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ABSTRACT

Long range regulatory interactions among distal en-
hancers and target genes are important for tissue-
specific gene expression. Genome-scale identifica-
tion of these interactions in a cell line-specific man-
ner, especially using the fewest possible datasets,
is a significant challenge. We develop a novel com-
putational approach, Regulatory Interaction Predic-
tion for Promoters and Long-range Enhancers (RIP-
PLE), that integrates published Chromosome Confor-
mation Capture (3C) data sets with a minimal set of
regulatory genomic data sets to predict enhancer-
promoter interactions in a cell line-specific man-
ner. Our results suggest that CTCF, RAD21, a gen-
eral transcription factor (TBP) and activating chro-
matin marks are important determinants of enhancer-
promoter interactions. To predict interactions in a
new cell line and to generate genome-wide inter-
action maps, we develop an ensemble version of
RIPPLE and apply it to generate interactions in five
human cell lines. Computational validation of these
predictions using existing ChIA-PET and Hi-C data
sets showed that RIPPLE accurately predicts inter-
actions among enhancers and promoters. Enhancer-
promoter interactions tend to be organized into sub-
networks representing coordinately regulated sets
of genes that are enriched for specific biological
processes and cis-regulatory elements. Overall, our
work provides a systematic approach to predict
and interpret enhancer-promoter interactions in a

genome-wide cell-type specific manner using a few
experimentally tractable measurements.

INTRODUCTION

The human genome encodes thousands of regulatory DNA
sequence elements that control spatial and temporal pat-
terns of gene expression (1). A major mechanism by which
regulatory elements such as enhancers act on a target gene
is through chromosomal looping (2–6) where a distal en-
hancer is brought close to a target gene in three-dimensional
space. Such long-range regulatory interactions are emerg-
ing as important determinants of tissue-specific expression
(4,7,8) and for interpretation of regulatory variation (9,10).
Experimental techniques for detecting these interactions
such as Chromosome Conformation Capture (3C) (5) and
its variants (4C, 5C (11), Hi-C (12–14), Capture-Hi-C (15),
DNase-Hi-C (16)) and ChIA-PET (17,18) are quickly ma-
turing and differ in the resolution and the genomic cover-
age of regions interrogated. However, multiple components
of the transcription machinery facilitate these interactions,
including histone modifications for activating and poised
transcription (19,20), transcription factors (21) and com-
ponents of the cohesin complex (22). As such, the princi-
ples by which such elements act upon their target genes to
drive tissue-specific expression and the interplay of long-
range gene regulation with other one-dimensional regula-
tory signals such as transcription factor occupancies or
chromatin modifications are not well understood. Hence,
there is a need for integrative approaches that can leverage
multiple types of regulatory genomic data sets to provide a
genome-wide characterization of enhancer-promoter inter-
actions across multiple cell lines.

Approaches that integrate diverse regulatory genomic
data sets have served as useful complements to experimen-
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tal approaches in gene regulation studies, e.g. for identifying
enhancers (23–25) and for reconstructing transcriptional
regulatory networks (26–28). Recently, computational ap-
proaches for predicting interactions among enhancers and
promoters have also been developed. One strategy has been
to use correlation of DNase I footprints or chromatin marks
across multiple cell lines for each potential enhancer and
promoter pair (24,25,29). More recently, approaches that
combined H3K4me1, CTCF and mRNA levels (9) and su-
pervised learning approaches that used ChIA-PET data sets
to train a classifier (30), improved on correlation-based ap-
proaches. However, there are several issues that need to be
addressed for predicting enhancer-promoter interactions in
a cell line-specific manner.

The first issue is to determine the most informative mea-
surements to predict such interactions in a new cell type
or time point, where such interactions might be difficult
to measure experimentally. Recent comparison of exper-
imentally detected enhancer-promoter interactions across
multiple cell lines has shown that the interactions tend
to be cell line-specific (11,18,31). One idea is to apply
a classifier trained on one cell line to predict interac-
tions in the new cell line. However, it is not clear which
cell line’s classifier or what data sets need to be mea-
sured in the new cell line to predict such interactions. A
related issue is to determine whether additional regula-
tory genomic data sets other than those that have been
commonly used for enhancer-promoter interactions (e.g.
CTCF (9), DNase I (29), H3K4me1 (9,30), RNA-seq (9,30),
H3K4me3, H3K27ac (30)) have additional value. A third is-
sue is that current approaches to predict enhancer-promoter
interactions have built one predictor for all cell lines exam-
ined (9,29,30). Building a classifier for each cell line is likely
to be more sensitive to cell line-specific interactions and can
discriminate between different types of cell line-specific in-
teractions. For example, interactions could be obliterated in
one cell line either because the enhancer (or promoter) is no
longer active in the cell line, or the enhancer and promoter
remain active but do not interact (e.g. because of chromo-
somal domains (4)).

In this paper, we make two contributions. First, we
present a new computational method RIPPLE (Regulatory
Interaction Prediction for Promoters and Long-range En-
hancers) to predict interactions between distal enhancer el-
ements and target genes in multiple cell lines. RIPPLE is
based on a supervised machine learning framework that
uses interactions detected from 5C experiments in a par-
ticular cell line as a training set and a small number of
genomic data sets selected from the ENCODE collection
of regulatory genomic data sets (32). To select a minimal
set of data sets for RIPPLE while ensuring good predictive
power across multiple cell lines, we developed a hybrid fea-
ture selection strategy that uses both Random Forests fea-
ture importance measure (33) and multi-task learning (34)
with Group Lasso (35). Classifiers trained on these selected
features have high predictive performance on both 5C data
and Hi-C data. Second, we develop an ensemble approach
to predict interactions between new genomic regions and in
new cell lines with no available 5C data sets. Our ensem-
ble approach can robustly identify interactions for new cell

lines, especially when the best training cell line classifier is
not known upfront.

Using our ensemble approach we generated genome-wide
enhancer-promoter interactions for four cell lines with 5C
data and a new cell line (HepG2) for which we did not have
5C data. Examination of our predictions from multiple cell
lines shows that cell line-specific interactions are between
enhancers and promoters that are active in two cell lines,
but they interact in only one of the cell lines. Our genome-
wide interactions are significantly enriched for experimen-
tally measured interactions (e.g. from ChIA-PET and high
resolution Hi-C) providing external validation of our pre-
dictions. In addition to being associated with known reg-
ulatory proteins (e.g. CTCF, RAD21) and activating chro-
matin marks (e.g. H3K4me3, H3K9ac), our predictions also
implicate novel factors (CMYC, H3K36me3, H3K79me2)
that have not been studied extensively for establishing long-
range interactions. Overall our work provides a systematic
way to predict cell line-specific enhancer-promoter interac-
tions using a minimal set of data sets in multiple cell lines
and offers important insights into the interplay between ar-
chitectural proteins, general transcription factors and his-
tone modifications for establishing these interactions.

MATERIALS AND METHODS

There are three important components to RIPPLE: (i)
Learning a single cell line-specific classifier, (ii) Determin-
ing the minimal number of data sets for predicting interac-
tions in multiple cell lines, (iii) Ensemble learning to predict
interactions in new cell lines.

Learning a single cell line-specific classifier for predicting
enhancer-promoter interactions

RIPPLE is based on a predictive learning framework where
the goal is to train a binary classifier on examples of interac-
tions and non-interactions using features derived from var-
ious regulatory genomic data sets (e.g. ChIP-seq data sets
for histone modifications, transcription factor occupancies,
RNA-seq, Figure 1). To build a predictive model, we need to
decide on a feature representation of an enhancer-promoter
pair, generate positive and negative sets, and determine the
best learning algorithm for our problem.

