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Abstract 

Background:  There are many examples of physiological processes that follow a circadian cycle and researchers 
are interested in alternative methods to illustrate and quantify this diurnal variation. Circadian blood pressure (BP) 
deserves additional attention given uncertainty relating to the prognostic significance of BP variability in relation to 
cardiovascular disease. However, the majority of studies exploring variability in ambulatory blood pressure monitoring 
(ABPM) collapse the data into single readings ignoring the temporal nature of the data. Advanced statistical tech-
niques are required to explore complete variation over 24 h.

Methods:  We use piecewise linear splines in a mixed-effects model with a constraint to ensure periodicity as a novel 
application for modelling daily blood pressure. Data from the Mitchelstown Study, a cross-sectional study of Irish 
adults aged 47–73 years (n = 2047) was utilized. A subsample (1207) underwent 24-h ABPM. We compared patterns 
between those with and without evidence of subclinical target organ damage (microalbuminuria).

Results:  We were able to quantify the steepest rise and fall in SBP, which occurred just after waking 
(2.23 mmHg/30 min) and immediately after falling asleep (−1.93 mmHg/30 min) respectively. The variation about an 
individual’s trajectory over 24 h was 12.3 mmHg (standard deviation). On average those with microalbuminuria were 
found to have significantly higher SBP (7.6 mmHg, 95% CI 5.0–10.1) after adjustment for age, sex and BMI. Including 
an interaction term between each linear spline and microalbuminuria did not improve model fit.

Conclusion:  We have introduced a practical method for the analysis of ABPM where we can determine the rate 
of increase or decrease for different periods of the day. This may be particularly useful in examining chronotherapy 
effects of antihypertensive medication. It offers new measures of short-term BP variability as we can quantify the 
variation about an individual’s trajectory but also allows examination of the variation in slopes between individuals 
(random-effects).
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Background
There are many examples of physiological processes 
that follow a circadian cycle such as cortisol, intraocu-
lar pressure and body temperature where abnormali-
ties in these patterns have been shown to be related to 
depression [1], glaucoma [2] and delayed sleep-phase dis-
order [3]. The ability to analyse and capture features of 

these cycles remains a challenge but is necessary to get 
a deeper understanding of the mechanisms behind them. 
For example, the cardiovascular system shows clear cir-
cadian rhythmicity where researchers are interested in 
alternative methods to illustrate and quantify this diurnal 
variation [4]. Circadian blood pressure (BP) represents 
a situation where diurnal variation deserves additional 
attention given the uncertainty relating to the prognos-
tic significance of BP variability (BPV) [5–8]. The benefits 
of using ambulatory blood pressure monitors (ABPM) 
in addition to clinic measurements in the diagnosis and 
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management of hypertension are well established [9, 10]. 
As well as mean day, night and dip values, ABPM pro-
vides measures of short-term BPV and individual profile 
patterns. The majority of studies examining short-term 
BPV have focused on summary measures such as the 
standard deviation (SD) of ABPM readings over the day. 
These summary measures are easily obtained without the 
need for advanced statistical techniques [5–8, 11, 12] but 
ignore the temporal nature of the data. To date relatively 
little work has modelled 24  h ABPM profiles to exploit 
the full potential of ABPM data to capture short-term 
BPV [13]. Moreover, there are a lack of studies explor-
ing circadian patterns and specifically, studies examin-
ing differences in patterns among different groups of 
individuals.

Cosinor analysis which incorporates a sinusoidal func-
tion has been the most common approach to model-
ling 24  h blood pressure (BP) [14–17], while a similar 
method, Fourier analysis [18, 19], has also been imple-
mented. These approaches have focused on between-
group effects (fixed-effects) where typically inferences 
are based on estimated differences in model parameters 
between particular groups of patients, such as compar-
ing the estimated amplitude or midline estimating sta-
tistic of rhythm (MESOR) between groups of individuals 
on different antihypertensive agents obtained in cosinor 
analysis [16]. The focus of fixed-effects is on population 
trajectories. However one of the main advantages of 
ABPM is that we obtain individual BP profiles and mod-
elling subject-specific trajectories involves incorporating 
subject-specific effects (random-effects). To model mean 
profiles Selwyn and Difranco [20] used a hierarchical 
model incorporating a 4th degree polynomial. Lambert 
et al. extended on this by incorporating restricted cubic 
splines to model the mean BP profiles [13]. More recently, 
Edwards and Simpson [21] utilised orthonormal polyno-
mials in a linear mixed model in a group of hypertensive 
subjects. Both polynomials and cubic splines, by their 
nature, have the ability to produce well-fitting curves to 
the data but have the disadvantage that the correspond-
ing coefficients are challenging to interpret directly.

