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1. Summary
One goal of cell biology is to understand how cells adopt different shapes in

response to varying environmental and cellular conditions. Achieving a compre-

hensive understanding of the relationship between cell shape and environment

requires a systems-level understanding of the signalling networks that respond

to external cues and regulate the cytoskeleton. Classical biochemical and genetic

approaches have identified thousands of individual components that contribute

to cell shape, but it remains difficult to predict how cell shape is generated

by the activity of these components using bottom-up approaches because of the

complex nature of their interactions in space and time. Here, we describe the regu-

lation of cellular shape by signalling systems using a top-down approach. We first

exploit the shape diversity generated by systematic RNAi screening and compre-

hensively define the shape space a migratory cell explores. We suggest a simple

Boolean model involving the activation of Rac and Rho GTPases in two compart-

ments to explain the basis for all cell shapes in the dataset. Critically, we also

generate a probabilistic graphical model to show how cells explore this space in

a deterministic, rather than a stochastic, fashion. We validate the predictions

made by our model using live-cell imaging. Our work explains how cross-talk

between Rho and Rac can generate different cell shapes, and thus morphological

heterogeneity, in genetically identical populations.
2. Introduction
Cell shape results from dynamic interactions between the cytoskeleton, cell mem-

brane and adhesion complexes that interface with the extracellular environment,

often via the actions of regulatory signal transduction systems [1–4]. Form follows

function, and specific shapes are essential for particular cellular behaviours such

as migration. For example, in many cells, motility is generated by formation of

filopodial and lamellipodial protrusions at the leading edge (LE), which

become sites of extensive adhesion to the underlying substrate generating trac-

tion, while at the trailing edge (TE), high contractility and the disassembly of

adhesions generate a propulsive force [5]. Thus, efficient migration requires that

a cell ‘finds’ the appropriate set of migratory shapes from a space of all the

shapes it could possibly assume [6]. Deterministic or stochastic searches of

shape space are also likely to underpin the morphological heterogeneity of differ-

ent genetically identical populations [7]. But very few quantitative or qualitative
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descriptions exist of any cell’s shape space, how a cell explores

this space and genes that regulate these searches.

In all eukaryotic cells, Rho-family GTPases dynamically

control cytoskeletal organization to regulate cell shape [8].

Rho-family GTPases promote localized changes in cell mor-

phology, as well as coordinating shape changes over the

entire cell [9,10]. In cells migrating using cycles of protrusion,

adhesion and retraction, activation of RhoA promotes both

adhesion disassembly at the TE as well as cell-wide tension

that is critical to restricting protrusion at the LE [10–13].

Moreover, in some migrating cells, RhoA is activated at the

LE synchronous with cell advancement and is spatially segre-

gated from a proximally localized wave of Rac1 and Cdc42

activity [14]. The fact that compartmentalized regulation of

Rho-family GTPase activity is critical for generating particu-

lar shapes is highlighted by experiments which show that

migration is inhibited when Rac activation is uniformly dis-

tributed throughout the cell [11,15–17]. Local Rho-family

GTPase activity is established by the actions of Rho GTP

exchange factors (RhoGEFs) and Rho GTPase activating pro-

teins (RhoGAPs), which are recruited by upstream signals to

distinct subcellular milieus [18,19]. There is considerable

cross-talk between Rac- and Rho-type GTPases. For example,

at the LE Rac1 inhibits Rho1 by activating p190RhoGAP

[20–22]. Conversely, Rac1 can also upregulate RhoA activity

[23,24], which may reinforce the ability of LE protrusions

to suppress the formation of protrusions at the TE via

upregulation of tension [11,25].

While classical genetic and biochemical studies have

begun to describe mechanisms central to morphogenesis at

detailed molecular levels [3], given the complexity of the pro-

cesses involved it is not possible to predict how the activity of

these components generates particular shapes using solely

bottom-up approaches [13]. Here, we describe the implemen-

tation of top-down approaches to gain insight into the

exploration of shape space by migrating cells. We first deter-

mine the shape space explored by Drosophila BG-2 neuronal

cells using a dataset where the morphology of single cells

has been quantified following systematic RNAi (RNA interfer-

ence) and/or gene overexpression [26]. We find that wild-type

BG-2 cells adopt six discrete shapes, and only rarely adopt a

seventh shape even following gene depletion. Next, we gener-

ate two complementary models: a Boolean model explaining

the biochemical basis for different cell shapes, and a Bayesian

model predicting the next shape a cell will adopt based on its

current shape. These models demonstrate that the cross-talk

between Rac and Rho drives the deterministic exploration of

shape space, and underpins the morphological heterogeneity

of cellular populations.
3. Results and discussion
3.1. A state space defined by seven different shapes
To quantify the number of cell shapes that can be adopted by a