Feature representation. To extract features for RIPPLE’s
classification algorithm, we used data sets from the EN-
CODE project for four cell lines: K562, Gm12878, Hela S3
(Hela) and H1 Embryonic Stem cell (H1hesc), learning a
separate classifier for each cell line. Because our end goal
was to build a classifier that works across multiple cell lines,
we focused on 23 data sets that were measured in all four
cell lines (Figure 1). These 23 data sets included 8 histone
marks, 15 transcription factors, DNase I and RNA-seq.
ChIP-seq data sets are represented as a collection of
peak calls that have two genomic coordinates of chromo-
some start and stop. We used the peak files generated by
the ENCODE consortium (36,37) (http://ftp.ebi.ac.uk/
pub/databases/ensembl/encode/integration data jan2011/
byDataType/peaks/jan2011/histone macs/optimal/ for
histone marks and http://ftp.ebi.ac.uk/pub/databases/

http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/peaks/jan2011/histone_macs/optimal/
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Figure 1. RIPPLE classification framework for predicting cell-line specific enhancer-promoter interactions. The two main stages of building RIPPLE’s
cell line-specific classifier: identification of appropriate feature encoding and selection of minimal data sets. (A) Encoding an enhancer-promoter pair
for a classifier. ChIP-seq (for general transcription factors and histone modifications), DNase I and RNA-seq data sets measured in a given cell line
provide feature values for an enhancer or a promoter genomic region. The feature values can be continuous (negative log of P-value of signal enrichment,
gene expression levels) or binary (presence absence of a particular peak). To represent an enhancer and promoter pair to a classifier, we use two strategies:
CONCAT and PRODUCT. In CONCAT, we concatenate the feature vector associated with an enhancer with the feature vector associated with a promoter.
In PRODUCT, we use the product of the feature value on the enhancer and the promoter to specify the feature value of the pair. We also use the correlation
of the signal values on the enhancer and promoter as an additional feature. (B) Our hybrid approach to identifying the minimal feature set for building
cell line-specific classifier. We train cell line-specific Random Forests on labeled 5C data and use standard feature importance measures (out-of-bag error)
in Random Forests to rank the features. In parallel, we use a multi-task learning with Group Lasso to perform joint feature selection across all four cell
lines. The intersection of both approaches is used as input for the feature refinement step, where we remove and add individual, pairs or triplets of features
guided by the correlation of the features. The output of this step gives us a minimal set of data sets for RIPPLE.
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ensembl/encode/integration data jan2011/byDataType/
peaks/jan2011/spp/optimal for transcription factors).
SMC3 ChIP-seq data for the H1hesc cell line was obtained
from the Gene expression omnibus (GSM897119) and the
MOSAiCS peak calling algorithm was applied to call peaks
(38).

We represented an enhancer or promoter region as a real
or binary vector, each dimension corresponding to one of
the 23 genome-wide data sets (Figure 1). A promoter had
an additional feature representing the mRNA level of the
gene associated with the promoter. For the binary case, a
ChIP-seq or DNase I data set was represented as 1 or 0 de-
pending upon whether a particular peak had ≥1bp over-
lap with the regulatory region. In the real vector case, we
used the −log(P value) of the signal enrichment. If multi-
ple peaks with different values overlapped a region we took
the larger value. Expression levels were always represented
as continuous features.

To generate a feature vector for a pair of enhancer
promoter regions we used two strategies: CONCAT and
PRODUCT (Figure 1A, Supplementary Figure S1). In the
CONCAT case we concatenated the feature vectors of the n-
dimensional feature vectors of the enhancer and promoter
regions to obtain a feature vector of size 2n, where n includes
everything other than the RNA-seq data set. In the PROD-
UCT case, each enhancer-promoter pair was represented
using an n-dimensional vector, each dimension represent-
ing the product of the corresponding values in the enhancer
or the promoter feature vector. For the case of real feature
values, we added a small correction of 0.01 to each dimen-
sion to avoid setting a feature value of the pair to zero, if
one of the regions did not have a feature value. Finally, for
each pair, we included two additional features, the Pearson’s
correlation of the n signals (same for binary or real) asso-
ciated with an enhancer to signals associated with the pro-
moter of a pair; and the RPKM expression level of the gene
associated with the promoter. To assess the performance
of a specific feature encoding we used the Area Under the
Precision-Recall curve (AUPR), which measures the trade-
off in the precision and recall of predictions as function of
classification threshold, estimated with 10-fold cross valida-
tion (Supplementary Figure S1). AUPR was computed us-
ing AUCCalculator (39). We trained and tested a Random
Forests classifier for all four cell lines using the different fea-
ture encodings. We find that the best AUPRs were given by
the CONCAT feature compared to the different versions
of the PRODUCT features. We also evaluated the utility of
correlation and expression by combining the CONCAT or
PRODUCT features with expression only (CONCAT+E),
correlation only (CONCAT+C) and correlation and expres-
sion (CONCAT+C+E). The CONCAT feature with expres-
sion and correlation (CONCAT+C+E) was the overall best
performing feature representation. Because the difference
between continuous and binary features was not significant,
we used the binary features because it makes cross-cell line
comparisons less sensitive to the tree rules learned by a Ran-
dom Forest in a training cell line. Based on these results,
we represented an enhancer promoter pair using the CON-
CAT+C+E feature set.

Positive and negative set generation. RIPPLE uses Carbon
Copy Chromosome Capture Conformation (5C) derived in-
teractions as a positive data set from Sanyal et al. (11). The
5C data set statistics are in Table 1. Sanyal et al. used 5C
to detect interactions among pairs of targeted genomic loci
in manually selected and random ENCODE regions repre-
senting 1% of the human genome. They designed a collec-
tion of forward and reverse primer pairs for these genomic
regions. Reverse primers were designed for regions overlap-
ping a transcription start site (TSS), while forward primers
were for non-TSS regions. In our approach, we defined pro-
moters as a genomic region that had a TSS (Gencode v10)
or a TSS was <2500 bp away. We defined distal elements as
those that are at least 2500 bp away from a TSS, thus being
necessarily distal from the target promoter. In addition we
filtered the enhancer promoter regions such that they had at
least one non-zero feature values. To generate the negative
set, we sampled from the non-interacting primer pairs while
controlling for the distance between interacting pairs. This
was important because the tendency for an enhancer to in-
teract with a promoter depends upon the distance between
them. To ensure that the positive and negative examples ex-
hibited the same distance distribution, we binned all mea-
sured primer pairs into 10 Kbp bins. For any pair of interac-
tions that is in the positive set that is assigned to a bin, bi , we
sample uniformly at random from the set of non-interacting
pairs from the same bin bi. In both the positive and nega-
tive set we considered pairs of enhancers and promoters that
were in <1 MB apart and that had features associated with
them. We trained classifiers on a balanced data set but eval-
uated performance on the same sized negative set (1 times)
as well as on a larger negative sets that was 10 times the size
of the positive set (10 times, Supplementary Figure S2A). In
all cases the classifiers are significantly better than random
(Supplementary Figure S2A), however for the 10 times neg-
ative set the AUPR was lower. Here a random classification
prediction was obtained by shuffling the probabilities of in-
teractions among the pairs. Many of the ‘false positives’ that
are not detected in the 5C data set can be true interactions.
To provide additional support to these predictions we com-
pared the difference in contact counts in the positive and
negative sets in the 5C data, and compared this to predicted
positives and negatives in the 1 times and 10 times negative
sets and found that at all classification probability thresh-
olds of >0.5 the contact counts of our predicted positives
are significantly higher than negatives (Supplementary Fig-
ure S2B, 2C).

Learning algorithms for predicting enhancer-promoter in-
teractions. We considered two types of approaches as
the main predictive learning algorithm for RIPPLE: Ran-
dom Forests approach and regularized regression ap-
proaches. Random Forests are powerful ensemble learning
approaches that have been shown to have very good gen-
eralization performance (33). We trained Random Forests
(RF) on different feature encodings using 500 trees. Ran-
dom Forests were trained and tested with 10-fold cross-
validation where we trained the classifier on training data
from 9 out of 10 folds and tested on the left out data.
The performance of the RF classifier was examined us-
ing AUPR. The AUPR was calculated using the prediction

http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/peaks/jan2011/spp/optimal
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Table 1. Number of enhancers, promoters and enhancer-promoter interactions in 5C training data sets for RIPPLE

Cell line Enhancers Promoters Interactions

K562 327 859 877
Hela 301 757 765
Gm12878 471 227 476
H1hesc 196 334 337

probability of an enhancer-promoter pair when it was part
of the test set.

In addition to Random Forests we also applied two reg-
ularized regression based classification approaches: (i) L1-
penalized linear regression (LASSO), and (ii) L1-penalized
logistic regression (GLMLASSO). These L1-regularized re-
gression approaches are powerful predictive models while at
the same time perform feature selection to learn a ‘sparse’
model (40) where the regression coefficients of many fea-
tures are set to 0 thus performing model selection. L1-
regularized regression approaches require the selection of
the regularization parameter, �, which is typically selected
based on cross-validation. We used the MATLAB statistics
package implementation of L1-regularized linear regres-
sion (lasso) and regularized logistic regression (glmlasso).
Prior to using the linear regression approach we converted
the 0-1 labels to −1 and +1, although the linear regression
classifier on the 0-1 labels had similar AUPRs. As with the
Random Forests, we performed 10-fold cross-validation to
assess the performance of each classifier. In each fold of
cross validation (CV) we performed another round of 5-fold
cross validation to select � that minimized prediction error
in the test set of that CV fold. Once the best � is selected for
a fold, we re-learned the regression weights using this �.