As an alternative we propose using piecewise linear 
splines in a mixed-effects model as a different approach 
for modelling ABPM data. Although linear splines have 
been used to model BP change over years and gesta-
tional age [22], using them to explore daily patterns of 
BP represents a novel method for analysing ABPM. This 
approach has the advantage that coefficients represent 
something meaningful, in this case the slope of BP at dif-
ferent periods of the day. To date it is unclear if differ-
ent underlying circadian BP patterns exist across various 
groups of the population. This method allows slopes at a 
group level (and individual level) to be easily compared. 

Furthermore, using random-effects we want to predict 
and plot curves at an individual level and to explore BPV 
within each period of the day. Thus the aim of this study 
is twofold (1) to introduce and describe a mixed-effects 
piecewise linear model in relation to BP; (2) to apply our 
method to a middle-aged population sample and explore 
their circadian BP patterns. We also introduce and pre-
sent a constraint for our model that ensures periodicity, 
so that on the average BP is the same 24 h later. We are 
particularly interested in identifying distinct differences 
in the shape of mean curves at a group level. For purposes 
of illustration of the models at a group level, we will com-
pare those with and without evidence of subclinical tar-
get organ damage (TOD), specifically microalbuminuria.

Methods
Study population
The analysis utilises data from the Mitchelstown Study, 
a cross sectional study of middle-aged men and women, 
recruited in Ireland 2010–2011. A description of the 
study design is available from previous publications [23, 
24]. The study recruited patients attending a single large 
primary care centre, the LivingHealth Clinic, in Mitch-
elstown. Participants completed a detailed health and 
lifestyle survey questionnaire, and attended for a physi-
cal examination including height, weight, blood pressure, 
fasting blood samples and urine samples. ABPM was 
offered to all participants. All participants provided writ-
ten informed consent and ethical approval was obtained 
from the Research Ethics Committee of the Cork Teach-
ing Hospitals.

Blood pressure measurements
Study BP was measured three times after 5 min of rest in 
a seated position by experienced research nurses using an 
OMRON M7 blood pressure monitor (OMRON Health-
care, The Netherlands). The average of the second and 
third measurements was used for analyses. Ambulatory 
BP was measured using dabl ABPM system (dabl ltd., 
Ireland) with the Meditech ABOM-05 Monitor (Med-
itech LTD., Hungary). The monitors were programmed to 
obtain readings every 30 min and remained in place for 
24-h. Participants kept diaries of wake and sleep periods, 
which were used to calculate sleep and waking times. 
Only participants with a minimum of 20 measurements 
during the day and a minimum of 7 measurements dur-
ing the night period were included in the analysis. Addi-
tionally, any participants with data lacking for more than 
two consecutive hourly intervals were excluded [25].

Target organ damage
Each participant provided an early-morning spot urine 
sample on the day of their appointment. Laboratory 
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analyses included analysis for albumin:creatinine 
ratio (ACR). Microalbuminuria is defined as ACR 
≥1.1 mg mmol−1 [26].

Statistical analysis
Linear mixed model: linear splines
The linear mixed model [27, 28] is a well-recognised 
tool in the analysis of longitudinal data and its ability to 
obtain both population (fixed-effects) and subject-spe-
cific (random-effects) trajectories makes it particularly 
appealing for the analysis of ABPM data. However, its 
use to-date has focused on BP following a smooth cur-
vature trajectory which results in spline and polynomial 
coefficients that are of no direct clinical relevance. Piece-
wise linear functions or linear splines offer an alternative. 
These involve segregating the data into different seg-
ments across time initially assuming the segments are the 
same for everyone. Within each partition, a linear spline 
is fitted and where these are connected are known as 
knot points. The corresponding coefficient of each spline 
represents the rate of increase or decrease of BP during 
each time period.