motile metazoan cell, we made use of a dataset where we pre-

viously quantified the cell shape of both wild-type Drosophila
BG-2 cells, and BG-2 cells after systematic RNAi and/or gene

overexpression of different cytoskeletal components and regula-

tors, including Rho-family GTPases, RhoGEFs and RhoGAPs

[26]—termed treatment conditions (TCs) [26]. For the analysis

described here, we have data for 256 different TCs; this includes
seven more TCs than our original analysis. Drosophila BG-2 cells

are a neuronal migratory cell line that form integrin–extracellu-

lar matrix (ECM)-based adhesions and cell–cell adhesions

[27,28]. Migratory BG-2 cells generate extensive filopodial [29]

and lammellipodial protrusions, and the LE assumes a ‘fan-

like’ shape (see electronic supplementary material, movie S1).

While the TE of motile BG-2 cells contracts during migration,

these cells exhibit a long ‘tail’ at the TE (see electronic sup-

plementary material, movies S1 and S2). In culture, BG-2 cells

migrate in a processive manner in one direction for relatively

short (more than 1 h) periods of time before altering their direc-

tion (see electronic supplementary material, figure S1).

In our previous analysis of this dataset, we generated 145

features that describe the geometry, protrusion and the distri-

bution of GFP intensity of each cell using a MATLAB toolbox

that was developed in-house (CellSegmenter) [26]. We then

used a supervised method that first classifies single cells

according to their similarity to different ‘reference’ or ‘exem-

plar’ phenotypes to generate a quantitative morphological

signature (QMS) for each cell. Finally, we clustered the aver-

age QMS of cell populations (e.g. following depletion of a

particular gene by RNAi) to group different TCs, and thus

describe gene groups, or ‘local networks’, that contribute to

the regulation of different morphological processes [26]. How-

ever, there are a number of aspects to this type of analysis that

make it unsuitable for determining cellular shape space and for

generating predictive models: (i) reference shapes were chosen

manually as phenotypic extremes [26], and therefore it is poss-

ible that the shape space defined by these phenotypes does not

account for the variance present in the dataset; (ii) as the refer-

ence shapes are generated by overexpression of constitutively

active forms of different Rho-family GTPase or RhoGEFs, the

space defined by the shapes may in fact not represent a physio-

logically meaningful one [26]; (iii) owing to the fact that QMSs

are normalized to the control TC—enhanced green fluorescent

protein (EGFP) alone—this initial analysis provides no insight

into the actual space explored by wild-type cells; and (iv) all

clustering was performed using the average QMSs of different

populations, which does not account for the morphological

heterogeneity of populations, and each average QMS or cluster

of QMSs may not represent the shape space explored by

individual cells [7,30,31].

In order to determine the number of cell shapes present in

both wild-type cells, and following systematic RNAi, we

implement unsupervised classification methods that consider

the heterogeneity of single cell, and not averaged, populations

(figure 1). We first scale and log-transform the data where

single cells are each described by 145 normalized features.

Because many of these features are correlated and/or noisy,

we use principal component analysis (PCA) as a data reduction

method (Material and methods). To identify the number of dis-

tinct phenotypes in the data, we divide all cells in the dataset

into 5–30 groups, or 25 cluster models, using two clustering

methods: hierarchical clustering and Gaussian mixture

modelling (GMM). We then assess the quality of clustering in

the resulting 50 cluster models using the average silhouette

value of each model. The silhouette value measures how similar

a given cell is to other cells in the same cluster, and to cells in

other clusters. A model with high average silhouette value indi-

cates that cells in each cluster are similar to each other and

dissimilar from cells in other clusters. Thus, a higher silhouette

value reflects the robustness of the clustering at different

thresholds. Initial hierarchical clustering results in higher
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Figure 1. Workflow for quantifying cellular shape space. (1) A high-dimensional dataset that measures 145 morphological features of 256 TCs and 12 061 cells is
(2) log-transformed and projected into the first three principal components (PCs). (3) Clustering of single cells is performed and results in seven distinct shapes.
(4) For each TC, the frequency of each shape in the population is calculated and normalized to wild-type cells (cells expressing EGFP alone), resulting in a normalized
TCHP. The distribution of 20 TCs in the seven shapes is shown. (5) A transition model is built using Bayesian learning to learn the order between shapes.
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average silhouette values than GMM at all thresholds, and the