Building a minimal classifier by combining Random Forests
and Group Lasso-based Multi-task learning

To determine the most important features and that have
good predictive power for all cell lines, we combined Ran-
dom Forests feature selection with features selected using a
structured sparsity approach based on Multi-task learning
and Group Lasso (described below). Our motivation for us-
ing this strategy is as follows: Random Forests are powerful
classifiers for the task at hand, however, they do not offer
model selection. That is, given n features to a RF classifier,
it will learn a predictive model that uses all n features. On the
other hand, sparse learning approaches such as those based
on Lasso can do model selection by setting some coefficients
of features to 0. However, such a model does not perform
as well as a Random Forests approach (Figure 2A). Fur-
thermore, independently training a classifier on each cell
line would not necessarily identify the same set of features
across cell lines, making it difficult to assess how well a clas-
sifier would generalize to new cell lines. We therefore used a
hybrid approach for determining the most important data
sets that is informed both by the sparsity-imposing regular-
ized regression framework as well as by RF feature impor-
tance and performance measures across all cell lines stud-
ied. First, using a regularized multi-task learning frame-
work, we identified features that were important for all four
cell lines. Second, using the RF-based feature importance
ranking, we found important features that were in the top

20 in at least two of the four cell lines. We then used the in-
tersection of the features deemed as important by our multi-
task learning framework and Random Forests feature rank-
ing as the initial set of features. We then refined this feature
set while considering features that were ranked as important
by Random Forests but not by our sparse learning method.

We used a multi-task learning framework because we had
four classification problems, one for each cell line, and we
needed a feature to be selected based on its utility across all
four classification problems. Multi-task learning is a popu-
lar machine learning approach that aims to simultaneously
solve multiple learning problems to share information be-
tween the learning problems (34). In our problem setting
the different learning problems are the classification tasks,
one for each cell line. Each classification task is defined as
Yc = βcXc, where c ranges from 1 to 4 for our four cell
lines and our multi-task learning approach aims to select
features that are useful for all cell lines. Yc is the vector of
mcclass labels, Xc is a matrix of feature vectors, and �c rep-
resents the regression weights for the cth cell line. In order
to select the features important for all cell lines, we use the
Group Lasso framework (35). Group Lasso is a particular
type of structured sparsity approach that enables one to ex-
ploit group structure among the predictive co-variates in the
model while imposing sparsity constraints. In our problem
the group structure is imposed by the requirement of select-
ing features that are important in not one but all four cell
lines. Specifically, let B denote a Ncommon × K matrix, where
Ncommon is the number of features common to all cell lines.
Let �c denote the cth column of B. The ‘group’ is defined
by each row of the B matrix and corresponds to the set of
regression coefficients {�1(j), ···, �K(j)} for the jth feature. In
Group Lasso, the regularization takes the form of an L1/L2
norm, and the objective function is defined as

B̂ =
K∑

c=1

||Yc − βcXc||22 + λ||B||1/2

The L1/L2 norm for B is defined as
∑Ncommon

j=1 ||B j ||22,
where B j is the jth row of B. The effect of this norm is it
imposes sparsity at the level of entire rows, setting them to
0.

To perform multi-task Group Lasso for our prob-
lem we used the Sparse Learning with Efficient Pro-
jections (SLEP) package (http://www.yelab.net/software/
SLEP/). Specifically we used the mtLogisticR function
with 10-fold cross-validation. In each fold we applied the
mtLogisticR function of the multi-task classification prob-
lem. Final features were selected such that they were in at
least 8 of the 10 folds of cross-validation. Such features were
ranked based on the sum of the absolute value of the regres-

http://www.yelab.net/software/SLEP/
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Figure 2. Evaluation of different feature encodings and classification algorithms for enhancer-promoter interaction prediction. (A) Area Under the
Precision-Recall curve (AUPR) values for all four cell lines and the three classification approaches tested. These approaches include the Random Forests
classifier, a regularized linear regression approach (LASSO) and a regularized logistic regression approach (LASSOGLM). The higher the bar the better
the particular classification approach. (B) Top selected features using Random Forests and Group Lasso. For Random forests the feature importance is
the out of bag error when the feature is included in the top 20, and 0 otherwise, and for Group Lasso the feature importance is the absolute value of the
regression coefficient. (C) AUPRs on different combinations of data sets: ALL Common: all 23 data sets, GLASSO: 13 data sets selected by Group Lasso,
RF: 17 data sets selected by Random Forests feature ranking, RF GLASSO intersect: 12 data sets in the intersection of data sets selected by Group Lasso
and Random Forests, H3k27ac+H3k4me2+Exp: 3 data sets including H3K27ac, H3K4me2 and RNA-seq based gene expression levels.

sion weights across all cell lines followed by selecting the top
20 features.

Feature importance in a Random Forests classifier was
computed using the ‘Out of bag’ error. This computes fea-
ture importance as the decrease in classification accuracy
for out of bag examples when the feature is permuted in the
training set. The feature was selected if it was among the top
20 features in two of the four cell lines. Furthermore, a data
set (e.g. CTCF) would be included if it was important either
at the enhancer or at the promoter region.

After obtaining important features from both the Ran-
dom Forests classifier and multi-task Group LASSO, we
performed an additional step of feature refinement starting

with the intersection set of both Group Lasso and Random
Forests based approach. Our feature refinement procedure
was guided by the extent to which the features were corre-
lated (Supplementary Methods, Supplementary Figure S3).
We considered subsets of data set combinations based on
their correlation structure to first remove additional fea-
tures that would not significantly reduce performance, fol-
lowed by another iteration of adding data sets (Supplemen-
tary Figure S4). For example, CTCF, SMC3 and RAD21
were highly correlated in all four cell lines, and we evaluated
the performance when removing any of these individually
or in combination (CTCF-SMC3, CTCF-RAD21, SMC3-
RAD21). The feature refinement step resulted in a minimal
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set of data sets that were used to train an RF classifier that
served as the main predictive model of RIPPLE.

Evaluation of RIPPLE on Hi-C data

In addition to training classifiers on 5C data, we assessed
the performance of RIPPLE on chromatin interactions
identified by the Hi-C experiments of Rao, Huntley et al.
(13) (GEO Accession GSE63525) for the Gm12878 and
K562 cell lines. For the Gm12878 cell line, we used the
‘Gm12878 combine’ data set, which was a combination of
two separate replicates of the Gm12878 experiment.

Using their Hi-CCUPS method, Rao, Huntley et al. iden-
tified significant intrachromosomal interactions between re-
gions of uniform size. They did so separately for three dif-
ferent resolutions of regions: 5, 10 and 25 Kbp. To create
a data set for RIPPLE, we divided the genome into 5 Kbp
regions. As in the 5C case, we defined promoters as regions
that were within 2500 bp of a TSS (Gencode v10). We de-
fined ‘distal’ (putative enhancer) regions as those that were
further than 2500 bp from a TSS. We then removed any re-
gions that had no feature data (using the same feature data
sources as for 5C). Next, we used the significant interactions
from the original publication to create a set of true positive
interactions. Specifically, each true interaction consisted of
a promoter region and a distal region that appeared on op-
posite sides of a significant interaction at any of the three
available resolutions.

To define a balanced set of negative pairs (each consist-
ing of one 5 Kbp promoter region and one distal region),
we employed a similar procedure as for 5C data (described
above). In addition to controlling for distance between the
regions, we also controlled for expression of the promoter in
the cell line. This step was important as the space of possi-
ble negative pairs was dominated by non-expressed promot-
ers, while most promoters in positive pairs had non-zero ex-
pression. Specifically, a negative drawn to match a positive
for which the promoter region had non-zero expression was
also required to have non-zero expression. This procedure
identified a total of 2761 positive promoter-distal pairs for
Gm12878 and 6649 for K562.

We assessed the performance of RIPPLE based on
AUPR on Hi-C data in three experiments. First, we
performed ten-fold cross-validation within each cell line
(Gm12878 and K562). For each fold, we trained a Random
Forests classifier of 500 trees on training data from 9 out
of 10 folds and tested on the hold out fold. Second, we as-
sessed the performance of RIPPLE to predict Hi-C interac-
tions between cell lines by training on examples of one cell
line and testing on examples of the other cell line. Third, we
measured the ability of RIPPLE to generalize across the Hi-
C and 5C platform on the same cell line. For each of K562
and Gm12878 cell lines, we trained a Random Forests clas-
sifier on all the data from one platform and tested on data
from the other platform.

Ensemble approach to predict interactions in new cell lines

To generate predictions in a new cell line, we employed an
ensemble approach to combine predictions from multiple
cell lines. We considered two approaches that used predic-

tions from cell line-specific classifiers, Percentile and Spec-
tral Meta Learner, and a third baseline approach that pools
the training examples from all training cell lines to predict
interactions in a test cell line. The percentile approach is de-
scribed as follows: suppose we have K different classifiers,
K = 4 in our setup. For the ith test pair of interest, we ob-
tain classification probabilities from each classifier, pij, 1 ≤
j ≤ K. We convert each pij, into percentile ranks and take
an average of these ranks. The Spectral Meta Learner ap-
proach uses the correlation between predictions of different
classifiers (41). This approach automatically weights the dif-
ferent predictions based on the absolute values of the lead-
ing eigen vector and was shown to outperform a majority
voting based ensemble (41). Specifically, let � be a K × K
covariance matrix of the prediction probabilities and let e
be the eigen vector of � corresponding to the largest eigen
value. The prediction of the ensemble is then the dot prod-
uct, pi ∗ e, where pi = {pi1, · · · , pi K }. These values were
then used to rank each prediction. Our third baseline ap-
proach simply combined the data from different cell lines.
Specifically, to predict interactions for cell line l, we merged
the examples from all cell lines k �= l, trained a classifier on
this larger set of examples, and then predicted interactions
for pairs in cell line l.