Knot selection
The position of the knot points were determined based 
on a number of factors. Firstly, to get a general sense of 
the shape of the data and determine regions of interest 
(how many knots were required), we plotted an aver-
age curve of BP including all participants to determine 
common knot points. In addition we incorporated prior 
known characteristics of BP. The period of awakening 
corresponds with an abrupt and steep acceleration of 
BP and for many the maximum value obtained during 
this morning period corresponds to their maximum BP 
reached throughout the day [29]. We also know that BP 
gradually falls throughout the day and usually dips to its 
lowest value during the sleeping period [9]. Since wak-
ing and sleeping times are clearly important in terms of 
changes in BP we decided that the use of these times as 
two additional subject-specific knot points was appropri-
ate. We were able to create these subject-specific knots 
using the wake and sleep times reported by the partici-
pant. We had 49 readings for each individual, where the 
first reading was t1 (12 p.m.) and the final reading was t49 
(12 p.m. the following day). Individual waking and sleep-
ing times were included within this range (t1 −  t49). For 
each individual we created n linear splines, where the kth 
spline:

(1)
sk (t) = 0 if t ≤ tki

sk (t) = ti − tki if t < tk ≤ tki+1 for k = 1, . . . , n

sk (t) = tki+1 − tki if ti > tki+1

Incorporating these linear splines into a linear mixed 
effects model for BP we get:

where BPij is the BP value for the jth measurement on the 
ith person, at time tij, the β’s are the fixed effects coef-
ficients associated with the average intercept at β0 (BP 
at 12  p.m.) and the average slopes (βk’s) between knot 
points, b’s are the random effects associated with the 
average intercept (b0i) and average slopes between knot 
points, and εij representing the individual-level residuals 
from the model. The model is extended by incorporat-
ing the subject-specific knots in the sk term. It is assumed 
the random effects (bi) have zero mean and an unstruc-
tured variance–covariance matrix Σb. The individual 
level residuals have mean zero and variance–covariance 
matrix Σε.

To expand Eq. (2) to include the restriction that on the 
average BP is the same 24 h later we define an equation 
which states average, subject-specific change in BP over 
24 h is zero:

where wki is the width of the kth interval (and where 
those involving wake and sleep times are subject-specific 
width intervals). Rewriting this in terms of β1 gives:

which implies:

where s∗ki = ski −
wki
w1i

s1i, which allows us rewrite (2) as

To explore a group effect the model can easily incor-
porate a variable of interest, in this case TOD (micro-
albuminuria), as a dichotomous covariate. We further 
extended the model allowing the shape of the trajectory 
to depend on TOD by including interactions between 

(2)

BPij = (β0 + b0i)+

n
∑

k=1

(βk + bki)sk + εij

bi ∼ MVN

(

0,
∑

b

)

, εij ∼ N

(

0,
∑

ε

)

(3)

n
∑

k=1

wkiβki = 0

(4)β1i = −

∑n
k=2 wkiβki

w1i

(5)

n
∑

k=1

βkisk = β1is1 +

n
∑

k=2

βkiski =

n
∑

k=2

βkis
∗

ki

(6)BPij = (β0 + b0i)+

n
∑

k=2

(βk + bki)s
∗

ki + εij
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TOD and each linear spline slope. Comparing this model 
with one without any interactions allowed us to test if the 
overall trajectory of BP was different between the two 
groups across the day. Additionally we were able to test 
if slopes between the groups differed at specific locations 
throughout the day. We adjusted for confounders by add-
ing them into the model as fixed effects. In additional 
models we tested the effect of allowing the residual vari-
ance to differ between those with and without microal-
buminuria. Similarly we tested the impact of allowing the 
interaction terms of microalbuminuria with each linear 
spline to be random to determine if there was heteroge-
neity of variance between the groups at any period of the 
day. Although we used an unstructured covariance struc-
ture for our models, we assumed these interaction terms 
to be independent of the other random-effects param-
eters. These interactions represented the difference in 
variation between the microalbuminuria groups within 
each segment. For all models explored we allowed all the 
linear spline terms to be random.

As individual ABPM readings taken close in time are 
likely to be correlated, a model with an independent 
residual correlation structure may not be appropriate. 
We compared this to a model with a first-order autore-
gressive AR(1) structure and examined a plot of the auto-
correlation function (ACF) to detect violations of the 
assumption of independence. Allowing for temporal cor-
relation can potentially result in a large improvement in 
the precision of parameter estimates [30].