best performance is achieved when cells are grouped into

seven clusters by hierarchical clustering (figure 2a). Neverthe-

less, a plot of silhouette values for hierarchical clustering

shows that some cells are misclassified, as indicated by their

negative silhouette value (figure 2b). In this case, misclassifi-

cation may be due to the fact that hierarchical clustering

assigns points to clusters in one pass. Therefore, cells that are

incorrectly assigned to a cluster in the first pass will not be re-

assigned. We thus reclassify cells with a low silhouette value

(less than 0.6) using the k-nearest neighbours (KNN) algorithm

(Material and methods), which increases the average silhouette

value (figure 2c). This analysis reveals that the morphological

space that is explored by BG-2 cells across 256 different TCs is

indeed best defined by seven different shapes (figure 2d; elec-

tronic supplementary material, figure S2). Through qualitative

assessment of the different shapes in principal component

(PC) space and examination of the features which make large

contribution to each PC, we propose PC1 captures the extent

of spread (or adhesiveness), PC2 captures cell ‘ruffliness’,

whereas PC3 captures the extent of protrusiveness (figure 2e;
electronic supplementary material, tables S1 and S2). The

high average silhouette values of the corrected hierarchical clus-

tering model suggests that these seven shapes are potentially

discrete forms and not continuous variations of each other.

We quantify how gene depletion or overexpression affects

the ability of BG-2 cells to adopt these seven shapes using treat-

ment condition heterogeneity profiles (TCHPs). A TCHP is a

seven-dimensional vector describing the proportion of each
of the seven shapes in a TC. Interestingly, wild-type BG-2

cells are notably heterogeneous, as six of the seven shapes

that exist in the entire dataset are present in control TC (3%

shape 1, 0% shape 2, 6.9% shape 3, 20% shape 4, 17% shape

5, 18.6% shape 6 and 33.8% shape 7). In order to account for

the basal heterogeneity of wild-type BG-2 cells, and reflect

the difference between the normal and perturbed populations,

we normalize all TCHPs by subtracting the wild-type profile.

We then cluster normalized TCHPs to identify TCs with similar

effects on the distribution of different cellular shapes. Cluster-

ing using classical distance measures (such as Euclidean or

City Block) gives equal weight to the differences in each

shape. However, some shapes are closer to each other in PC

space (e.g. shapes 4, 5 and 7) than others (e.g. shapes 1 and 2).

To give weight to such differences, we use a distance

metric method that incorporates the difference between the

cellular distribution and the difference between the cluster/

shape means (Material and methods). The use of this

method generates 17 TCHP clusters (figure 3a; electronic sup-

plementary material, table S3). Cluster 15 contains wild-type

cells, and all TCs that can be considered controls, as they are

similarly heterogeneous (i.e. these populations have the

same six shapes in the same relative proportions as wild-

type cells). Interestingly, the morphological heterogeneity of

populations is decreased in the vast majority of TCs, most of

which are composed of one to four shapes that are also present

in the wild-type population (figure 3a; electronic supplemen-

tary material, table S3). Thus in these more homogeneous

populations, specific shapes that exist in the wild-type
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populations have become highly enriched, and new mutant

shapes do not typically emerge (a shape is considered

enriched in the population if it comprises more than 10% of

the population). Only in a handful of cases did cells adopt a

seventh shape (shape 2) in addition to adopting a subset of

the six wild-type shapes, although shape 2 is not considered

enriched in any TC (see electronic supplementary material,

table S3). We propose that decreased heterogeneity following

gene inhibition or overexpression is because cells become

‘trapped’ in particular shapes during normal exploration of

shape space. Our finding that BG-2 morphogenesis occurs in

a low-dimensional space where heterogeneity is most often

decreased by genetic perturbation is consistent with our

recent finding that Drosophila Kc haemocyte cells and metastatic

melanoma cells adopt a limited number of discrete shapes even

following RNAi [7], as well as with the work of Keren et al. [13],

who show that migrating fish keratocytes adopt a limited

number of shapes. The methods we use to describe heterogen-

eity are similar to those implemented by Slack et al. [32] to

examine the heterogeneity of different signalling events in iso-

geneic populations; however, to our knowledge, this is the

first study to implement heterogeneity profiles to describe cell

shape in the context of an RNAi screen.
3.2. Assessment of different cell shapes
In order to understand the mechanistic basis for the different

cell shapes adopted by BG-2 cells, we first qualitatively
characterize each of the seven shapes present in the entire data-

set based on three broad parameters: polarity, protrusivity, and

the extent to which cells are spread and appear adhered to the

underlying substrate (table 1). Furthermore, when possible, we

infer the activation state of either Rac-type GTPases (hereafter

referred to as ‘Rac’; we cannot differentiate here between the

activity of Rac1, Rac2 and Mtl) or Rho1 GTPases (the Drosophila
orthologue of mammalian RhoA), based on those genes whose

depletion or overexpression results in a particular shape, and in

some cases the protrusive/contractile nature of the cell. For

example, shape 5 is a polarized shape characteristic of motile

cells, where cells exhibit lamellipodia and/or filopodia at the

presumptive LE, and a contractile tail at the TE. Based on pre-

vious literature [9], we assume that in shape 5 cells Rac

activity is high at the LE, and Rho activity is high at the TE.