Generating genome-wide predictions

Our genome-wide predictions were applied to a set of
‘universal’ enhancer and promoter regions so that the
same input set of genomic regions were considered in each
cell line. To create these enhancer regions we took cell
line-specific enhancer predictions from ENCODE (42)
for the Gm12878, H1hesc, K562, Hela S3 and HepG2
cell lines. These predictions were generated by reconcil-
ing the genome segmentations from ChromHMM and
Segway (42). For each cell line, we obtained regulatory
regions predicted as enhancers by using one of two
tags ‘E’ for predicted enhancer and ‘WE’ for additional
weak enhancers at http://ftp.ebi.ac.uk/pub/databases/
ensembl/encode/integration data jan2011/byDataType/
segmentations/jan2011/hub/genomeSegmentation.html.
We obtained the enhancers from each of the four cell lines
and generated a universal set of enhancers by combining
all the enhancers. If two enhancers were adjacent to each
other or overlapped, we merged them into a single region.
We excluded enhancers that were <200 bp in length. To
define promoters we considered ±2500 of TSS annotations
from Gencode v10. In total, we had 52 065 regions that we
called promoters and 216 042 regions called enhancers. The
number of regions reduced in a cell-line specific manner
after overlapping them with the data sets in our minimal
classifier: K562: 117 707, Hela: 110 585, Gm12878: 98 064,
H1hesc: 106 007, HepG2: 115 834 enhancers, and K562:
30 173, Hela S3: 28 304, Gm12878: 24 721, H1hesc: 27
359, HepG2: 27 136 promoters. We considered all pairs of
enhancers and promoters that were <1 MB apart and that
had features associated with them.

http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/segmentations/jan2011/hub/genomeSegmentation.html
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Computational validation of genome-wide predictions from
RIPPLE

We used two measures to validate the genome-wide predic-
tions from RIPPLE. The first was based on the difference in
Hi-C contact of predicted interactions in the 90% compared
to interactions predicted to be below the 10% percentile. We
obtained Hi-C data for H1hesc cell line from Dixon et al.
(43). This data was normalized using the Iterative Correc-
tion and Eigen value decomposition method (ICE) (44). We
binned the normalized data into 10 Kbp resolutions. Next
for each predicted interaction, we found a corresponding
bin pair where one region of the interaction overlapped with
one of the bins of the pair, and the other end of the inter-
action overlapped with the other bin pair and used the con-
tact count for this bin pair for our predicted interaction. We
did this analysis for the predicted interactions from RIP-
PLE and the predicted interactions from the PRESTIGE
(9) and IM-PET (30) methods for the H1hesc cell line.

We also evaluated the genome-wide predictions based
on their ability to recapitulate interactions measured us-
ing experimental approaches that are complementary to
5C. Specifically, we obtained ChIA-PET data sets (17,18),
and a high-resolution Hi-C data set from IMR90 (14). We
mapped these interactions onto the genome-wide regions by
requiring one member of an interaction to overlap with one
of the enhancers in the genome-wide data set and the other
region to map to a promoter in our genome-wide data set.
We defined fold enrichment as the ratio of observed overlap
fraction of interactions, n1/n2, to expected overlap fraction
of interactions, m1/m2 and is computed as n1/n2

m1/m2
. Here n1is

the number of interactions in the predicted set of interac-
tions that overlap with an interaction in an experimental
data set. n2 is the total number of interactions in the pre-
dicted data. m1is the total number of interactions in the ex-
perimental data set. m2 is the total number of interactions
possible.

Clustering and subnetwork analysis

We applied K-means clustering with 10 multiple restarts to
cluster the enhancers and promoters in the 90% percentile
genome-wide network. We used the Euclidean distance be-
tween the feature vectors for an enhancer or promoter for
clustering. We next assigned the pattern of chromatin mod-
ifications, architectural proteins, DNase I and DNA bind-
ing proteins observed in a cluster to a cluster ID from 1 to
5. We compared these patterns across cell lines manually to
uniformly assign the same ID for a pattern across cell lines.
Thus cluster i in one cell line would have as close as possi-
ble a pattern as cluster i in another cell line. We repeated the
procedure for both the enhancer and promoter clusters.

To test whether enhancer cluster i (ECi) interacted signif-
icantly with a promoter cluster (PCj), we used a Hypergeo-
metric test of enrichment and a fold-enrichment. Let the to-
tal number of enhancer-promoter interactions be the back-
ground T. We defined n to be the total number of interac-
tions associated with PCj, and m to be the total number of
interactions leaving from ECi and p to be the number inter-
actions from ECi to PCj. We ask using the Hypergeometric
test the probability of observing p or more interactions of

n interactions to come from ECi given that there are m in-
teractions in all. Fold enrichment is calculated as p

n /m
T . We

observed a fold enrichment that was slightly greater than 1
to be highly significant, and, therefore used fold enrichment
as our measure of comparison.

To identify subnetworks we performed a connected com-
ponents analysis on the network of enhancer-promoter
interactions. To examine whether the promoter clusters
and these subnetworks are associated with biological func-
tions we tested them for enrichment based on the Hy-
pergeometric test (Benjamini Hochberg corrected P-value
<0.05). We tested each set of genes (either from a subnet-
work or promoter cluster) for enrichment of curated gene
sets from Gene Ontology, MSigDB curated pathways (45),
which includes KEGG, REACTOME and BIOCARTA,
and MSigDB motifs.

Implementation and availability

Feature set generation was done using a custom C++
program. Regularized linear and logistic regression and
Random Forests were applied using the MATLAB statis-
tics toolbox. Multi-task Group Lasso was performed us-
ing the SLEP learning package (http://yelab.net/software/
SLEP/). C++ program for feature set generation and
MATLAB scripts used to train the Random forests
on 5C and Hi-C and to apply RIPPLE on new en-
hancer promoter pairs are available at our supplemental
website http://pages.discovery.wisc.edu/∼sroy/ripple/index.
html. The code is also available at https://bitbucket.org/
roygroup/ripple/downloads. RIPPLE classifier predicts the
probability whether an enhancer interacts with a pro-
moter. The higher the probability the more likely is an en-
hancer to interact with the promoter. Predicted genome-
wide interactions with their probabilities for each of the
five cell lines studied in this work are available online at
our supplemental website http://pages.discovery.wisc.edu/∼
sroy/ripple/index.html. These interactions can be down-
loaded as tab-delimited files as well as queried using a re-
gion or gene of interest.

RESULTS

Accurate prediction of enhancer-promoter interactions re-
quire a combination of histone marks, CTCF, cohesin and a
general transcription factor

To predict new enhancer-promoter interactions for previ-
ously unstudied genomic loci and cell types and to system-
atically identify important determinants of long-range dis-
tal regulatory interactions, we developed RIPPLE. RIPPLE
uses a Random Forests (RF) classification algorithm as its
predictive model, which performs significantly better than
linear or logistic regression-based algorithms (Figure 2A).
RIPPLE is trained on features derived from 11 data sets
that we identified by refining the features obtained from
two complementary feature selection approaches, namely,
Multi-task Group Lasso and RF feature importance (Ma-
terials and Methods). These data sets include architectural
proteins (CTCF), cohesin (RAD21), activating marks of
transcription (H3K4me2, H3K27ac, H3K9ac), marks asso-
ciated with active gene bodies and elongation (H3K36me3,

http://yelab.net/software/SLEP/
http://pages.discovery.wisc.edu/~sroy/ripple/index.html
https://bitbucket.org/roygroup/ripple/downloads
http://pages.discovery.wisc.edu/~sroy/ripple/index.html
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H4K20me1), repressive mark (H3K27me3), open chro-
matin (DNase I), a general transcription factor (TBP) and
gene expression level. The Multi-task Group Lasso method
identified 13 data sets as important for enhancer-promoter
interaction prediction: CTCF, SMC3, RAD21, DNase I,
expression, H3K27ac, H3K27me3, H3K36me3, H3K4me2,
H3K4me3, H3K79me2, H3K9ac, RNA PolII and RAD21
(Figure 2B). The features selected by Multi-task Group
Lasso were almost a complete subset of features selected
by Random Forests, with the exception of RNA PolII (Fig-
ure 2B). Using Random Forest feature importance measure,
we additionally found H4K20me1, and general transcrip-
tion factors such as USF2, TBP, CMYC and JUND. An
RF classifier trained on the 13 Group Lasso selected fea-
tures (Figure 2C, GLASSO), gave a reduced performance
compared to our full set of 23 data sets (Figure 2C, ALL
Common, one-sided T-test <0.05), whereas, an RF clas-
sifier trained on the 17 data sets selected using the RF-
feature selection had no significant difference (one-sided T-
test <0.18) suggesting the six data sets that were not se-
lected by RF as important are not essential for predicting
enhancer-promoter interactions (Figure 2C). An RF classi-
fier trained on the 11 data sets feature set has very compa-
rable performance (Figure 2C, Best subset), as the classifier
trained on the full set of 23 data sets (Figure 2C, ALL col-
umn), demonstrating that these data sets specify the mini-
mal data sets needed for accurate enhancer-promoter inter-
action predictions.

A common way to link enhancers to promoters is to use
canonical enhancer (e.g. H3K27ac, H3K4me1) and pro-
moter marks (H3K4me3) together with mRNA levels of a
candidate gene (30). We asked if the data sets selected by
RIPPLE had greater accuracy in addition to what would
be obtained using H3K27ac (our 23 input data sets did
not include H3K4me1) at the enhancer and H3K4me3 and
gene expression levels at the promoters. We found that these
three data sets were very informative by themselves alone
but they had much lower performance than the data sets
used by RIPPLE (Figure 2C, orange bar). These results sug-
gest that the additional data sets used in RIPPLE that in-
clude architectural proteins, chromatin marks and a general
transcription factor (such as TBP) are important for accu-
rately predicting enhancer-promoter interactions and can
improve performance over known marks associated with
enhancer-promoter interactions.

RIPPLE identifies both shared and cell line-specific interac-
tions and additionally discriminates between region and inter-
action specificity

Having determined the key data sets needed for building
RIPPLE, we next turned our attention to cell line-specific
interactions. For two cell lines A and B, an interaction is said
to be specific to cell line A if the interaction is detected only
in cell line A, but not in B. There are four possible states for
an interaction seen in cell line A and not in B (Figure 3A): (i)
Both OFF: both enhancer and promoter are OFF/inactive
in cell line B (we define ON and OFF below), (ii) enhancer-
OFF promoter-ON: the enhancer is OFF in cell line B, but
the promoter is ON, (iii) enhancer-ON promoter-OFF: the
enhancer is ON, but the promoter is OFF in cell line B, (iv)

BOTH ON: both enhancer and promoter are ON in cell
line B, but the regions do not interact in cell line B. We de-
fined an ON enhancer for a particular cell line to be that
which had a peak for one or more of these signals in that cell
line: DNase I, H3K27ac, H3K9ac. These three signals are
commonly used to define enhancers or enhancer-like regu-
latory elements (29,46). We defined an ON promoter if the
promoter had H3K4me3 (a promoter specific mark for ac-
tive transcription, (46)) or DNase I, but not H3K27me3, a
mark associated with repressive action on gene expression.
We first obtained the distribution of different types of inter-
actions for each pair of cell lines in the 5C data (Figure 3B).
We found that the majority of cell line-specific interactions
are enhancer-OFF promoter-ON, or of type BOTH ON,
where both regions are ON but they do not interact. While
the significant contribution of OFF enhancers to cell line-
specific interactions is expected, the non-trivial fraction of
cell-line specific interactions despite an enhancer being ON
was surprising.

We next examined these configurations among the pre-
dicted interactions. We defined a predicted set of interac-
tions for these 5C regions using a classification probability
of interaction >0.5 (determined by a significant difference
in contact counts between predicted interactions and non-
interactions, Supplementary Figure S2B). We categorized
predicted interactions from each pair of cell lines into the
five categories in Figure 3A and found a similar distribution
of shared and different types of cell line-specific interactions
as in the 5C case with the Both-ON and Enhancer-OFF
categories constituting the majority of the cell-line specific
interactions (Figure 3C). Finally, we compared the catego-
rizations of the RIPPLE predicted and true 5C interactions
for each pair of cell lines using F-score, defined as the har-
monic mean of precision and recall of the predicted and
5C-measured interactions in each category (Figure 3D). We
found that RIPPLE is able to accurately predict interactions
in shared and the two largest categories of cell line- spe-
cific interactions for all pairs of cell-lines compared, with
an F-score of 0.6–0.9 for the SHARED interactions and
an F-score of 0.69–0.72 for Enhancer OFF categories. RIP-
PLE was also able to correctly infer predictions for most
pairs of cell lines in the Promoter OFF and Both OFF cat-
egories. This suggest that RIPPLE can accurately capture
both shared as well as cell line-specific interactions.

RIPPLE approach generalizes to both Hi-C and 5C technolo-
gies

To examine whether our enhancer-promoter interaction
prediction strategy and the data sets selected using 5C data
generalize to interactions detected using other 3C experi-
mental techniques, we applied our RIPPLE approach to
high-resolution Hi-C data recently made available for two
cell lines Gm12878 and K562 (13). These Hi-C data were se-
quenced sufficiently deeply to be able to detect interactions
at resolution comparable to the 5C platform.

First, we performed 10-fold cross-validation within each
cell line (Gm12878 and K562). Based on AUPR from 10-
fold cross-validation within the K562 (0.776) and Gm12878
(0.845) cell lines, the RIPPLE features perform well on
the Hi-C data (PR curves shown in Supplementary Figure
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Figure 3. Characterization of different types of cell line-specific interactions. (A) Shown are the different statuses of an interaction comparing a pair of cell
lines, (A) and (B). These statuses can be, ‘shared’, or cell-line specific. Cell-line specific interactions in turn can be grouped into ‘Both OFF’, ‘Enhancer
OFF’, ‘Promoter ON’ and ‘Both ON’. (B) Shown are the relative proportions of the different interaction types in the 5C data when comparing each cell line
to one of the other three cell lines. (C) Shown are the relative proportions of the different interaction types in the RIPPLE predicted interaction networks.
The relative proportions of different types of interactions are similar between RIPPLE and 5C. (D) Shown is the agreement (as measured by F-score values)
of interactions in different categories predicted based on RIPPLE and based on 5C. The higher the F-score the greater the agreement.
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S5A). These values are comparable to what we obtained on
the 5C data suggesting our prediction framework is applica-
ble to Hi-C interactions as well. Next, we measured the abil-
ity of RIPPLE to generalize between the Hi-C and 5C plat-
form on the same cell line. For each of K562 and Gm12878,
we trained a Random Forests classifier on all data from one
platform and tested on the other. The classifiers perform
comparably in both directions on both cell lines (AUPRs:
K562 5C to Hi-C 0.643, Hi-C to 5C 0.631; Gm12878 5C
to Hi-C 0.687, Hi-C to 5C 0.614, Supplementary Figure
S5B). This suggests that the features used in RIPPLE and
our general predictive learning approach can generalize be-
tween different 3C platforms.

Predicting enhancer-promoter interactions in new cell lines:
Different classifiers were able to predict interactions in a new
cell line to different extents

Our analysis so far demonstrates the feasibility of predict-
ing new regulatory interactions among enhancers and pro-
moters in cell lines with available 5C data. We next asked
if we could extend this approach to predict interactions in
new cell lines where such 5C data does not exist. This would
require us to train a classifier on one cell line and predict in-
teractions in a different cell line. To address this we applied
the RIPPLE classifier trained on one cell line to enhancer-
promoter pairs from a different test cell line. We evaluated
the quality of the predictions in the test cell line by com-
paring to the AUPR obtained under cross-validation when
trained on the test cell line (Figure 4, Same-cell line CV).
We found that we were able to recover a significant fraction
on the performance for some cross-cell line comparisons.
For example, a classifier trained on the Hela cell line had an
AUPR of 0.68 when applied to the K562 cell line (which
was 89% of the AUPR obtained based on 10-fold cross-
validation (CV) on the K562 cell line). Similarly, a classifier
trained on the K562 cell line was able to accurately predict
interactions from the Gm12878 cell line (87% of the AUPR
obtained on Gm12878 CV classifier). However, there was
considerable variation in the ability to predict interactions
from a cell line (e.g. H1hesc interactions were hard to pre-
dict from either Hela and Gm12878). The cross-cell line per-
formance behavior is recapitulated in the Hi-C data as well.
In particular, we find that a classifier trained on Gm12878
can predict K562 interactions (AUPR 0.725), and a clas-
sifier trained on K562 can predict Gm12878 interactions
(AUPR 0.816, Supplementary Figure S5C). Although in
our panel of four cell lines, we found that K562 was the best
predictor of different cell lines, this is likely because it has
the largest training data set for both Hi-C and 5C. While
one would expect a cell line to better predict interactions
for a second cell line with similar transcriptional and epige-
netic properties, the four cell lines used in this study are too
few to determine this property reliably. Hence, determining
the specific cell line that can be used to predict interactions
in a new cell line is not straightforward.

One approach to addressing the issue of determining
which classifier should be used for a new cell line is to com-
bine predictions from all available cell lines using an ensem-
ble approach. Ensembles are less prone to over fitting and
are commonly used for different classification approaches.

