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Simple Summary: Diets with a lower dietary cation-anion difference could prevent hypocalcemia,
enhance health, and extend the economic life of transition mammary animals. However, there is less
information on rumen fermentation, cellulolytic bacteria populations, and microbiota for female goats
fed a negative dietary cation-anion difference diet. We speculate that a negative dietary cation-anion
difference would not affect the rumen fermentation parameters. Therefore, the present study was
conducted to evaluate the effect of a negative dietary cation-anion difference diet on rumen pH,
buffering capability, volatile fatty acids of acetic acid, propionic acid, butyric acid, total volatile fatty
acid and acetic acid/propionic acid profiles, ruminal cellulolytic bacteria populations, and microbiota.
These results provide a further evaluation on the feasibility of feeding a negative dietary cation-anion
difference diet to goats.

Abstract: The dietary cation-anion difference (DCAD) has been receiving increased attention in recent
years; however, information on rumen fermentation, cellulolytic bacteria populations, and microbiota
of female goats fed a negative DCAD diet is less. This study aimed to evaluate the feasibility
of feeding a negative DCAD diet for goats with emphasis on rumen fermentation parameters,
cellulolytic bacteria populations, and microbiota. Eighteen female goats were randomly blocked to
3 treatments of 6 replicates with 1 goat per replicate. Animals were fed diets with varying DCAD
levels at +338 (high DCAD; HD), +152 (control; CON), and −181 (low DCAD; LD). This study lasted
45 days with a 30-d adaption and 15-d trial period. The results showed that the different DCAD
levels did not affect the rumen fermentation parameters including pH, buffering capability, acetic
acid, propionic acid, butyric acid, sum of acetic acid, propionic acid, and butyric acid, or the ratio of
acetic acid/propionic acid (p > 0.05). The 4 main ruminal cellulolytic bacteria populations containing
Fibrobacter succinogenes, Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, and Ruminococcus albus
did not differ from DCAD treatments (p > 0.05). There was no difference in bacterial richness and
diversity indicated by the indices Chao, Abundance Coverage-based Estimator (Ace), or Simpson
and Shannon, respectively (p > 0.05), among 3 DCAD levels. Both principal coordinate analysis
(PCoA) weighted UniFrac distance and unweighted UniFrac distance showed no difference in the
composition of rumen microbiota for CON, HD, and LD (p > 0.05). At the phylum level, Bacteroidetes
was the predominant phylum followed by Firmicutes, Synergistetes, Proteobacteria, Spirochaetae,
and Tenericutes, and they showed no difference (p > 0.05) in relative abundances except for Firmicutes,
which was higher in HD and LD compared to CON (p < 0.05). At the genus level, the relative
abundances of 11 genera were not affected by DCAD treatments (p > 0.05). The level of DCAD had
no effect (p > 0.05) on growth performance (p > 0.05). Urine pH in LD was lower than HD and CON
(p < 0.05). Goats fed LD had higher plasma calcium over HD and CON (p < 0.05). In summary, we
conclude that feeding a negative DCAD has no deleterious effects on rumen fermentation and rumen
microbiota and can increase the blood calcium level, and is therefore feasible for female goats.
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1. Introduction

Dietary cation-anion difference (DCAD; mmol/kg dry matter (DM)) refers to the
difference between the number of millimoles of major cations (Na+ and K+) and major
anions (Cl− and S2−) per kg DM in the diet [1]. The initial benefit of feeding a negative
DCAD was reported by Block [2], who observed that treatment with−172.3 (mmol/kg DM)
DCAD could prevent hypocalcemia compared to a control DCAD of +448.6 (mmol/kg DM).
The DCAD level has been an important parameter in the process of formulating diets fed
to Holstein cows in recent years [3–7]. Studies have shown that diets with a lower DCAD
could enhance health and extend the economic life of transition mammary animals [8–10].
Recently, attention has been given to the interaction of DCAD with calcium (Ca) [11],
cholecalciferol/calcidiol [12], 5-hydroxy-l-tryptophan [13], vitamin D [14–16], and the
duration [17,18] of blood Ca level increases. Results of these studies indicated that lower
DCAD in association with the above factors was effective in improving homeostasis of
peripheral blood Ca. Most recently, Santos et al. [19] and Lean et al. [20] used meta-analyses
to determine the effects of varying DCAD on the performance, production, and health of
cows; they concluded that a negative DCAD prepartum would increase blood total Ca
level at calving and result in fewer disease events.

Butyrivibrio fibrisolvens, