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Abstract

Aim—The aim of the study was to evaluate the use of global and gene-specific DNA methylation 

changes as potential biomarkers for gallbladder cancer (GBC) in a cohort from Chile.

Material & methods—DNA methylation was analyzed through an ELISA-based technique and 

quantitative methylation-specific PCR.

Results—Global DNA Methylation Index (p = 0.02) and promoter methylation of SSBP2 (p = 

0.01) and ESR1 (p = 0.05) were significantly different in GBC when compared with cholecystitis. 

Receiver curve operator analysis revealed promoter methylation of APC, CDKN2A, ESR1, 

PGP9.5 and SSBP2, together with the Global DNA Methylation Index, had 71% sensitivity, 95% 

specificity, a 0.97 area under the curve and a positive predictive value of 90%.

Conclusion—Global and gene-specific DNA methylation may be useful biomarkers for GBC 

clinical assessment.
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Gallbladder cancer (GBC) is the fifth most common cancer of the GI tract [1] and the most 

prevalent malignancy of the biliary tract [2,3]. GBC has marked regional and ethnic 

variation worldwide, with the highest incidence rates being reported in Chile, Mexico, 

Bolivia, India, Central European countries and among Native Americans in North America 

[3–6]. While in Chile GBC is the leading cause of cancer deaths among women, with a 

mortality rate of 16.2./100,000 [7], in the USA it is a rare neoplasm, where 10,650 new 

cases are expected in 2014 representing 0.7% of all cancer cases [8].

GBC is a highly aggressive malignancy and is usually detected at an advanced unresectable 

stage [9], when the disease has already metastasized. Only 20% of the patients have disease 

confined to the gallbladder at the time of diagnosis [9]. This late detection is associated with 

poor prognosis; the 5-year survival rate is only 10% [9]. Although little is known about 

genetic predisposing factors associated with GBC, a few studies have reported mutations in 

KRAS, TP53, p16/CDKN2A, microsatellite instability, overexpression of COX2, VEGF, 

hTERT and ERBB2 in GBC [10]. Besides the occurrence of genetic alterations, other risk 

factors have been associated with GBC: gallbladder disease (cholecystitis, chronic 

inflammation of the gallbladder, congenital biliary abnormalities and polyps) age, obesity or 

environmental factors such as exposure to carcinogens. However, the etiology of GBC is not 

well understood and the influence of these risk factors for GBC tumorigenesis is not clearly 

established [5,11–12].

There are two carcinogenic pathways known for GBC, the metaplasia–dysplasia–carcinoma 

and the adenoma–carcinoma, arising from two different types of epithelial lesions. The most 

frequent type, the metaplasia–dysplasia–carcinoma seen in most epithelial tumors, is 
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secondary to chronic irritation or inflammation, as a result of gallstones and biliary tract 

infections. The evolution of chronic gallbladder inflammation, or cholecystitis, into 

displasia, carcinoma in situ and progression to invasive carcinoma, tracks at the molecular 

level, with tumor suppressor gene silencing by DNA methylation, together with global and 

gene-specific loss of methylation [7,10]. However, there are only limited studies [13–16] 

related to GBC and its pre-neoplastic lesions’ methylome and methylation alterations.

We conducted a study akin to a Phase I Biomarker Development Trial [17], to identify a 

panel of epigenetic biomarkers that can distinguish cholecystitis from GBC patients. We 

quantified the GBC global methylome with an ELISA-based technique and promoter DNA 

methylation of eight genes that regulate multiple oncogenic pathways with quantitative 

methylation-specific PCR (qMSP) in patients from Chile: 19 GBC cases and seven chronic 

cholecystitis cases, which were used as non-cancer controls for this study. We examined 

gene-specific promoter methylation in a panel of eight tumor suppressor genes (TSG) 

reported to be frequently methylated in various tumor types (APC, CDKN2A, ESR1, MCAM, 

MGMT, PGP9.5, RARβ and SSBP2) [13,18–21]. We hypothesized that a subset of these 

eight genes, together with the global DNA methylation index (GMI) would significantly 

discriminate between cholecystitis and gallbladder cancer patients.

Materials & methods

Sample collection

Tissue samples from 19 GBC cases and seven chronic cholecystitis cases were collected 

from 2004 to 2008, at the clinic of Doctor Hernán Henríquez Aravena (HHA) tertiary care 

regional hospital, in Temuco, Chile. The diagnosis was confirmed by histological 

examination (biopsy) performed by a team of three pathologists from HHA. A random set of 

pathology slides from the study samples was sent for diagnostic confirmatory review to a 

pathologist at Johns Hopkins School of Medicine. The Institutional Review Boards of the 

HHA and the Johns Hopkins School of Medicine approved the protocol for this study.

DNA extraction

DNA was extracted from 5 mg of frozen tissue from each sample by digestion with 1% SDS 

and 20 μg/ml proteinase K (Roche, Manhein, Germany) at 48°C for 24 h, followed by 

phenol/chloroform extraction and ethanol precipitation of DNA as previously described 

[22].