Models were compared formally by a likelihood ratio 
test (LRT) [28, 31]. The appropriate variance and resid-
ual function structures were also identified using a LRT 
in addition with an ACF plot. R-squared (R2) statistic is 
often presented as a summary measure for linear mod-
els but due to theoretical or practical problems is rarely 
presented for mixed-models. Nakagawa and Schielzeth 
discuss these issues and present a general but simple 
method for calculating an appropriate R2 for random 
intercept mixed-models [32]. Johnson extended this to 
include random slope models which we implement in our 
analysis [33].

The parameters for our final models were estimated 
using restricted maximum likelihood estimation (REML) 
as this method produces unbiased estimates unlike max-
imum likelihood (ML) estimation [30]. Subject-specific 
trajectories were estimated using Empirical Best Linear 
Unbiased Predictors (EBLUPs) of the random-effects 
[28]. Residual diagnostic plots were examined to verify 
model assumptions including normality of both random-
effects and residual errors and that the error terms had 
constant variance. In addition a visual predictive check 
(VPC) was performed in which the estimated mean and 
the 90% prediction interval from our model were plotted 

together with the observed BP values and the 90% inter-
quantile range of the observations. The purpose of the 
VPC is to assess graphically if predictions from the fit-
ted model reproduce the central trend and variability 
of BP in the observed data, when plotted against time. 
It is an internal validation method that assesses the 
goodness-of-fit [34]. All analysis was completed for both 
SBP and DBP. All analysis were implemented in R [35] 
and parameter estimation for the mixed-effect model 
was carried out by means of the lme command in nlme 
package [36]. Sample R code is provided to ensure repro-
ducibility and improve dissemination of methods (see 
Additional file 1).

Validation
Although difficult to interpret the coefficients, polyno-
mial regression can still be a useful tool in the analysis 
of medical data to plot the trajectory of non-linear or 
curvilinear relationships [37]. As a method of validation 
for our approach we additionally implemented a linear 
mixed model with orthogonal polynomials across time 
in both the fixed and random effects, similar to that of 
Edwards and Simpson [21]. We wanted to determine 
if linear splines were capable of capturing the circadian 
rhythm of BP. This was investigated by comparing the 
trajectories obtained from both methods to determine if 
they followed similar patterns. A similar process to that 
of the piecewise model was followed when fitting the 
polynomial model. As we were only concerned to know 
if the general shape could be captured by our piecewise 
approach we were not worried about over-fitting the 
polynomial model. We implemented a model up to a 6th 
order polynomial allowing all the terms to be random.

Results
Of 3051 individuals invited to participate, 2047 (response 
rate: 67%) completed the questionnaire and physical 
examination component. ABPM was offered to all 2047 
participants and it was completed by 1207 (response rate: 
58%) people, of whom 1008 had a minimum of 20  day 
and 7 night measurements respectively. Of these 886 had 
no data missing for more than two consecutive hourly 
intervals, and the main clinical characteristics of these 
participants are presented in Table  1. Overall, partici-
pants had a mean age of 59.9 (5.5) and the majority were 
female (55%). Sixty percent were classified as hyperten-
sive. Also presented in Table 1 are the characteristics of 
the full sample which shows the ABPM sub-sample fol-
lows a similar distribution in terms of age, sex, BMI and 
the presence of microalbuminuria. However, the pro-
portion of those with hypertension was higher amongst 
those in ABPM sub group than in overall study popula-
tion (60 vs 47%).
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The plot of average SBP for the 886 subjects is pre-
sented in Fig. 1. Based on this plot we identified two com-
mon knot points where the trajectory of SBP changed 
notably at 6  p.m. and 4  a.m. In addition to these two 
points we were able to include two subject-specific knot 
points for each participant based on the time an indi-
vidual woke and went to sleep (Fig. 1). This meant each 
participant was assigned 4 knot points which in turn 
resulted in their SBP pattern being broken into 5 linear 
segments.

Figure  2 represents subject-specific trajectories as a 
function of time only from a linear mixed-effects model 
using both orthogonal polynomials (6th order) (red 
line) and piecewise linear splines (blue lines). The plots 

suggest that the individual curves can be adequately cap-
tured by using piecewise linear splines.