In support of this idea, shape 5 is decreased following Rho

or Rac activation or inhibition (see electronic supplementary

material, table S3). By contrast, shape 1 is enriched following

Rho activation, and shape 7 is enriched following Rac acti-

vation. Thus, different states of Rho/Rac activity correlate

with different shapes and with the activation of specific

morphological processes such as protrusion or adhesion.

3.3. A Boolean model to describe cell shape by
localized Rho/Rac activation

Given that each of the seven shapes correlates qualitatively

with different levels of Rho/Rac activity, and/or differences
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in protrusiveness/ruffliness and cell spreading (table 1 and

figure 2e), we reason that morphological variance in the

entire dataset may be explained by the action of Rac and Rho

GTPase acting locally to regulate cytoskeleton organization.

We thus devise a simple Boolean model [33] to explain how

spatial differences in Rho/Rac activity lead to specific shapes

based on known literature and various TC profiles. In this

model, we separate signalling activity into two non-identical

compartments: a compartment regulating cortical morphology

and another regulating adhesion (figure 4a). We consider the

cortical compartment to broadly include cellular regions

where cytoskeleton rearrangements that drive protrusions

(e.g. blebbing, filopodia, lamellipodia) or retraction occur.

Rho/Rac activity can be considered ‘on’ (1) or ‘off’ (0) in
each compartment (figure 4a). In the cortical compartment,

Rac activity drives protrusion, whereas Rho promotes con-

tractility. In the adhesion compartment, Rac promotes the

formation of focal adhesions, whereas Rho upregulates tension

and ultimately adhesion disassembly. We also make the

assumption that in each compartment one activity antagonizes

the actions of the other (figure 4a) [22,34,35], and that Rac or

Rho activity require upstream activation in either compart-

ment. Thus, in the absence of such activation both Rac and

Rho can be off, although either Rac or Rho must be active at

any time in either compartment. Finally, our model assumes

that Rac-mediated protrusion in the cortical compartment

promotes Rho-mediated retraction in the adhesion compart-

ment (figure 4a), incorporating observations that polarized



Table 1. Characterization of each shape and TCs enriched in each shape.

shape polar?
protrusive (filopodia
and/or lamellipodia) spread? (adhesive state) characteristic genes Rac Rho

1 no no no, very round DNRhoGEF3 overex, G65A

overex, CG33232

low very high

2 mildly very small, ‘bleb-like’

protrusions

no, rounded cpa, kat-60L1, RecQ5 higha

3 mildly yes, biopolar, thin

protrusions

long cells RhoGAP71E, Rab3, CG5522,

Rab3-GAP

4 yes poorly formed

lamellipodia

poorly spread cappuccino, Sop2, RagC,

GXIVsPLA2, Nf1, trio

low

5 yes LE filopodia and

lamellipodia

presumptive LE well

attached, while

presumptive TE is

contracted

sandopo, RhoGAP100F,

CG10724, CG33275,

RhoGAP102A, wild-type

high (LE) high (TE)

6 no yes, filopodia and

lamellipodia

yes, multiple sites of

adhesion

RhoGEF2, RhoGAP93B,

Cdc42, memo, CG8557,

RhoGAP92B

high low

7 no yes, flat lamellipodia yes, large well-spread Sept5, RacV12 overex,

RacF28L overex

very high low

aInferred on the basis that shape 2 is very similar to shape 1.
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protrusivity can promote retraction in the opposing end via

upregulation of tension, and that Rac can activate Rho [11,25].

However, the reverse process does not occur. Although Rac acti-

vation in the cortical compartment can activate Rho in the

adhesion compartment, local inactivation of Rho by active Rac

in the adhesion compartment predominates over this global

effect. Notably, because we allow upstream regulators (such

as RhoGEFs and RhoGAPs) to influence the activation state of

our model at any given time, this model does not engage in

autonomous state cycles, and thus cannot be used by itself

to predict transitions between shapes. While the predictive

power of our model was not quantitatively compared with

alternative Boolean models with different wirings, it is entirely

consistent with existing literature and requires few assumptions.

Our model of Rho/Rac-mediated control of cell morphology

can exist in only seven different possible states of activation at

any given time (figure 4b), a number that corresponds exactly

with the number of cell shape clusters with the highest silhouette

index value (figure 2d). We are able to match each possible state

of the model with different shapes based on the degree of each

shape’s protrusivity/contractility and adhesiveness, as well

the genetic background that enriches for a particular shape

(figure 4b). For example, based on extensive literature we infer

that Rac activation predominates in the cortical compartment

of shape 5 cells (i.e. at the LE), and Rho activity is high in the

adhesion compartment, especially at mature focal adhesions

[10,36]. Furthermore, cells overexpressing constitutively active

versions of Rac (shape 7) or Rho (shape 1) can be assigned to

states where GTPase activity is high in both cortical and

adhesion compartments (figure 4b). Shape 2 is very related to

shape 1, and we assume there is little Rac activity in these

mostly rounded cells (figure 4b). Depletion of the Rho1-specific

GEF RhoGEF2 [37] or dysregulation of polarity following

depletion of Cdc42 [38] enriches populations in shape 6,
suggesting that this shape is due to defects in Rho activation

in the cortical compartment (e.g. due to failure of Rho1 to be acti-

vated by RhoGEF2) coupled with inappropriate Rac activation

in the adhesion compartment. Shape 4 cells exhibit defects in

lamellipodia formation following depletion of genes such as

the Rac GEF Trio [39], presumably owing to the inhibition of

Rac-mediated protrusivity (figure 4b). Shape 3 cells are rare,

and it appears that on the one hand these cells are contractile

(because of Rho activity), yet do not round-up completely like

shape 1 cells because Rac is promoting adhesion formation.

That we can match different shapes to different activation

states of the model supports the idea that the seven shapes in

our dataset are driven predominantly by balancing Rac and

Rho activity in two distinct compartments.
3.4. Morphological heterogeneity as a
structured process

When cells are in a given shape (e.g. shape 1), do they ran-

domly assume any other shape? Or is the adoption of one

shape dependent on the prior adoption of another shape,

such that there exists particular deterministic ‘routes’ in

shape space to which cells are constrained? While our Boolean

model explains the basis for the different shapes it cannot be

used to understand how BG-2 cells explore shape space,

because once a cell is in a certain state in this model it is allowed

to switch to any other state, as Rac and Rho in different com-

partments are activated or inhibited by upstream factors such

as RhoGEFs and RhoGAPs, whose activity may change in

ways that are not predicted by the model. Thus, in order to

determine whether BG-2 cells explore shape space in a stochas-

tic or deterministic fashion, we use Bayesian learning to

generate an acyclic graphical representation, or network, of
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Figure 4. A simple model of Rho/Rac activity in two distinct compartments exists in seven states. (a) We consider Rac and Rho activity in the cortical (red) and
adhesion (green) compartments. In both compartments, Rac and Rho antagonize each other. Cortical Rac activity can also activate Rho in the adhesion compartment
(blue arrow). In both cortical and adhesion compartments, both Rac and Rho can be inactive. Alternatively, the state of the network can be determined by upstream
signals such as RhoGEFs and RhoGAPs, and thus the model is non-autonomous. (b) By comparing how gene depletion or overexpression leads to the enrichment of
specific shapes (figure 3 and table 1), we match the seven possible shapes to the seven possible network states of the model.
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probabilistic dependencies between shapes [40]. In this net-

work, each shape is a node, and the dependency of a

downstream node on an upstream node is represented as an

arc from the parental node to the downstream child node.

These dependencies can be interpreted as causal influences of

the parent on the child. An attractive property of this method

is that it enables the representation of the nonlinear relation-

ships between variables. This tool has proved to be

successful in modelling signal transduction cascades [40–43],

but to date has not been used to model cell morphogenesis.

In our case, each TC has a certain proportion of cells in each

shape. These shapes can be treated as variables, and their

dependency, if any, can be inferred using the interventional

cues (here RNAi-mediated gene depletion) that enable the

identification of the directionality between different shapes.

For example, if cells must pass through a shape X before becom-

ing a shape Y, then any TCs where there is a decrease in shape X

will also result in a decrease in shape Y. Conversely, pertur-

bations that inhibit only the transition to shape Y will not
affect shape X, which would be reflected in the TCHP as a

decrease in shape Y but not shape X. In fact, shape X may

accumulate if transitions to shape Y are blocked. This method

does not require us to pose any assumptions about the distri-

bution of these variables. Here, the most probable model is

quantitatively determined from a number of other alternative

models, and if no dependencies exist a network will not be

generated. Using the 256 TCHPs, we generate a transition

model between different shapes (figure 5). Notably, not all

shapes are necessarily incorporated into the model. For

example, shape 2 is not part of this model as its presence does

not positively or negatively correlate with any other shape.