Bisulfite treatment

Genomic DNA extracted from the tissues was subjected to bisulfite modification, which 

converts unmethylated cytosine residues to uracil, using EpiTect Bisulfite Kit (QIAGEN, 

CA, USA) according to the manufacturer’s protocol as previously described [23].

Global DNA methylation index

Global DNA methylation levels on tissue and cell line DNA were obtained with an ELISA-

based commercial kit (MDQ1, Imprint® Methylated DNA Quantification Kit; Sigma 

Aldrich, MO, USA). The MDQ1 kit is a high-throughput, molecular biology kit, which uses 
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a 96-well plate format to provide accurate differential global DNA methylation absorbance 

readings with as little as 50 ng of genomic DNA. In total, 2 μl of DNA at a concentration of 

100 ng/μl were diluted with 28 μl of lysis and binding buffers and incubated at 60°C. The 

samples were incubated with capture and detection antibodies and absorbance was read at 

450 nanometers. Quantification of global DNA methylation was obtained from calculating 

the amount of methylated cytosines in the sample (5 mC) relative to global cytidine (5 mC + 

dC) in a positive control that had been previously methylated. All samples were analyzed in 

duplicate as previously described [24].

Quantitative methylation-specific PCR

We used previously developed qMSP primers and probes, which amplify the promoters of 

eight genes that play an important role in oncogenesis: cell adhesion, cellular proliferation, 

cell cycle control, cellular differentiation, cell migration, apoptosis, DNA repair, cell growth 

and protein degradation – MCAM [25,26], SSBP2 [21,27], ESR1 [28,29], APC [30,31], 

CDKN2A [32,33], MGMT [33,34], RARβ [35] and PGP9.5 [36,37] and the promoter of the 

internal control ACTB (β-actin gene). The primer and probe sequences, which we designed 

for our previous methylation studies based on bisulfite sequencing data, along with the 

annealing temperatures are provided in Supplementary Table 1 (see 

www.futuremedicine.com/doi/suppl/10.2217/fon.14.165).

Fluorogenic PCR reactions were performed in duplicates in a reaction volume of 20 μl that 

contained 3 μl of bisulfite-modified DNA; 600 nM of each primer; 200 nM probe; 0.75 U of 

platinum Taq polymerase (Invitrogen, MD, USA); 200 μM of each dATP, dCTP, dGTP and 

dTTP; 200 nM ROX dye reference; 1X buffer (16.6 mM ammonium sulfate; 67 mM Trizma 

[Sigma]; 6.7 mM of magnesium chloride; 10 mM of mercaptoethanol and 0.1% dimethyl-

sulfoxide). Amplifications were performed using the reaction profile: 95°C for 3 min, 

followed by 50 cycles at 95°C for 15 s and 60°C for 1 min in a 7900 HT sequence detector 

(Applied Biosystems, CA, USA) and were analyzed by a sequence detector system (SDS 

2.4; Applied Biosystems). Each plate included patient DNA samples, positive controls 

(leukocytes from a healthy individual were methylated in vitro using SssI methyltransferase; 

New England Biolabs, MA, USA) and multiple water blanks as non-template controls. 

Serial dilutions (90–0.0009 ng) of in vitro methylated DNA were used to construct a 

standard curve for each plate. The relative level of methylated DNA for each gene in each 

sample was determined as a ratio of the amplified gene quantity to the quantity of β-actin 

multiplied by 1000.

Quantitative real-time reverse transcription PCR

RNA samples from three GBC cell lines (SNU308, GBD1 and G415) and from four GBC 

samples (GB82, GB95, GB126 and GB127) were assessed for ESR1, P16, PGP9.5, APC, 

SSBP2 and GAPDH expression levels using quantitative real-time reverse transcription 

(qRT-PCR). Reverse transcription was performed with random hexamer primers and 

Superscript II Reverse Transcriptase (Invitrogen) according to manufacturer’s instructions. 

qRT-PCR was then carried out on the Applied Biosystems 7900HT Sequence Detection 

Instrument using TaqMan expression assays (Applied Biosystems). The 2−ΔΔCt method was 

used to quantify relative gene expression [38].
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Statistical analysis for qMSP data

qMSP values were adjusted for DNA input by expressing results as ratios between 2 

absolute measurements. The relative level of methylated DNA for each gene in each sample 

was determined as a ratio of qMSP for the amplified gene to ACTB and then multiplied by 

100 for easier tabulation ([average DNA quantity of methylated gene of interest/average 

DNA quantity for internal reference gene β-actin] × 100) [28]. The samples were 

categorized as unmethylated or methylated based on detection of methylation above a 

threshold set for each gene. For quality control, all amplification curves were visualized and 

scored without knowledge of the clinical data. Receiver operator characteristic (ROC) 

curves were used to identify a cutoff ratio above the highest control ratio observed for each 

gene to set specificity at the percentage that maximizes the number of samples correctly 

classified. Promoter methylation ratios for each gene were compared between cancer GBC 

and cholecystitis samples. The Fisher’s exact and χ2 tests (significance level = 0.05; CI: 95) 

were used to compare GMI and qMSP methylation levels. Results with a p ≤ 0.05 were 

considered significant. Once the best individually discriminating genes were found, a 

stepwise bootstrapping approach was used to identify the gene panel with the highest 

sensitivity, specificity, area under the curve (AUC), and positive and negative predictive 

value. All analyses were performed using STATA version 12.