We initially included the 5 linear splines as fixed-
effects. A significant improvement in fit was observed 
when additionally including each term individually as 
a random-effect, based on a LRT (all p  <  0.001). As a 
consequence we included all the linear spline terms as 
random effects. To allow for temporal correlation we 
incorporated an AR1 structure which resulted in a signif-
icant improvement in fit (p < 0.001) (rho = 0.27). Exam-
ining the ACF plot indicated that the inclusion of an AR1 
residual structure adequately accounted for the auto-
correlation in the data. This unadjusted model, which 
only incorporates linear splines as a function of time was 
our base model, Table  2 (Model 1). Presented are the 
parameter estimates (fixed-effects, random-effects cor-
relation matrix, the autocorrelation decay ρ along with fit 
criteria values). With the exception of the slope for the 
period from 12.00 to 18.00 [0.02 (0.04) mmHg/30 min], 
all slopes differed significantly from zero (all p < 0.001). 
This suggests that on average this is the period dur-
ing the day where average SBP remains constant. The 
largest rise and fall in SBP occurred between wake and 
12.00 (2.23 mmHg/30 min) and, between sleep and 04.00 
(−1.93 mmHg/30 min) respectively. These segments cor-
respond to the period when an individual wakes up and 
the period immediately after they fall asleep. The varia-
tion in slopes was lowest from 12.00 to 18.00 where the 
variance was 0.51. The largest variation in slopes was 
observed between waking and 12.00 where the variance 
was 2.05 which is substantially larger in comparison to 
the rest of the day. The model R2 value which illustrates 
the proportion of variance explained by both the fixed 
and random factors was quite high (0.67).

In subsequent models we adjusted for age, sex and BMI. 
We also included our variable of interest, microalbumi-
nuria, to determine if it could help explain the larger vari-
ation in the period, wake to 12.00 (Model 2, Table 2). The 
residual variance, which represents the variation about 
an individual’s trajectory, was 12.3  mmHg. We addi-
tionally allowed the residual variance to vary between 
microalbuminuria groups (ratio of standard deviation 
of those with to without microalbuminuria was 1.09). 
On average, over the day, those with microalbuminuria 
were found to have significantly higher SBP (7.6 mmHg, 
95% CI 5.0–10.1, p < 0.001). However, adjusting for age, 
sex, BMI and microalbuminuria had almost no effect on 
the model parameter estimates (except the intercept). 
To determine if slopes were different between groups 
at different times of the day we included an interaction 
between each linear spline and microalbuminuria (Model 
3, Table  2). Although two of the interaction terms were 
marginally significant, a LRT suggested that including 

Table 1  Baseline characteristics

Data are mean (SD). BMI:body mass index, ABPM ambulatory blood pressure 
monitor. Hypertension: ≥140/90 mmHg and/or on antihypertensive treatment

Characteristic Total (n = 2047) ABPM (sub-sample)
Total (n = 886)

Age, years 59.8 (5.5) 59.9 (5.5)

Gender, male n (%) 1008 (49.2) 401 (45.3)

BMI, n (%)

Underweight/normal  
(<25 kg/m2)

447 (21.9) 195 (22.0)

Overweight (25–30 kg/m2) 925 (45.3) 380 (42.9)

Obese (≥30 kg/m2) 668 (32.8) 310 (35.0)

Office SBP, mmHg 129.6 (16.9) 134.7 (17.7)

Office DBP, mmHg 80.1 (9.8) 83.1 (10.2)

Hypertension, n (%) 951 (46.5) 528 (59.7)

Microalbuminuria 215 (10.6) 62 (7.0)

Fig. 1  Plot of average SBP over 24 h which helped identify 6 p.m. and 
4 a.m. as common knot points for all participants where there was a 
notable change in trajectory of BP. Also highlighted are the periods 
where individuals woke and went to sleep. In addition to the two 
common points, we were able to obtain additional (two) subject-
specific knot points at wake and sleep times
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interaction terms did not improve the overall fit to the 
data (p = 0.12). Based on additional models (results not 
shown) we found no evidence that the variance of the 
random-effects varied with microalbuminuria. With the 
inclusion of age, sex, BMI and microalbuminuria we con-
cluded that Model 2 offered the best fit to the data (Model 
2 vs Model 1, p < 0.01). Residual diagnostic plots of the 
models (residuals vs fitted values, histogram of random-
effects & residuals) showed no violation of assumptions 
(results not shown). The VPC plot showed the model 
was adequately predicting central trend and variability of 
SBP in the observed data, when plotted against time (see 
Additional file 2).