That we can generate a dependency model of six shapes

strongly suggests BG-2 cells explore shape space in a determi-

nistic fashion, and that morphological heterogeneity of BG-2

cells is a structured process.

At the top of the hierarchy are polarized shape 5 cells

(figure 5). The spread morphologies of shapes 6 and 7 are

dependent on the migratory shape 5, suggesting that migration



shape 6

shape 7

shape 1

shape 5

shape 4 shape 3

Figure 5. Exploration of shape space by BG-2 cells occurs in a deterministic manner. Shape transition model: arrows describe the observed dependency of one shape
on another. Green arrows describe dependencies where the correlation between shapes is positive; orange arrows describe dependencies where the correlation
between shapes is negative.
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is inhibited by reactivation of Rac at adhesions, particularly at

the TE, resulting in a loss of a polarity. One caveat to the use of

Bayesian learning methods is that they cannot infer cyclical

relationships, so it is possible that shape 5 is also dependent

on shapes 6 and 7, although this is less probable than the

observed dependencies.

We further examine the nature of the dependencies by

examining the correlations between different shapes. Positive

correlations indicate that correlated shapes are often simul-

taneously present in the same TC, while negative correlations

indicate that the presence of one shape predicts the depletion

of another. For example, the presence of shape 5 in a population

predicts shapes 1 and 4 are less likely to be present. Moreover,

the presence of shapes 1, 3 and 4 predicts that shapes 6 and 7

will not be found in the population. Thus, when cells are

driven to adopt shapes 1, 3 and 4, either by a cue or following

genetic perturbation (e.g. RNAi), they are unlikely to adopt

another shape. These findings suggest that while morphogen-

esis is a deterministic dynamic process, particular regions of

shape space can trap cells in a given shape.

Quantifying transitions between shapes in living cells

(Material and methods) reveals that while transitions between

shapes are rare, they occur with frequencies consistent with the

predictions made by our Bayesian model. Over a period of

approximately 3 h, we observe that cells in any shape are

most likely to remain in that shape (figure 6a). In fact, consist-

ent with the model, shape 1 is the most stable shape, and rarely

makes any transitions (figure 6a; electronic supplementary

material, figure S3). By contrast, transitions between shape 5

and shapes 6/7 (figure 6b) are relatively frequent as the prob-

ability of transitions from shape 5 to shape 6 is 25%, and the

probability of transition from shape 6 to shape 7 is 15%; and

both observations are in accord with our model. Finally, as pre-

dicted, transitions between shapes 1–3 and shapes 5–7, or vice

versa, rarely occur. Taken together, quantification of shape

transitions in live cells validates our Bayesian model.

Notably, we do observe that the probability of shapes 6/7

transitioning to shape 5 is relatively high (figure 6a), which is
not captured by our model, probably owing to the acyclic

nature of Bayesian networks. In particular, we note tran-

sitions from shape 5 to shapes 6/7 occur when cells make

large changes in the direction of their migration (figure 6c).
4. Conclusion
Through quantitative analysis of single-cell morphology follow-

ing systematic RNAi, we show that wild-type Drosophila BG-2

cells adopt six distinct shapes in culture. We also show that

most genetic perturbations only modify the distribution of the

six wild-type shapes rather than generating new shapes [7]. In

fact, the morphological variance present in the entire dataset is

best described using only seven shapes. That disruption of

biochemical networks regulating cellular morphogenesis typi-

cally decreases morphological heterogeneity in Drosophila
cells, as demonstrated here and in our previous work [7],

suggests that genes have evolved to promote and regulate mor-

phological heterogeneity. By maintaining several different

shapes simultaneously within the same isogenic population

this may facilitate different single-cell and population-level

behaviours. For example, specific subpopulations may be

better suited for unexpected changes in environmental con-

ditions (e.g. one population may be better suited for migration

in a particular environment). Alternatively, different shapes

may have different functions/behaviours, which promote

survival of the population as a whole.