Results

Patient characteristics

A sequential cohort of patients were selected for this study in Temuco, Chile. The available 

demographic and clinical patient data is listed in Table 1. The age among GBC patients 

varied between 41 to 84 years (median: 62 years; average: 63.5 years) and between 33 to 88 

years (median: 68 years; average: 63.5 years) for cholecystitis patients. The mean age for 

both groups showed no significant statistical difference. The majority of patients (78.6%) 

selected for the present study were women and 21.4% were of Mapuche descent, the 

indigenous inhabitants of south-central Chile.

Global DNA methylation

GMI was evaluated in 26 patients: 19 cancer and seven cholecystitis tissue samples. We 

observed a significant global loss of DNA methylation in GBC (p = 0.02). Most GBC 

patients (74%) had a GMI below the cutoff value of 60. The median GMI in two of three 

GBC cell lines, GBD1 and SNU308, was also below the cutoff value of 60. Figure 1. shows 

a boxplot of the GMI of the two patients groups and the three cell lines.

Quantitative methylation-specific PCR

Promoter methylation of APC, CDKN2A, ESR1, MCAM, MGMT, PGP9.5, RARβ and SSBP2 

was evaluated in DNA samples from 19 primary tumors and in seven cholecystitis tissue 

samples (Figure 2). We found that SSBP2 (p = 0.01) and ESR1 (p = 0.05) significantly 

discriminated GBC from cholecystitis patients (Table 2). Promoter methylation scatter plots 

of the eight genes are shown in Figure 3 & 4. APC was methylated in six out of 19 (32%) of 

GBC samples and in one in seven (14%) of chronic cholecystitis samples. CDKN2A was 
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methylated in five in 19 (26%) of GBC samples and in one of seven (14%) of chronic 

cholecystitis samples. ESR1 was methylated in eight of 19 (42%) GBC samples and in zero 

out of seven (0%) of chronic cholecystitis samples. MCAM was methylated in seven of 19 

(37%) of GBC samples and in one out of seven (14%) of chronic cholecystitis samples. 

MGMT was methylated in two out of seven (29%) of GBC samples and in one out of seven 

(14%) chronic cholecystitis samples. PGP9.5 was methylated in four of of 19 (21%) GBC 

samples and in one of seven (14%) chronic cholecystitis samples. RARβ was methylated in 

seven out of 19 (37%) GBC samples and in two out of seven (29%) chronic cholecystitis 

samples. SBPP2 was methylated in ten of 19 (53%) of GBC samples and in zero out of 

seven (0%) of chronic cholecystitis samples. The association of aberrant DNA methylation 

and demographic features was also examined. Detectable methylation levels were not 

associated with age or gender in this group of patients except for SSBP2, which is associated 

to gender (Supplementary Table 2). However, the small sample size makes it difficult to 

identify strong associations.

ROC curve analysis revealed that SSBP2 had 68% sensitivity, 86% specificity and a 0.83 

AUC; ESR1 had 42% sensitivity, 100% specificity and a 0.56 AUC; CDKN2A had 47% 

sensitivity, 86% specificity and a 0.69 AUC; APC had 32% sensitivity, 86% specificity and 

a 0.56 AUC and PGP9.5 had 21% sensitivity, 86% specificity and a 0.47 AUC (Figure 5). A 

gene panel combining the GMI with promoter DNA methylation results for these five genes 

had 71% sensitivity, 95% specificity, a 0.97 AUC, a positive predictive value (PPV) of 90% 

and a negative predictive value (NPV) of 83% (Figure 5).

Quantitative real-time reverse transcription PCR

To examine if the promoter methylation data we have generated relates to gene silencing or 

not, we quantified expression levels of the five genes included in the molecular panel in 

three GBC cell lines (SNU308, GBD1 and G415) and four GBC tissues. Differential 

transcript levels for APC, CDKN2A, ESR1, SSBP2 and PGP9.5 were confirmed by 

quantitative RT-PCR in some of the RNA samples used for qMSP analysis and in GBC cell 

lines RNA (Supplementary Table 1). The relative expression levels showed consistency with 

the qMSP results obtained for ESR1 and SSBP2 in GBC tissue and cell lines (Supplementary 

Figures 1A–1D).

Discussion

Our main objective in this study was to determine the methylation profile of a panel of genes 

in GBC using a quantitative method (qMSP) as well as assess global methylation in GBC. 

We report here for the first time a global loss of DNA methylation and ESR1 and SSBP2 

promoter methylation in GBC. Using ROC curve analysis we identified a panel of five TSG, 

which combined with the GMI have the potential of serving as biomarker(s) for GBC 

clinical management.