To this end we examined the quality of predictions for a
new cell line if predictions from all other cell line classi-
fiers would be used. We combined predictions from different
cell lines using three approaches (Materials and Methods),
(i) a commonly used average of percentile ranks of predic-
tions (Figure 4, Percentile), (ii) a recent approach, Spectral
Meta learner (SML) proposed by Parisi et al. (41) (Figure 4,
SML), which uses the eigen vector of the covariance ma-
trix of prediction probabilities to obtain a weighted sum
of predictions from the individual classifier predictions, (iii)
a generic classifier that combines examples from all other
cell lines to predict interactions in a new cell line (Figure 4,
SimpleMerge, e.g. for H1hesc, we used a classifier trained
on data pooled from K562, Gm12878 and Hela). We found
that all ensemble approaches performed comparably (Fig-
ure 4, cyan bars), but were at par with the best perform-
ing cross-cell line classifier and better than the worst per-
forming cross-cell line classifier. This suggests that the en-
semble represents a safe choice for a new cell line. We used
the percentile-based approach to build our ensemble for our
subsequent experiments as it is easy to extend to new cell
lines and was better than the SML ensemble on genome-
wide interactions (Supplementary Figure S6). In a genome-
wide setting, an ensemble based classifier is better at recov-
ering interactions experimentally measured by ChIA-PET
and high resolution Hi-C compared to a CV classifier for
that cell line as we describe next.

RIPPLE inferred genome-wide maps are corroborated with
experimental data sets

We applied RIPPLE trained on each of the four cell lines to
generate genome-wide predictions of enhancers from EN-
CODE (42) and promoters (defined by ±2500bp of the TSS)
for five cell lines. Our cell lines included the four cell lines
with 5C data, as well as a new cell line, HepG2, that was not
used for any of our previous analysis. We used interactions
at an average percentile rank >0.9 to define cell-line specific
genome-wide maps, which included between 11 696 and 32
308 interactions for each cell line, providing more than 30-
fold increase in the number of interactions than detected by
5C.

To assess the quality of these genome-wide maps as well
as to compare to existing computationally generated inter-
action maps from two recent methods, IM-PET (30) and
PRESTIGE (9), we compared them to available experi-
mental data sets including chromatin capture conformation
(Hi-C) and ChIA-PET assays. First, we asked whether the
predicted interactions exhibit a significantly high contact
count as measured in Hi-C assays for the H1hesc cell line
(43). We found that our high confidence interactions (in the
90% percentile) predicted from RIPPLE have significantly
higher contact counts compared to low confidence interac-
tions (percentile rank <10%, Figure 5A). Importantly we
find that the difference in the high and low confidence in-
teractions in the ensemble based approach is more signifi-
cant (Paired KS test P-value <6E-4) than the interactions
predicted by the classified trained only on H1hesc (KS test
P-value <0.02) demonstrating the advantage of an ensem-
ble based approach. Predictions from IM-PET have a sig-
nificantly lower contact counts than RIPPLE (KS test P-
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Figure 4. Predicting interactions in new cell lines. Ability of RIPPLE to recover interactions in a new cell line on which the classifier is not trained on. The
red bar corresponds to the best case performance, i.e. when using cross-validation in the same cell line. The red bars correspond to the AUPRs when using a
classifier from a different cell line. The cyan bars correspond to the ensemble based predictions: Percentile, SML (Spectral Meta Learner), SimpleMerge are
the three types of ensemble approaches we used to pool information from different cell lines to predict interactions in a new cell line not used for training.

val <0.0013). The margin of contact count difference be-
tween PRESTIGE and RIPPLE is not significant (KS test
P-value<0.15). RIPPLE detected interactions at different
distance ranges whereas IM-PET and PRESTIGE had a
tendency to detect interactions that were short range (<200
kb, Figure 5B).

We next compared our genome-wide enhancer promoter
interactions with those that have been experimentally de-
termined based on ChIA-PET experiments or using high-
resolution Hi-C experiment. We had 10 such data sets: high-
resolution Hi-C interactions from Jin et al. (14), two ChIA-
PET data sets, one for PolII and another for CTCF in the
K562 cell line (17), and remaining seven ChIA-PET data
sets from Heidari et al. (18) which included RNA PolII,
CTCF, RAD21 and multiple chromatin marks in K562 and
Gm12878 cell lines (Figure 5C) . Our metric for evaluating
these genome-wide maps is fold enrichment, which assesses
the fraction of interactions predicted by RIPPLE (or any of
the other two computational methods) that overlapped with
experimentally detected measurements, compared to the
number of interactions expected by random chance (Mate-
rials and Methods). We found that RIPPLE-derived inter-
actions were significantly enriched in the ChIA-PET data
sets and this enrichment was typically higher than by the
other methods. The relatively lower enrichment in the high-
resolution Hi-C data sets, compared to other cell lines, is
likely due to the fact these these interactions were detected
in the IMR90 cell line. Furthermore the percentile ensemble
was much better than the cell-line specific classifier (Supple-
mentary Figure S6). To gain an overall assessment of the
methods, we asked for each of the data sets, which method
gave the best enrichment. Taken over all data sets, we found
that RIPPLE’s interactions were best enriched in the largest
number of data sets across all cell lines (Figure 5D).

Properties of genome-wide cell line-specific enhancer-
promoter interactions

With the genome-wide interactions in hand, we next ex-
amined them for various regulatory and network topologi-

cal properties. Namely, we examined: (i) enrichment of reg-
ulatory signals on enhancers and promoters in the high
confidence networks, (ii) enhancer-promoter subnetworks,
(iii) the extent of cell line-specificity in our genome-wide
maps and possible regulatory mechanisms by which cell
line-specificity of interactions is established.

Enhancers and promoters in genome-wide maps are enriched
for known and novel regulatory determinants of long-range
interactions. The high confidence interactions analyzed in
Figure 5 connected between 6105 and 11 313 enhancers re-
gions to 2275 and 6509 genes (Table 2). We asked if the
enhancers and promoters in the high confidence network
are associated with specific regulatory signals. We find that
the enhancers are highly enriched for the three architectural
proteins, CTCF, RAD21 and SMC3 (Figure 6A). CTCF
and RAD21 enrichments are consistent with the impor-
tance of these features in our predictive framework. SMC3
is involved in structural maintenance of chromosomes and
is part of the cohesin complex, which includes RAD21.
Both CTCF and cohesin (RAD21 and SMC3) are known
to be important for maintaining chromosomal loops that
can link enhancers to their target genes (22). An example
of interactions mediated via the presence of RAD21 and
CTCF is shown in Figure 6B. In addition to these archi-
tectural proteins, the enhancers were enriched for activat-
ing marks of transcription such as H3K4me2, H3K4me3,
H3K9ac and H3K27ac. The enrichment of architectural
proteins and activating marks in our interacting enhancers
and promoters provide external support for our predic-
tions and suggest that these enhancers are likely regulat-
ing their predicted target genes. We also found enrichment
of RNA PolII and general transcription factors, namely
CMYC, MAX and TAF (TBP associated factors) at the en-
hancers. RNA PolII is a hallmark of transcription facto-
ries, defined as large nuclear compartments in which mul-
tiple genes are coordinately transcribed, and are impor-
tant components of the three-dimensional organization of
the genome (47). Among the different transcription factors,
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Figure 5. Evaluation of genome-wide enhancer-promoter interaction maps. (A) Shown is the distribution of normalized Hi-C contact count frequencies in
genome-wide predictions for the H1hesc cell line. H1hesc-top: the interactions in the 90% confidence of the classifier trained using only H1hesc 5C data,
H1hesc-bottom: interactions predicted at 10% confidence by the classifier trained only on the H1hesc data, percentile-top and percentile-bottom: Same as
in H1hesc-top and bottom but using predictions from the percentile ensemble. PRESTIGE: interactions obtained from the PRESTIGE method, IMPET:
interactions obtained from the IM-PET method. (B) Distribution of the number of interactions as a function of genomic distance using H1hesc-only
classifier (RIPPLE H1hesc CV), Ensemble (RIPPLE H1hesc Ensemble), PRESTIGE and IMPET. (C) Fold enrichment of predicted interactions from
RIPPLE, IMPET and PRESTIGE in experimental data sets of long-range interactions generated using ChIA-PET or high-resolution Hi-C. Each barplot
shows a fold-enrichment measure of the number of recovered interactions of a particular type in the high confidence set of interactions. The RNA PolII 1
data set is from Li et al., whereas the RNA POLII 2 data set is from Heidari et al. All data sets other than Hires Hi-C are ChIA-PET data sets. (D)
Shown is the number of data sets for different cell lines (column) in which a method (row) was the best (highest fold enrichment) among the three methods
compared. The greater the number the more often was a method ranked the best.
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Figure 6. Properties of genome-wide enhancer-promoter interactions. (A) Enrichment of various individual genomic signals in the enhancers and promoters
in the high confidence networks. The stronger the intensity of blue the better the enrichment. (B) Example of an enhancer from the K562 cell line and
candidate promoters that are in its 1 MB radius. The promoters are ranked by RIPPLE confidence (Conf; min 0.5). The E and P features are binary
(0: white, 1: blue), while the Correlation and Expression (Exp) features are continuous. (C) Clusters of enhancers and promoters in the five cell lines. (i)
Enhancer clusters, each cluster is numbered 1–5, and the number of enhancers are shown on the side. (ii) Promoter clusters, numbered 1–5, with the number
of promoters in each cluster shown on the side. Blue indicates the presence of a feature and white indicates absence. (iii) Fold enrichment of interactions
between an enhancer cluster (row) to a promoter cluster (column) compared to the expected number of interactions between these clusters. The more red
the intensity the greater is the tendency for enhancers from one cluster to interact with promoters from another cluster. (D) Enhancer-promoter interaction
landscape for Chromosome 19 in K562. (i) The enhancer-promoter interactions for subnetworks extracted from a connected components analysis. The
blow-up shows an example set of promoters regulated by multiple enhancers and enriched for transcriptional as well as immune response processes. (ii–iv),
Distribution of enhancer-promoter interactions in different types of subnetworks. The majority of the interactions are in the multi-input multi-output
subnetworks. Subnetworks are enriched in multiple GO processes, MSigDB gene sets and motifs. (E) Proportion of shared and different types of cell line-
specific interactions. The same color convention is used as in Figure 3C. Comparison of regulatory signals in enhancers that interact in the K562 cell line
but not in Hela (top), and similarly interact in K562 but not in Gm12878 (bottom). The blue color represents the presence of a particular signal in that
region. The rows are sorted based on the entries in the first column (CTCF) followed by the second columns, etc (using MATLAB’s sortrows function).
Rows of each column maintain the ordering of the preceding columns.
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the enrichment of CMYC was most striking, coming close
to CTCF and cohesin. CMYC is a helix-loop-helix zipper
transcription factor and an oncogene with roles in diverse
processes including proliferation, cell cycle and apoptosis
(48). CMYC is considered an architectural protein that dis-
rupts chromatin organization (49), and may influence chro-
matin state through up-regulation of a histone acetyltrans-
ferase (48,49). Interestingly CMYC’s enrichment was weak-
est in the H1hesc cell line, but similar across the differen-
tiated cell lines implicating CMYC in establishing differ-
ences in chromosome organization between differentiated
and undifferentiated cell types. The MAX transcription fac-
tor forms a heterodimer with CMYC to drive gene expres-
sion of specific gene regulatory modules (50) and could also
be associated with the formation of transcription factories.
Finally, TAF has been shown to co-bind with CTCF and co-
hesin components to establish chromosomal loops during
embryonic stem cell differentiation (51). Taken together our
enrichment results identify known regulatory factors such
as CTCF and cohesin (RAD21, SMC3), and predict candi-
date general transcription factors (e.g. CMYC) that might
be important for establishing 3D genome organization, es-
pecially in differentiated cells.