Figure 3 represents the average piecewise linear curve 
along with a 95% confidence interval for those with and 
without the presence of microalbuminuria using Model 
2. The numbers on the plot correspond to the time peri-
ods presented in Table 2. It is clear that those with micro-
albuminuria have a higher average SBP throughout the 
day. For the purposes of this plot we have set the sleep 
and wake time knots at 23.00 and 08.00 respectively. A 
similar plot using model 3 can be found in the Additional 
file  2. Similar findings were found for all analysis when 
repeated using DBP (results not shown).

Discussion
In this large population based study we present an alter-
native method of modelling 24  h BP that can easily be 
applied to any physiological process that follows a cir-
cadian cycle. Our novel but simple approach utilising a 
piecewise linear random-effects model, with an adjust-
ment to ensure that the average level is the same at the 
beginning and end of each 24-h period, offers a practical 
alternative to other methodological modelling techniques 
for researchers exploring circadian patterns. The flexible 
model has the ability to capture overall average, group 
and individual trajectories (in addition to being capable 
of examining slopes at different periods of the day).

Despite the large amounts of literature relating to BP, 
those specifically modelling 24  h ABPM remain sparse. 
Our method offers new measures of short-term BP 
variability as we can quantify the variation about an 
individual’s trajectory but it also allows examination 
of the variation in slopes between individuals (random-
effects). Our results indicated that after adjustment for 
age, sex and BMI the sharpest fall in BP occurred just 
after an individual went to sleep and the steepest rise 
occurred just after waking. Although there was a sig-
nificant difference on average between those with and 

Fig. 2  Individual BP readings along with predicted subject-specific trajectories from a linear mixed effects model as a function of time only using 
two different approaches; polynomials (red line) and piecewise linear splines (blue lines)
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without microalbuminuria we found there was no overall 
improvement in fit after including interaction effects with 
the spline terms. However interestingly we found that the 
variation after awaking, representing what is known as 
the morning surge was considerably larger than the other 
periods of the day.

It has been acknowledged there is not a generally 
accepted “standard” method of analysing 24-h ABPM 
[21]. Cosinor analysis has been highlighted as the most 
common approach [14–17] while fourier analysis [18], 
has also been implemented which are both based on the 
idea that any time series can be described by a series of 
cosine (and sine) waves of various frequencies [38]. It 
has been suggested that these methods impose too many 

restrictions on the shape of the profile and have been 
shown to fit real profiles poorly [39]. Wang et  al. [40] 
suggest problems with fitting a sinusoidal function to a 
circadian pattern include (1) that the pattern over time 
may not be symmetric; that is, the peak and nadir may 
not be separated by 12 h and/or the amplitude and width 
of the peak may differ from those of the nadir, (2) some-
times there are local minimum and maximum points. 
Additionally Wang et  al. [41] suggests that the sinusoi-
dal function is too restrictive and “rhythms with a shape 
closely approximating a cosine curve are uncommon” 
[42]. Alternative methods have examined restricted cubic 
splines and more recently orthonormal polynomials [13, 
21]. As we highlighted previously these approaches may 

Table 2  Various models with  parameter estimates for  slopes at  each segment along  with corresponding correlations 
and variances

Microalbuminuria: albumin:creatinine ratio ≥1.1 mg/mmol

Model 1: Fixed effects (5 linear splines), random effects (5 linear splines)

Model 2: Fixed effects (5 linear splines, microalbuminuria, age, sex, BMI), random effects (5 linear splines)

Model 3: Fixed effects (5 linear splines and interaction with microalbuminuria, age, sex, BMI), random effects (5 linear splines)

Random Effects matrix shown has variances on the diagonal and correlation coefficients on off-diagonals

* p < 0.001; ** p < 0.05

Parameter Model 1 Model 2 Model 3
Fixed effects Estimate (SE) Estimate (SE) Estimate (SE)

BP at 12.00 134 (0.54) 119.2 (4.6) 119.3 (4.6)

Microalbuminuria – 7.57 (1.30)* 5.79 (1.67)*

Slope for spline time period

1. 12.00–18.00 0.02 (0.04) 0.03 (0.04) 0.03 (0.04)

2. 18.00–sleep −1.00 (0.04)* −1.00 (0.04)* −1.01 (0.04)*

3. Sleep–04.00 −1.93 (0.05)* −1.95 (0.06)* −1.99 (0.06)*

4. 04.00–wake 1.69 (0.05)* 1.70 (0.05)* 1.71 (0.05)*

5. Wake–12.00 2.23 (0.07)* 2.21 (0.07)* 2.26 (0.07)*

Microalbuminuria × spline interaction

1. 12.00–18.00 – – −0.06 (0.14)

2. 18.00–sleep – – 0.05 (0.13)

3. Sleep–04.00 – – 0.37 (0.18)**

4. 04.00–wake – – −0.06 (0.16)

5. Wake–12.00 – – −0.48 (0.22)**

Random effects

Σ 223.6 199.5 200.5

−0.23 0.51 −0.23 0.50 −0.24 0.51

−0.23 −0.10 0.55 −0.25 −0.10 0.54 −0.25 −0.11 0.55

−0.23 −0.45 0.03 1.39 −0.28 −0.46 0.02 1.41 −0.28 −0.44 0.02 1.40

0.46 −0.28 −0.74 −0.05 0.66 0.47 −0.31 −0.74 −0.05 0.65 0.49 −0.33 −0.73 −0.04 0.65

0.34 −0.06 −0.21 −0.78 0.19 2.05 0.42 −0.03 −0.22 −0.80 0.23 2.00 0.42 −0.04 −0.20 −0.81 0.24 1.97

σ 12.3 12.3 12.2

ρ 0.27 0.27 0.27

R2 0.67 0.68 0.68

Log-likelihood −149,608 −149,505
Model 2 versus Model 1 (p < 0.001)

−149,502
Model 3 versus Model 2 (p = 0.12)
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model the data quite well and their curvature nature may 
look graphically appealing but it is difficult to understand 
and compare their resulting coefficients.

Piecewise regression which allows separate slopes 
to be fitted to observations before and after a certain 
period or event (knot points) has been cited as a useful 
tool that should be implemented more often in the con-
text of epidemiological studies [43] but has not, to the 
best of our knowledge been used with ABPM data or 
other physiological processes that are circadian. The ben-
efit of this method as opposed to polynomials is that the 
regression coefficients represent something meaningful 
directly without the need for further manipulation of the 
results—in our context, the rate of increase or decrease 
of BP for a certain time of day. The position of the knot 
points can easily be altered depending on the require-
ments of a specific study. For example if we were examin-
ing the effect of dialysis on BP in haemodialysis patients 
we could fix knot points at the time their dialysis began 
and at period(s) a number of hours later.

The morning is recognised as the most important 
period in relation to cardiovascular diseases [44] and 
cardiovascular events occur more frequently in this 
period [44–46]. In our study we found that the steepest 
rise (slope) occurred during the period just after wak-
ing which is in line with the literature, thus verifying that 
our method is capturing known features of the data. It is 
suggested that the abrupt steep rise in BP may explain 
the link between cardiovascular events and the morning 
period [29]. In a review of morning surge with cardiovas-
cular risk, three different definitions of morning surge 
were identified, all of which simply use BP differences 

where they subtracted some average night value minus 
an average of morning BP readings [45]. We argue that 
our method offers a more accurate estimate, as by defi-
nition of a slope we can specifically quantify the rate 
of “surge”. In fact, Parati et  al. argue that a method that 
would be capable of capturing a slope similar to one pur-
posed by our method would provide an accurate method 
of estimating the morning surge [47]. Considering that 
morning surge has been cited as a predictor of stroke and 
advanced target organ damage independent of ambula-
tory BP and nocturnal BP [44, 46], accurately quantifying 
it remains an important issue, particularly when we are 
assessing the benefits of antihypertensive medication in 
their ability to reduce this steep rise. This may not only 
have health implications but also financial benefits. A 
similar argument could be put forward for the dipping 
effect at night which is usually quantified just as a ratio 
of the mean BP between night-day periods. The slope at 
night obtained by our approach may represent a more 
accurate measure but further work would be needed to 
explore this.