Global loss of methylation and gene-specific DNA promoter methylation occur frequently 

during carcinogenesis and have been considered as potential molecular markers for cancer 

initiation and progression [39]. DNA methylation in mammals is mostly seen at position 5′ 

of the cytosine ring in CpG through the covalent bond of a methyl group. NonCpG 
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sequences can also become methylated but with less frequency [40–42]. In normal tissue, 

methylation of CpG islands usually increases with age, although the total genomic content 

of the methylcytosines decreases [43]. During carcinogenesis a global loss of DNA 

methylation, together with tumor suppressor gene silencing by promoter DNA methylation, 

has been observed in most tumor types [44]. Promoter methylation in CpG islands of tumor 

suppressor genes has been demonstrated as a hallmark in cancer [39]. Earlier studies have 

profiled gene-specific promoter methylation in head and neck squamous cell carcinoma 

[45,46], bladder cancer [47,48], lung cancer [49] and liver cancer [50], among others.

Epigenetic studies conducted to determine the promoter methylation profile of GBC have 

found promoter methylation of multiple genes associated with poor survival, disease 

progression and histology subtype – 3-OST-2, CDH1, CDH13, RUNX3, APC, RIZI, 

CDKN2A, HPP1, MGMT, hMLH1, DAPK and many others – were shown to be methylated 

in their promoter regions by conventional PCR. Presence of aberrant promoter DNA 

methylation in some genes was associated with poor survival, disease progression and 

histology subtype [14,16,51–52]. So far, only PGP9.5 has been described to lose promoter 

methylation in GBC [53].

Previous studies evaluated promoter methylation status in GBC by MSP. One of the 

drawbacks of this approach is that it is a subjective technique, as it scores for methylation 

based on visualization of bands in an electrophoresis gel [54]. Real-time qMSP allows a 

rapid detection and quantitation of promoter methylation and is better suited than 

conventional MSP for high-throughput studies, due to its high sensitivity and ease of 

automation [55]. qMSP has been put forward as a platform to develop biomarkers for early 

detection, diagnosis and clinical management of cancer [56]. We designed the qMSP 

primers and probes tested in this study using the pipeline first published by our laboratory in 

2001 [57]. In this pipeline bisulfite sequencing is performed at the onset of primer 

development stage, not only to assess the methylation status of the CpGs contained in that 

area but also to verify that we are amplifying the genomic region of interest. The fact that 

qMSP is an easily reproducible and quantitative method that can be used to query large 

number of samples, makes this method a feasible approach to be used in the clinics to test 

tissue and biofluid samples from GBC patients for the presence of methylation 

(Supplementary Figure 2A & 2B).

In this study we identified a molecular panel of DNA methylation events that can distinguish 

GBC from chronic cholecystitis. The panel consists of the qMSP values for five TSGs 

(APC, SSBP2, CDKN2A, PGP9.5 and ESR1) together with the GMI. While ESR1 and 

SSBP2 could significantly distinguish between GBC and cholecystitis by themselves, it was 

not until they were combined with APC, CDKN2A, PGP9.5 and the GMI that the panel’s 

sensitivity (71%) and specificity (95%) attained clinically relevant levels. Our study was 

designed to identify a panel of epigenetic biomarkers that could discriminate between GBC 

and chronic cholecystitis, akin to a Phase I biomarker development trial. Phase I biomarker 

development trials are designed to identify biomarkers that can discriminate between cancer 

and noncancer tissue. The small sample size did not permit us to carry out a properly 

powered trial. This design does not lend its self to classify biomarkers as drivers or 

passengers of the oncogenic process, nor to examine their functional characteristics in GBC 
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cell lines. We did however test the expression status of this gene panel in three GBC cell 

lines, SNU308, GBD1, G415 and four GBC tumor samples. The relative expression levels 

showed consistency with the qMSP results obtained for ESR1 and SSBP2 in GBC tissue and 

cell lines. Given these results we plan to examine the functional characteristics of ESR1 and 

SSBP2 in future studies (Supplementary Figure 2C).

SSBP2 is a tumor-suppressor gene that belongs to a very conserved family of DNA binding 

proteins. The SSBP family components stabilize single strand DNA (ssDNA) regions 

avoiding degradation and incorrect processing until the regular cellular processes can be 

performed. Because of this crucial function SSBP2 plays a role in DNA replication and 

repair [58]. SSBP2 promoter methylation is associated with gene silencing in prostate cancer 

and esophageal carcinomas. In prostate cancer, aberrant methylation was not detected in 

normal tissue, whereas 61.4% of the neoplastic samples showed the epigenetic alteration 

[25,59]. Methylation of this gene was reported to be present in 86% of esophageal cancer 

samples [25,59]. SSBP2 seems to have an effective role in cell proliferation and cell cycle 

control. Induction of its expression in prostate and esophageal cancer cell lines resulted in 

reduced cell proliferation and cell cycle arrest [25,59]. We observed a significant difference 

on SSBP2 DNA methylation frequency when comparing GBC and noncancer samples. 

SSBP2 aberrant methylation in GBC, as well in other tumor types, might result in gene 

silencing which will impact in DNA replication and repair and genome stability. We found 

promoter methylation of SSBP2 and minimal SSBP2 expression in one of the three GBC cell 

lines we tested: GBD1. On the contrary, SSBP2 expression does not seem to be regulated by 

promoter methylation in SNU308 and G415 GBC cell lines (Supplementary Figures 1A & 

B).