Combinations of architectural proteins and chromatin marks
discriminates between different classes of interacting en-
hancers. Given that the enhancers and promoters in our
high confidence interactions are enriched for individual reg-
ulatory signals, we asked if combinations of different regu-
latory signals can define different classes of interacting en-
hancers and promoters. We applied K-means clustering to
these enhancers and promoters to identify five enhancer and
five promoter clusters in each cell line. We mapped the ob-
served pattern of signals in a cluster to a cluster ID from 1
to 5 such that the same cluster ID would represent the same
pattern across cell lines as much as possible (Table 3). Thus
cluster i in one cell line would have as close as possible a
pattern as cluster i in another cell line. The majority of the
patterns in a cluster were observed in other cell lines (Table
3). We repeated the procedure for both the enhancer and
promoter clusters.

The enhancer clusters (ECs), were primarily defined by
combinations of CTCF, DNase I, H3K27ac, H3K9ac and
RAD21 (Figure 6C, (i)). CTCF was present in all clusters in
all cell lines except for EC5, which represents a unique set of
enhancers that are not dependent upon CTCF for interac-
tions. EC3 in H1hesc represented another set of enhancers
being the only group that is associated with H3K27me3,
a mark associated with repressed expression. The pro-
moter clusters (PCs) were defined additionally by the pres-
ence or absence of H3K36me3, TBP and H4K20me1 (Fig-
ure 6C, (ii)). PC3 of K562, Gm12878 and Hela was asso-
ciated with H3K36me3. H4K20me1 genome-wide showed
a weaker association with specific clusters, most notably
with PC3 of Hela. These results suggest that H3K36me3
and H4K20me1 tend to be important features associated
with promoters and likely mark active genes for transcrip-
tion. This is consistent with the roles of these marks in tran-
scriptional elongation (H3K36me3). H4K20me1 has been
shown to be involved in both gene activation and repres-
sion, but is promoter proximal (52).

We next asked whether the enhancers in each cluster had
a tendency to interact with promoters in another cluster
(Figure 6C, (iii)). In all but the H1hesc cell line, we found
that enhancers from EC4 interacted with genes in PC2 and
were associated with amine metabolism. We also found that
enhancers from EC1 significantly interacted with promot-
ers from PC4, and genes in PC4 are associated with RNA
metabolism and transcriptional processes (Supplementary
Figure S7). Taken together these clusters specify, at a coarse
level, different types enhancers and promoters, each type
defined by combinations of chromatin marks and regula-
tory proteins associated with them, and enhancers of some
types exhibited a preference to interact with promoters of
another type. Such types and interaction preferences were
observed across multiple cell lines suggesting these are gen-
eral properties shared across multiple cell lines.

Enhancer-promoter interactions are organized into subnet-
works that are enriched in distinct biological processes. To
gain a more fine-grained understanding of the interaction
patterns, we computed for every enhancer region the num-
ber of genes it is predicted to connect (out degree), and for
every gene, the number of enhancers that are predicted to
be connected to it (in degree). On average an enhancer was
predicted to regulate 3–4 target genes, while a gene was
predicted to be regulated by 10–21 enhancers suggesting
that enhancers and promoters form combinatorial interac-
tion patterns with sets of enhancers regulating sets of pro-
moters (Figure 6D). To determine the connectivity patterns
among enhancers and promoters, we identified connected
components in the interaction network of enhancers and
promoters. Enhancers and promoters can interact in the
four possible ways: (i) Single interactions (Single) involving
an interaction between one enhancer and one promoter, (ii)
Multi-input (MI) components, involving a promoter pre-
dicted to be regulated by multiple enhancers, (iii) Multi-
output (MO) components, involving an enhancer regulat-
ing multiple genes, (iv) Multi-input Multi-output (MIMO)
components, involving multiple enhancers predicted to reg-
ulate multiple genes. We found that most of the interactions
belonged to connected components of the MIMO class
(Figure 6D (ii)), and accounted for 85–92% of the genes.
Furthermore, several of the MIMO and MO graph com-
ponents included large numbers of genes (e.g. >50 genes).
Such connected components represent potentially coordi-
nately regulated sets of genes. Of the subnetworks that in-
cluded five or more genes, 32–43% were enriched in either
a Gene Ontology process, a regulatory element from the
MSigDB database, or a KEGG or REACTOME pathway
(Figure 6D (iii), Supplementary Figure S8). For example,
in K562, we found a large connected component on chro-
mosome 19, composed of 145 genes (Figure 6D (i)) that
was enriched in transcriptional processes (DNA-dependent
transcription) as well as innate immunity (regulation of
leukocyte/lymphocyte medicated immunity and cytotoxic-
ity). The processes enriched in these subnetworks included
both shared and cell line-specific processes. For example,
we found several subnetworks that were associated with
house keeping functions such as RNA metabolism, DNA-
dependent transcription to be enriched in all cell lines, while
lipid biosynthesis was unique to HepG2, and cell morpho-
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Table 2. Number of enhancer-promoter interactions in the high confidence (90% percentile) genome-wide networks, as well as the total number of input
enhancers and promoters available in each cell line.