Kario argues that the perfect 24  h BP control is not 
limited to reducing mean BP but includes restoring dis-
rupted circadian BP rhythms and reducing exaggerated 
BP variability [44]. As highlighted previously most stud-
ies examining BPV have concentrated on summary meas-
ures of variability such as SD over 24 h or separated into 
day and night values [5–8, 11, 12, 24]. With the use of our 
mixed-effects model we were are able to obtain superior 
measures of BPV that take into account the temporal 
nature of the data. We were able to quantify the variation 
about an individual’s trajectory but also the variation in 
slopes between individuals. Our work highlighted that 
the largest variation between individuals occurred dur-
ing the morning surge period. Adjusting for age, sex and 
BMI did not help explain this variation. Similarly the 
presence of microalbuminuria had little impact on the 
variation. Ideally we would have preferred to explore if 
the variation could in part predict CV events but as data 
is currently only available for wave one, we have been 
restricted to explore a surrogate marker in microalbumi-
nuria and have acknowledged this as a limitation. Further 
work is warranted to include CVD endpoints but per-
haps an underlining physiological phenomenon of BP is 
that it is most variable in the morning possibly because 
this period of the day has an abrupt rise. Although some 
of the knots are subject-specific, others are at common 
fixed locations which may not represent the best posi-
tion for a specific individual and this assumption is rec-
ognised as a limitation. In addition to the average plot, 
we have attempted to incorporate our knowledge of the 
underlying pattern of BP to help inform our knot posi-
tions as suggested by Howe et al. [48].

Fig. 3  Predicted average (95% CI) piecewise linear trajectory of those 
with/without presence of microalbuminuria adjusted for age, sex and 
BMI using a linear mixed-effects model (Model 2). Each linear spline 
represents the rate of BP increase or decrease (slope) for that seg-
ment and has been given a corresponding number which is referred 
to in Table 2. For the purposes of this plot we have set the sleep and 
wake time knots at 23.00 and 08.00 respectively
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As debate remains in relation to how to correctly quan-
tify short-term BPV [24, 49] our approach offers new 
alternatives that utilise the full power of ABPM that is 
often lost when using summary measures such as SD 
because it only reflects the dispersion of measurements 
around a single value (mean) not accounting for the order 
in which BP measurements were obtained [12, 50]. As 
argued by Bamberger et al. there are a large and increas-
ing variety of mathematical equations available which 
allow us to test specific hypotheses about, and estimate 
parameters of, growth or change (BP) with varying pur-
poses such as summarizing the shape of change across 
a sample or determining patterns in variability [51]. 
Despite this however, Diehl et  al. suggests that sum-
mary measures and multilevel models described here are 
two of the most common techniques used specifically 
for exploring BP changes [52]. They also suggest the use 
of dynamic developmental models with multiple time 
scales as another approach to address questions related 
to intraindividual variability. This is quite similar to the 
multilevel model framework but is slightly more flexible 
and can include more complex scenarios. These models 
are characterized by time-dependent parametric changes 
occurring at different time scales, where each time scale 
defines a distinct level within a hierarchy of time scales 
[53]. In the context of our work this approach may be 
useful if we had additional data that could incorporate 
another time scale, such as BP over years e.g. the lifes-
pan. The benefit from this would be that we could com-
pare and relate BP fluctuations over 24 h to that over the 
lifespan. However, in this study we are only interested in 
24 h variation where we only have recordings taken every 
30 min. With only one time scale, we believe that the use 
of the traditional mixed-effects model is appropriate for 
our analysis. We argue that our approach, which has the 
ability to determine variation over specific periods of 
the day offers a novel measure of variability in the anal-
ysis of 24 h BP which may have benefits when attempt-
ing to determine the optimal timing of antihypertensive 
medication administration in future studies. Finally, as 
was briefly alluded to, the approach and discussion out-
lined is not restricted to the use of BP and can easily be 
implemented on any physiological process that dem-
onstrates a circadian cycle. BP is not the only biological 
process where disruptions to circadian rhythms are clini-
cal relevant. Wang et  al. found that those with Cushing 
syndrome exhibited no circadian rhythm of cortisol, 
while those with depression showed a dampened rhythm 
compared to the normal group [41]. Liu et al. found that 
larger short-term fluctuations in intraocular pressure are 
more common in glaucoma [54]. Similar to the morn-
ing BP surge, it was found that intraocular pressure was 
higher in the morning and more prevalent in those with 

glaucoma. This suggests that our approach may be ben-
eficial to the exploration of other biological rhythms that 
have similar features to that of BP.

Conclusion
This study has introduced a novel but practical method 
for the analysis of ABPM data. Based on our work circa-
dian BP patterns can be modelled using a mixed-effects 
model with piecewise linear splines. The main advantage 
of our method compared to other approaches is that the 
resulting regression coefficients have direct interpreta-
tion. We can determine the rate of increase or decrease at 
different periods of the day. In addition we can determine 
alternative measures of variability compared to classical 
BPV indices. Future research in this area should focus on 
the association between the measures obtained from this 
method to stronger clinical outcomes.
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