MCAM, also known as CD146, is a calcium-independent transmembrane glycoprotein 

adhesion molecule. It is expressed in endothelial cells and plays a role in cohesion of the 

endothelial monolayer. It was initially identified as a marker for progression and metastasis 

in melanoma [60]. Later studies showed decreased expression of MCAM and its role in 

tumor progression and metastasis in multiple cancers including GBC [61] and breast [62]. 

Promoter methylation of MCAM has been associated with advanced tumor stage in prostate 

cancer [25]. However, the authors detected high frequency of promoter methylation in the 

gene promoter but with positive protein expression by immunohistochemistry suggesting 

that, at least in prostate cancer, methylation is not the major factor controlling MCAM 

expression. Positive expression of MCAM has been described in GBC, while the protein 

levels were reduced in noncancer gall-bladder tissue. Higher levels of MCAM have been 

associated with increased angiogenesis and lymphangiogenesis and this gain of expression 

showed important impact on disease progression, metastasis and survival in gallbladder 

adenocarcinomas [61]. Here, we investigated the methylation status of MCAM in an attempt 

to understand its regulation in GBC. However, no difference was observed between the 

cancer and noncancer gallbladder tissue.

The high incidence rates of GBC among women may be partly attributed to hormonal 

factors [63]. ESR1 encodes for a ligand-activated transcription factor involved in regulation 

of gene expression that affects cellular proliferation and differentiation in specific tissues 

[64]. Genetic alterations in ESR1 gene seem to have different impacts in the risk for GBC. A 
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susceptibility risk polymorphism on ESR1, rs1801132, is associated with higher risk to bile 

duct and ampulla of Vater cancers but not GBC [63]. However, presence of the homozygous 

variant genotype for the marker rs2234693 (ESR1-397TT) is associated with significant 

higher risk to GBC (odds ratio: 1.8) [65]. Promoter methylation of ESR1 in association with 

gene silencing has been observed in other tumor types such as breast cancer [66], rectal 

cancer [67] and cervical cancer [28]. Our study is the first to evaluate the methylation status 

of ESR1 in GBC. Here, we described a methylation frequency of 42% among cancer 

patients, while no methylation was detected in noncancer samples. ESR1 hypermethylation 

followed by transcriptional blockade may result in downregulation of cell cycle and growth 

regulators, once this gene is known to have a role in transcription regulation by the 

recruitment of proteins of the transcriptional protein complex [68]. Our cell line data 

supports the mechanistic link between promoter metylation and down-regulation of ESR1 in 

GBC. Two of the three cell lines we tested, GBD1 and G415, have evidence of ESR1 

promoter methylation and expression downregulation. Conversely, ESR1 downregulation in 

SNU308 does not seem to be under methylation control (Supplementary Figures 1C & D).

APC, a tumor suppressor gene, encodes a protein involved in cell migration, cell adhesion, 

transcriptional activation and apoptosis. Promoter methylation of APC and its role in 

tumorigenesis has been reported in rectal [67], esophageal [69], breast [29] and cervical [28] 

cancers. In GBC, promoter methylation has been observed to be present in 30–40% of cases 

[13–15]. APC regulates the level of free β-catenin, which is involved in Wnt signaling. 

Besides APC gene mutation, inactivation of APC by aberrant promoter methylation results 

in increased β-catenin levels, which subsequently triggers tumor formation, through Wnt 

signaling [70,71]. The relevance of APC hypermethylation in the development of GBC 

might be associated with the dysregulation of the Wnt pathway, showing the necessity of 

follow-up investigations on this important pathway.

Silencing of CDKN2A by promoter methylation is frequently observed in solid tumors [72–

74]. This gene encodes a protein (p16) that negatively regulates cell cycle progression. p16 

protein binds to CDK4/6 inhibiting their ligation to cyclin D [75]. In GBC, CDKN2A 

methylation has been described in multiple studies with varied frequencies, (14.5–80%) but 

there is no reported association with prognosis or clinicopathologic variables [1,14–

16,52,76–77]. Besides the fact that CDKN2A methylation showed no association with GBC, 

this gene is an important cell cycle regulator and further analysis on the epigenetic and 

genetic alterations in these tumors is critical for the comprehension of their biology.

MGMT gene is a DNA methyltransferase. The aberrant methylation of this gene is known to 

be associated with response to alkylating chemotherapeutic agents in glioblastomas [78,79]. 

House et al. reported MGMT methylation in 13% of GBC cases evaluated [13]. Here, maybe 

due to the fact that we used a more sensitive method for methylation detection, we found 

that 30% of GBC samples present methylation in this gene promoter, while the frequency in 

noncancer patients was 14%. MGMT DNA methylation, as well as in glioblastoma, seems to 

be associated to therapeutic response with alkylating agents. Gallbladder cell lines treated 

with the bifunctional alkylating agent 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-

chloroethyl)-3-nitrosourea showed different proliferation rates according to MGMT protein 

expression status, GBC cell lines harboring MGMT downregulation were more sensitive to 
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1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea [80]. Aberrant 

methylation of MGMT might be a useful tool to determine the better treatment modality to 

be applied in each GBC patient.