Cell line EP Interactions Enhancers (E) Promoters (P) Total Enhancers Total Promoters

K562 28 428 7333 4020 118 866 32 349
Hela 25 283 7466 3489 110 415 30 338
Gm12878 16 343 5425 2886 104 159 28 001
H1hesc 11 696 4346 2546 81 618 26 233
HepG2 32 308 9506 3995 115 128 30 277

Table 3. Different clusters of enhancers and promoters in high confidence (90% percentile) interaction networks

ClusterID Regulatory Signals Comments

Enhancers
1 CTCF, DNase I, H3K4me2, RAD21 Weak in K562
2 CTCF, H3K27ac, H3K4me2, H3K9ac, RAD21 Weak in Gm12878
3 CTCF, DNase I, H3K4me2, H3K9ac, RAD21 H3K9ac missing in H1hesc
4 CTCF, DNase I, H3K4me2, H3K9ac RAD21 present, H3K9ac missing in H1hesc, HepG2
5 DNase I, H3K27ac, H3K9ac, H3K4me2
Promoters
1 CTCF, DNase I, H3K27ac, H3K4me2, H3K9ac,

RAD21, TBP
No TBP in Hela, and weak in Gm12878

2 DNase I, H3K27ac, H3K4me2, H3K9ac, TBP
3 CTCF, DNase I, H3K27ac, H3K36me3, H3K4me2,

RAD21
Has TBP in K562

4 CTCF, DNase I, RAD21 DNase I weakly present in K562
5 CTCF, DNase I, H3K4me2, RAD21 RAD21 absent in K562, TBP, H3K27ac, H3K9ac

present in K562 and Hela

genesis to H1hesc. The enrichment of distinct biological
processes, cis-regulatory elements and curated pathways in
these gene sets are indicative of coordinated regulatory units
and reveal a complex network of interaction patterns that
is organized into smaller sub-units of multi-input multi-
output components.

Combination of architectural protein binding and chromatin
state is important for an enhancer to interact. We classi-
fied the high confidence interactions between any pair of
cell lines as shared or cell-line specific, where an interaction
was called specific to cell line A if its probability of interac-
tion was in the 90% percentile in cell line A, but below the
80% percentile in cell line B. We classified cell-line specific
interactions into the four categories described in Figure 3A
using the same criteria of ON as defined before: (i) Both
OFF, (ii) enhancer-OFF promoter-ON, (iii) enhancer-ON
promoter-OFF, (iv) Both-ON. As in the 5C case, we found
that the Both-ON and enhancer-OFF categories were the
two dominating categories of cell-line specific interactions
(Figure 6E). We investigated the enhancers of the Both-ON
cell line-specific interactions (interaction observed in cell
line A but not in B) to determine whether such enhancers
have lost some critical regulatory signals that make it con-
ducive for a long range interaction. Specifically for every
pair of cell lines we obtained those enhancers that were ON
in both cell lines, but interacted in one cell line but not in
the other. Considering K562 as an example of cell line A
and Hela as an example of cell line B, we found that such
enhancers tend to be associated with CTCF, and some times
with H3K27ac if not CTCF, along with DNase I, in K562,
while in Hela they are depleted for at least one of the im-
portant signals, most notably CTCF (Figure 6F). Interest-
ing, in both cell lines enhancers remained associated with
DNase I suggesting that the individual indicators of active

chromatin are not sufficient for an enhancer to interact with
its target gene. We observe a similar trend between K562
and Gm12878, and more broadly across other pairs of cell
lines (Supplementary Figure S9), where the enhancers that
do not interact seem to have lost either CTCF or H3K27ac.
To summarize, our analysis of different types of cell line-
specific interactions exhibit similar distributions of different
types of cell line-specific interactions as in 5C, and further
suggests that a combination of architectural protein bind-
ing and chromatin state is important for establishing an en-
hancer’s propensity to interact with target genes.

DISCUSSION

A central challenge in mammalian tissue-specific gene ex-
pression patterns is to understand the mechanisms by which
enhancers interact and regulate their target genes that are
not necessarily close in linear space (4,53). While meth-
ods based on chromosome capture conformation are ma-
turing to detect interactions among two DNA sequence el-
ements (54), identifying cell line-specific on a genome-scale
and examining the role of different one-dimensional regula-
tory signals for establishing these interactions is still a chal-
lenge. To address this challenge, we have developed RIP-
PLE, a computational approach to predict cell line-specific
long range interactions between enhancers and promoters
on a genome-wide scale in multiple cell lines, and analyzed
these interactions to identify both known and novel deter-
minants of long-range gene regulation.

An important aspect of our approach is that it started
with a large collection of regulatory genomics data sets
and used a predictive framework to identify important data
sets for computationally predicting enhancer-promoter in-
teractions. Our predictive learning framework combined
the strengths of two machine learning approaches: the pre-
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dictive power of Random Forests and structured sparsity
based multi-task learning to determine important data sets
for multiple cell lines. Our predictive framework enabled
us to study known players of long-range gene regulation
(e.g. CTCF and cohesin) together with additional compo-
nents of the transcription machinery (e.g. chromatin marks,
general transcription factors), many of which have not
been thoroughly characterized in the context of enhancer-
promoter interactions. This was important to study the con-
tribution of one-dimensional signals to three-dimensional
organization of the genome, in which enhancer-promoter
interactions are critically important.

Our feature analysis identified that architectural proteins,
activating histone modification marks and a general tran-
scription factor (e.g. TBP) are important for establishing
these interactions. The importance of a general transcrip-
tion factor in establishing interactions was a surprising dis-
covery, but is consistent with the interplay of CTCF and co-
hesin components with transcription factors to trigger cell-
type specific gene expression programs (51). The presence of
RNA PolII, CMYC and TAF1 can also be due to the for-
mation of transcription factories, another important mech-
anism of long-range gene regulation (47). We used TBP in
our predictions, however, we believe that the other TFs such
as JUND, CMYC or USF1 could as well be used.

Among the marks that we found as important for long
range regulatory interactions were known marks such
as H3K9ac, H3K7ac and H3K4me2, as well as marks
that have thus far not been associated with enhancer-
promoter interactions, namely H3K36me3 and H4K20me1.
H4K20me1 has been associated with gene repression as
well as activation (52). More recent genome-wide ChIP-seq
studies have shown that the H4K20me1 is associated with
active transcription of genes. H3K36me3 is known to be as-
sociated with transcriptional elongation canonically, how-
ever recent studies suggest that H3K36me3 is found on ac-
tive enhancers indicative of a transcriptionally active chro-
matin state (55). H3K36me3 together with other marks was
also shown to be enriched in regions that interact with pro-
moter regions as detected using Hi-C capture studies (15).
The addition of H3K27me3 was surprising, however, it was
voted by both the Random Forests and Group Lasso and
is likely associated with poised enhancers (46). H3K27me3
was also observed to have enrichment in H1hesc, which is
consistent with the occurrence of such enhancers typically
in ES cells (46). Future investigation of the impact of per-
turbing such marks on the long-range interaction landscape
will be informative for gaining a deeper understanding of
the principles governing such interactions.

Our cross-cell line prediction shows that a classifier
trained on one cell line can predict interactions in other
cell lines. However the accuracy of classifiers can vary from
one test cell line to another, making the choice of the classi-
fier non-trivial. Ensemble approaches that aggregate predic-
tions from multiple classifiers are a natural way to approach
this problem. We examined three different ways of combin-
ing predictions from multiple cell lines and found that the
overall performance of different ensembles was similar. We
used the percentile rankings of predictions which has the
advantage of being easily extensible to classifiers trained on
more cell lines. While the ensemble predictor was close to

the best performing cell line more systematic approaches
to combine shared information between different cell lines,
(e.g. by considering different weighting strategies of differ-
ent cell lines) will be an important direction of future work.

Our analysis of both small-scale 5C and our genome-
wide predictions showed that cell line-specific interactions
are of two major categories. In one, cell line specificity of in-
teractions is mediated by the loss of activity of an enhancer,
and in another, cell line-specificity of interactions can occur
even if the enhancer is active (as determined by the pres-
ence of DNase I, H3K27ac or H3K9ac mark). We found
such enhancers tend to have a subset of the regulatory sig-
nals needed to establish an interaction. For an enhancer to
interact it must have a combination of activating marks, and
binding by one or both of the architectural proteins. CTCF
was by far the most important determinant of these cell line-
specific interactions.

We analyzed our global maps to characterize the net-
work properties of interactions among enhancers and pro-
moters. At a coarse scale we identified different classes of
interacting enhancers and promoters, that were discrimi-
nated by the presence of different combinations of chro-
matin marks and architectural proteins. Promoter clusters
were additionally associated with elongation specific marks
namely H3K36me3 and H4K20me1. A finer scale analy-
sis identified connected subnetworks of enhancers and pro-
moters forming multi-input multi-output subnetworks that
were significantly enriched for Gene Ontology biological
processes.

In conclusion, we have developed a systematic framework
to predict interactions between enhancer and promoter re-
gions across multiple cell lines by integrating 3C data sets
with one-dimensional regulatory signals measured in chro-
matin marks and TF ChIP-seq data sets. Our approach
identified that a combination of architectural proteins, tran-
scription factors and histone modifications are needed for
establishing long-range regulation. Our approach can be
easily applied to new cell lines to predict interactions among
new genomic loci in the same cell line, or be used to gen-
eralize to new cell lines where we do not have any train-
ing data. We provide our genome wide interactions as a
web-based resource (http://pages.discovery.wisc.edu/∼sroy/
ripple/queryg.php) that users can query using their regions
of interest. Our associated predictions will serve as a useful
resource to query potential interacting partners for a new
gene or locus of interest and prioritize enhancers for follow
up studies using targeted validation.
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