We provide a Boolean model that explains how Rho and

Rac signalling in two distinct cellular compartments can drive

the adoption of exactly seven shapes, and the morphologi-

cal heterogeneity of different populations. A complementary

Bayesian model shows that BG-2 cells make deterministic,

and not stochastic, transitions between cell shapes. We propose

that genetic perturbations affect deterministic transitions

between shapes. For example, TCs where Rac signalling is sup-

pressed result in the adoption of a round shape, and inhibit the

transition to other protrusive shapes (shapes 5–7). The
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Figure 6. Validation of the Bayesian model by live-cell imaging. (a) The probability of a cell transitioning from an initial shape (rows) to a subsequent shape
(columns). The diagonal describes situations where cells do not transition over the course of the imaging experiments (n ¼ 200 transitions). (b) BG-2 cells
were imaged by brightfield microscopy for 70 min. At 35 min, two cells undergo transitions from shape 5 to shape 6. In total, the shape 5 – 6 transition
occurs with a probability of 0.25. (c) BG-2 cells transiently expressing EGFP (shown in red) grown in standard culture conditions and imaged for 315 min. At
the beginning of the experiment, the yellow-shaded cell is in shape 5, and at 30.00 min becomes shape 7; at 315 min the cell repolarizes in another direction
and migrates as shape 5.
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downside of using Bayesian networks in this context is that they

cannot identify loops between shapes, and thus such models

should only be taken as a suggestion of the system behaviour.

Nonetheless, we are able to confirm a number of the predictions

made by our model using live-cell imaging (figure 6a).

A prediction made by Bayesian inference (figure 5), and

supported by live-cell imaging (figure 6a), is that there exist
two primary attractor regions in the shape space explored by

BG-2 cells. When conditions drive cells to a region of shape

space where cortical tension is high, adhesion is low and cells

are round, cells largely remain in this space. By contrast,

when adhesion increases and cortical tension decreases, and

cells become more spread, cells largely remain in this region

of shape space (figure 6a). This finding is consistent with the
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fact that in culture, BG-2 cells have a propensity to either grow

in the same culture as spread cells in a monolayer that make

attachments to the ECM, or as ‘colonies’ of rounded cells that

make poor cell–ECM contacts, but extensive cell–cell

contacts (see the electronic supplementary material, movie S3

for an example). Potentially, these two cell shapes represent

two diverse cell states (such as a stem-like and differentiated

population) that have different migratory, metabolic and pro-

liferative behaviours. Thus, transition between the two

shapes, and thus attractor states, could require extensive tran-

scriptional and/or epigenetic reprogramming. Regardless of

what the different nature of these shapes may be, it is clear

that Rho and Rac activity plays a role in dictating the transition

between these shapes, and the morphological heterogeneity of

the population.

We caution that our models, while providing insights

into the exploration of shape space by Rho and Rac, are only

applicable to a certain set of network states that are dictated by

the genetic background and culture conditions. For example,

our Bayesian model suggests that it is more probable for a

migrating BG-2 cell to lose polarity than establish polarity,

probably reflecting the fact that these cells are transiently polar-

izing and migrating for short periods of time in response to

external signals that are not emanating from one direction in

a consistent manner. However, if cells were exposed to a

signal that generated directional migration, it would become

more likely that these cells would transition from exploratory

shapes to polarized shapes. Moreover, we stress that our

model reflects cellular transitions with higher probabilities,

and that transitions not described in the model can occur, but

probably at lower frequencies. For example, by live-cell ima-

ging we observe a number of transitions from shapes 6 and 7

to shape 5 (figure 6a,c). Our model predicts that once cells

become rounded, it is unlikely they will become spread and/

or protrusive, and the reverse is also true. But clearly tran-

sitions from rounded to protrusive shapes must occur—

notably during the rare transition from a rounded mitotic

shape to a spread shape following cytokinesis. Importantly,

the analytical pipeline we present here can be used to generate

models of cellular morphogenesis using diverse data sources,

and thus it would be interesting to regenerate these models

using images acquired of BG-2 cells cultured in different

conditions, and/or different cell types.

Our Boolean model of shape does not require Cdc42

activation to explain cell morphology. Based on a number of

previous studies, we propose that Cdc42 activation has an

important role in establishing cellular polarity relative to exter-

nal cues [44,45], which then results in differential Rho/Rac

activity, but has little influence on controlling protrusion

or adhesion. Thus, we hypothesize Cdc42 dictates the direc-

tionality of a migrating cell, but does not influence the overall

shape. However, we cannot formally exclude the possibility

that Cdc42 activity and other GTPases make significant con-

tributions to morphogenesis beyond the establishment of

polarity. But we note that BG-2 cells are different from many

cells types in that filopodia formation is largely driven by a

Rac-SCAR versus Cdc42-WASP pathway [29]. Consistent

with SCAR’s primary role in BG-2 morphogenesis, deple-

tion of SCAR leads to the adoption of the shape 2, a shape

that does not exist in a wild-type population (see electronic

supplementary material, table S3).