RARβ encodes a receptor that when activated participates in cell growth and differentiation. 

RARβ is a tumor suppressor gene and loss of this gene plays an important role in 

tumorigenesis [81]. RARβ promoter methylation has been reported in rectal [67] and cervical 

[28] cancers. RARβ methylation in gall bladder cancer is associated with disease progression 

from cholecystitis to GBC. Progressive increase in DNA methylation level of this gene was 

observed following the evolution of chronic inflammation to invasive cancer, suggesting 

that this event plays a role in gall bladder tumorigenesis [13,16]. Methylation of RARβ 

promoter region was observed in a significant proportion of cancer-free high-fat consumers 

[82]. Gallstones disease, a known GBC risk factor, shows higher incidence among 

overweight and obese patients [5]. This evidence indicates that presence of RARβ promoter 

methylation may be associated with obesity in GBC patients. The information about obesity 

was not collected on our cohort, however, in future studies it might be a relevant fact to be 

taken into account when evaluating the association between GBC and RARβ methylation.

PGP9.5 is the only gene selected for our study with a reported loss of promoter methylation 

in GBC. Also known as UCHL1, PGP9.5 prevents protein degradation by the proteosome-

dependant pathway by removing ubiquitin from ubiquitinated proteins [83]. In a previous 

study, PGP9.5 methylation was detected in 84.6% of normal gall bladder [35] epithelia and 

in only 27.2% of the GBC samples. Methylation status was inversely correlated with protein 

expression levels. These data suggest that PGP9.5 in GBC might have a role as an oncogene 

[53]. We report a similar frequency of PGP9.5 promoter methylation in GBC patients 

(21%). In addition, none of our three cell lines show evidence of methylation and the 

difference in PGP9.5 promoter methylation frequency between cholecystitis (14%) and 

GBC patients is not significant (p = 0.69). Our data suggest that the normal GB epithelium 

undergoes a loss of PGP9.5 promoter methylation early in the inflammation-associated 

metaplasia–dysplasia–carcinoma pathway for GBC.

To our knowledge this is the first study to report a global loss of DNA methylation in GBC. 

A global loss of DNA methylation is a hallmark of human cancer, first reported more than 

30 years ago [84]. This global loss, commonly referred to as global DNA hypomethylation, 

is mostly seen in the repetitive elements, interspersed repeats and tandem repeats that 

comprise approximately half of the human genome [85]. The global loss of DNA 

methylation in repetitive elements can lead to neighboring gene disruption via 

transcriptional interference and activation of transposable elements, which can lead to 

chromosomal and microsatellite instability throughout the genome [43,86]. Global DNA 

hypomethylation has been studied as a marker of cancer risk in peripheral blood leukocytes 

[87–89] and as a biomarker for breast [90], prostate [91], ovarian [92], lung [93], liver [94], 

bladder [95], oral [94] and laryngeal cancer [96]. Our data in GBC tissues and cell lines is 

consistent with published data for other tumor types. We observed a statistically significant 

difference in the GMI when comparing cholecystitis with GBC patients. The GMI index in 

cell lines provides further evidence to the hypothesis that there is a progressive global loss of 

DNA methylation in GBC.
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In the present study we observed that 52.6% (ten out of 19) of the GBC cases presented two 

or more methylated genes. In these cases, more than one TSG may have their functions 

disrupted by promoter methylation, suggesting a probable imbalance in the activity of the 

signaling pathways those genes help to regulate. Subsequent concomitant deregulation of 

multiple pathways might be important for the initiation and progression of this tumor type. 

However, further investigation to determine the importance of each of the regulatory 

pathways implicated by this study in GBC, as well as the identification of the driving and 

passenger molecular alterations associated with them, are crucial for a better understanding 

of GBC biology.

The majority of GBC are not resectable when diagnosed as a result of lack of specific 

symptoms in early stages of the disease. This late diagnosis results in a 5-year survival rate 

of only 10%. The highest occurrence rates among men and women are registered in Chile 

with this last group being more frequently affected. It is well established that chronic 

cholecystitis and gallstones are risk factors for the development of GBC, however the 

etiology of these tumors is poorly understood [5,97]. Identification of the molecular 

mechanisms involved in GBC tumorigenesis is of extreme importance for better 

understanding of their biological behaviour as well as prognosis determination. A variety of 

genetic alterations (mutations, microsatellite instability and aberrant expression) are present 

in GBC and are associated with bad prognosis for patients harboring these changes [10]. 

Aberrant DNA methylation including global loss of methylation and gene-specific gain of 

methylation in the promoter are also common features of this cancer type (Supplementary 

Figure 3). DNA promoter methylation is a cumulative event during cancer progression and 

is implicated in gene silencing of the majority of its target genes, resulting in 

downregulation of important tumor suppressors [7].

Hence, a panel that incorporates global and gene-specific changes can serve as a useful early 

detection molecular tool. A panel of genetic and epigenetic changes would be even more 

relevant if proven to be detected in bodily fluids (bile, serum, plasma or urine) from GBC 

patients. Evaluation of cell-free DNA is an approach that has to be explored in this tumor 

type, one that can lead to a noninvasive screening method for GBC.

