the potential protective effect
of H2S.

CONCLUDING REMARKS
Current evidence suggests that ion channels and transporters
are present in ocular tissues and are involved in the regulation
of vital cellular functions related to vision processes (Figure 2).
However, the interaction of these signaling cascades with H2S
in the eye is lacking. Clearly, there exists ample evidence that
portrays the critical role H2S plays in physiological and patho-
physiological processes in the human body. Furthermore, there
is enough data that demonstrates that H2S targets different ion
channels and transporters to modulate varied physiological func-
tions in the central nervous and cardiovascular systems. Our
current knowledge of such interactions in these systems should
help facilitate research targeted on investigating the neuromodu-
latory role of H2S in the eye and its interaction with ion channels
and transporters that are play pivotal roles in the preservation
of vision. Indeed, future studies are warranted to examine the
pharmacological effects of H2S on different types of ion chan-
nels and transporters in ocular tissues. Altered effects of H2S on
ion channels and transporters, under different pathophysiological
conditions in the eye also calls for intensive investigation.
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