In summary, we propose that Rho and Rac, and their

downstream effectors, serve as a core pathway that
establishes the basic template of morphologies explored by

all eukaryotic cells. RhoGEFs and RhoGAPs act to couple

morphogenesis to different environmental signals, whereas

other cytoskeletal regulators act to fine-tune cell shape and

elaborate upon the basic shapes established by Rho and Rac.
5. Material and methods
5.1. Software
Analyses were performed using MATLAB.

5.2. Dataset
The dataset used in this study was generated in an image-based

screen of 256 TCs, where genes were either systematically inhib-

ited by RNAi or overexpressed by transient transfection. In a

limited number of TCs, there is a combination of overexpression

and RNAi [26]. Cells were stochastically labelled with EGFP to

facilitate image segmentation. For all TCs, 145 features were

measured for 12 061 cells.

5.3. Data transformation and reduction
All measured features are scaled between 0 and 1. After

scaling, a constant of 0.01 is added to all measurements to

make them non-zero and then a logarithmic transformation

is applied. PCA is performed on the transformed data. The

first three PCs analysed represent 59% of the variability in

the original data and are considered for further analysis.

Each other PC represented less than 5% of the variability

in the original data and thus all have been discarded.

Eigenvalues for this analysis are listed in the electronic

supplementary material, tables S1 and S2.

5.4. Single-cell clustering
For both hierarchical clustering and Gaussian mixture

models, clusters are computed by varying the number of

clusters (k) between five and 30. Hierarchical clustering is per-

formed with Euclidean distance and Ward linkage. Gaussian

mixture modelling is performed 10 times for each k and the

final clustering with the best log-likelihood value is chosen.

The average of silhouette values is used to assess the quality

of the computed models, and the model with the highest

average silhouette score is chosen.

5.5. Clustering performance improvement
The chosen model has an average silhouette value of 0.7647.

To improve the clustering performance, we divide the cells

into two groups: cells with high silhouette values (more

than 0.6) and cells with low silhouette values (less than

0.6). Next, we reclassify cells in the second group to those

in the first group using KNN search, where k ¼ 10. The

final model achieves an average silhouette value of 0.7758.

5.6. Treatment condition heterogeneity profiles
For each TC, including the wild-type (cells expressing EGFP

alone) population, the percentage of cells in each shape is

computed, resulting in a vector describing the distribution
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of cells for each TC. These vectors are then normalized by

subtracting the wild-type TCHP. All THCPs are listed in the

electronic supplementary material, table S3.

5.7. Normalized treatment condition heterogeneity
profile clustering

Normalized TCHPs are clustered by hierarchical clustering

and complete linkage. The clustering that results in the high-

est degree of overlap with the clusters derived by Bakal et al.
was chosen [26]. To measure the distance between two

TCHPs, we weigh the difference between two TCHP vectors

by the difference between the shapes’ average PC scores. The

formula for the distance metric is

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2ÞMðx1 � x2ÞT

q
;

where D is the distance between two normalized TCHPs, x1

and x2 are normalized TCHP vectors, M is the square

matrix of the Euclidean distances between the mean values

of the first three PC scores for each shape, and the superscript

T is the transposition operator.

5.8. Dependency analysis
We generate a dependency model of different shapes using

BIOLEARN software (http://www.c2b2.columbia.edu/danapeer

lab/html/biolearn.html). We scale the percentages of each

shape across different TCs onto interval [0,1] for normalization.

We then run Bayesian learning 500 times with normal gamma
function. Across the 500 resulting models, we retain edges

that are present in at least 60% of the models. We assign direc-

tionality to the edge based on the direction that appeared most

frequently, even if the direction appeared in fewer models than

edges with no direction.
5.9. Live-cell imaging
DM-BG2 cells (referred to as BG-2 cells in this paper) are

cultured in Shields and Sang M3 insect media (Sigma), 10%

fetal bovine serum (Serum), 10 mg ml21 insulin (Sigma), 1%

penicillin–streptomycin (Gibco) at room temperature.

For experiments to validate the Bayesian inference model,

brightfield images are acquired every 5 min for 180 min on a

Nikon Ti microscope. Electronic supplementary material,

movie S3 is a representative movie where transition frequency

is analysed. For other experiments, cells are transfected with

plasmids encoding actin-GAL4 and UAS-EGFP using Effectene

transfection reagent (Qiagen). In the electronic supplementary

material, figures S1 and S3a, and movie S3, we use a plastic

pipet tip to remove cells from a region of the plate and thus

create a region of free space for BG-2 to migrate into.
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