Conclusion

Using a quantitative method we show for the first time that GBC undergoes a significant 

loss of global DNA methylation and two genes, SSBP2 and ESR1 that are differentially 

methylated in GBC. We also show that the GMI, together with promoter methylation in a 

panel of five genes (APC, CDKN2A, ESR1, SSBP2 and PGP9.5), may act as a potential 

early detection biomarker panel for GBC. Further studies including larger groups of GBC 

and cholecystitis patients are important to validate our findings and examine their 

association with somatic mutations and known GBC prognostic factors using tissue and 

body fluids, including bile.
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Future perspective

GBC is a gastrointestinal neoplasia with specific geographic and ethnic variation with the 

highest incidence rates described in Chilean women. It is an aggressive disease associated 

with low survival rates. Late diagnosis, due to lack of symptoms in early stages, is the main 

factor associated with poor prognosis. Gallbladder stones and inflammatory conditions are 

risk factors involved in the ethiology of GBC. The signaling pathways that are disturbed and 

culminate in gallbladder tumorigenesis are not well understood.

The results of this study suggest that a panel of five methylated TSGs combined with the 

GMI can be potential biomarkers for early detection of GBC. Further molecular studies 

involving larger cohorts that examine combined somatic mutations and epigenomic 

alterations in crucial genes in the GBC tumorigenesis process are essential to enable the 

clinical application of these markers in liquid biopsies, as they become part of routine 

clinical follow-up in the future. Liquid biposies in bile, blood or urine, testing for panels of 

combined genetic and epigenetic alterations associated with GBC early detection, response 

to treatment and survival, will inform the differential diagnosis of gastrointestinal 

oncologists in the not-so-distant future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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EXECUTIVE SUMMARY

Background

• Gall bladder cancer (GBC) is a rare disease associated with poor survival rates 

due to late diagnosis.

• In the present study, global and DNA methylation was evaluated in GBC 

samples and cholecystitis tissue to identify biomarkers for prognosis, early 

detection and treatment.

Material & methods

• Frozen tissue samples were obtained from patients with cholecystitis (non-

neoplastic tissue) and with GBC.

• GBC tissue and cell line DNA was used for global DNA methylation index 

determination and for promoter methylation profile analysis of APC, CDKN2A, 

ESR1, MCAM, MGMT, PGP9.5, RARβ and SSBP2.

Results

• A significant difference was observed in global methylation index between the 

cholecystitis and GBC samples.

• DNA methylation analysis showed that promoter methylation of SBBP2 and 

ESR1 are significantly more frequent in GBC patients.

• A panel that includes the GMI and promoter methylation of five genes – SSBP2, 

ESR1, CDKN2A, APC and PGP9.5 – discriminates GBC from cholecystitis 

samples with 71% sensitivity, 95% specificity, a 0.97 area under the curve, and 

a positive predictive value of 90% and a negative predicative value of 83%.

Conclusion

• Global and gene-specific differential promoter DNA methylation panels can be 

used as biomarkers for GBC early detection.

• A biomarker development trial examining the global DNA methylation index 

(GMI), and the promoter methylation status of SSBP2, ESR1, CDKN2A, APC 

and PGP9.5 in a larger and well-characterized group of samples is warranted to 

verify the results obtained in this study.

• A sensitive and specific panel of global and promoter DNA metylation 

biomarkers will enable a new generation of early detection, diagnostic and 

prognostic devices, and reduce gall bladder cancer mortality rates worldwide.
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Figure 1. Global DNA methylation index in three gall bladder cancer cell lines (G-415, GBD1 
and SNU308), cholecystitis patients (n = 7) and gall bladder cancer (n = 19) patients
Global DNA methylation was determined by the ratio between the amount of methylated 

cytosines in the sample and a fully methylated positive control. The red line represents the 

cutoff value for the lobal DNA methylation index in gall bladder cancer (60).

GBC: Gall bladder cancer.
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Figure 2. Promoter methylation frequency for APC, CDKN2A, ESR1, MCAM, MGMT, PGP9.5, 
RARβ and SSBP2 in cholecystitis (n = 7) and gallbladder cancer (GBC) patients (n = 19)
Samples are ordered by frequency of methylation, first in the cholecystitis patients and then 

in the GBC patients. The frequency of promoter methylation for cholecystitis patients ranges 

from 0 to 38%. The frequency of promoter methylation for patients ranges from 0 to 100%.

GBC: Gallbladder cancer; NA: Not applicable.
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Figure 3. Quantitative methylation-specific PCR results for APC, CDKN2A, ESR1, MCAM, 
MGMT, PGP9.5, RARβ and SSBP2
Graphical expression of the logistic regression, Pr (GBC = 1) = logit−1 (b0 + b1 × 

methylation) in tissue from 26 participants with data overlain. The predictor methylation is 

the qMSP value for each case (1) and each control (0). Cutoff methylation values for APC, 

CDKN2A, ESR1, MCAM, MGMT, PGP9.5, RARβ, and SSBP2 are shown by the vertical 

dotted line. Probability of GBC is shown in red.

GBC: Gallbladder cancer.
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Figure 4. Quantitative methylation-specific PCR analysis of candidate gene promoters in the 
validation screen cohort, which consisted of 17 gallbladder cancer tumor tissue samples and 
seven cholecystitis tissue samples
The relative level of methylated DNA for each gene in each sample was determined as a 

ratio of methylation-specific PCR for the amplified gene to ACTB and then multiplied by 

1000 ([average value of duplicates of gene of interest/average value of duplicates of ACTB] 

× 1000) for APC, CDKN2A, ESR1, MCAM, MGMT, PGP9.5, RARβ and SSBP2. Red line 

denotes cutoff value.
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Figure 5. Receiver operator characteristic curve analysis for molecular panel: GMI, APC, 
CDKN2A, ESR1, PGP9.5 and SSBP2
(A) Sensitivity, specificity and area under the curve results for quantitative methylation-

specific PCR analysis, and (B) receiver operator characteristics curve for the GMI and 

promoter methylation of APC, CDKN2A, ESR1, PGP9.5 and SSBP2. Demonstrates that for 

this molecular panel the global DNA methylation index and qMSP results have 71% 

sensitivity, 95% specificity, a 0.97 AUC, a PPV of 90% and a NPV of 83%.
†SSBP2, CDKN2A, ESR1, APC and PGP9.5.

AUC: Area under the curve; NPV: Negative predictive value; PPV: Positive predictive 

value.
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Table 1

Demographic and clinicopathological characteristics.

Variable Frequency Percentage

Gender

Female 11 78.6

Male 3 21.4

Age (years)

≤50 3 21.4

>50 11 78.6

Mapuche

No 11 78.6

Yes 3 21.4

Diagnosis

Cholecystitis 7 26.9

Cancer 19 73.1

Future Oncol. Author manuscript; available in PMC 2015 February 18.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kagohara et al. Page 25

T
ab

le
 2

C
om

pa
ri

so
n 

of
 p

ro
m

ot
er

 a
nd

 g
lo

ba
l D

N
A

 m
et

hy
la

tio
n 

fr
eq

ue
nc

ie
s 

in
 c

ho
le

cy
st

iti
s 

an
d 

ca
nc

er
 p

at
ie

nt
s.

V
ar

ia
bl

e
C

ho
le

cy
st

it
is

G
al

l b
la

dd
er

 c
an

ce
r

p-
va

lu
e

F
re

qu
en

cy
P

er
ce

nt
ag

e
F

re
qu

en
cy

P
er

ce
nt

ag
e

A
P

C

U
nm

et
hy

la
te

d
6

86
13

68
0.

38

M
et

hy
la

te
d

1
14

6
32

C
D

K
N

2A

U
nm

et
hy

la
te

d
6

86
14

74
0.

52

M
et

hy
la

te
d

1
14

5
26

E
SR

1

U
nm

et
hy

la
te

d
7

10
0

11
58

0.
05

‡

M
et

hy
la

te
d

0
0

8
42

M
C

A
M

U
nm

et
hy

la
te

d
6

86
12

63
0.

27

M
et

hy
la

te
d

1
14

7
37

M
G

M
T

†

U
nm

et
hy

la
te

d
6

86
5

71
0.

52

M
et

hy
la

te
d

1
14

2
29

P
G

P
9.

5

U
nm

et
hy

la
te

d
6

86
15

79
0.

70

M
et

hy
la

te
d

1
14

4
21

R
A

R
β

U
nm

et
hy

la
te

d
5

71
12

63
0.

82

M
et

hy
la

te
d

2
29

7
37

SS
B

P
2

U
nm

et
hy

la
te

d
7

10
0

9
47

0.
01

‡

Future Oncol. Author manuscript; available in PMC 2015 February 18.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kagohara et al. Page 26

V
ar

ia
bl

e
C

ho
le

cy
st

it
is

G
al

l b
la

dd
er

 c
an

ce
r

p-
va

lu
e

F
re

qu
en

cy
P

er
ce

nt
ag

e
F

re
qu

en
cy

P
er

ce
nt

ag
e

M
et

hy
la

te
d

0
0

10
53

M
ul

tip
le

 m
et

hy
la

tio
n

L
es

s 
th

an
 tw

o 
ge

ne
s

5
71

9
47

0.
28

T
w

o 
or

 m
or

e 
ge

ne
s

2
29

10
53

G
M

I

≤6
0%

2
29

11
14

0.
02

‡

>
60

%
5

71
8

5

† D
N

A
 a

va
ila

bl
e 

to
 te

st
 o

nl
y 

se
ve

n 
tu

m
or

 s
am

pl
es

 w
ith

 M
G

M
T

 q
ua

nt
ita

tiv
e 

m
et

hy
la

tio
n-

sp
ec

if
ic

 P
C

R
 p

ri
m

er
s 

an
d 

pr
ob

e.

‡ St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 χ
2 .

G
M

I:
 G

lo
ba

l M
et

hy
la

tio
n 

In
de

x.

Future Oncol. Author manuscript; available in PMC 2015 February 18.


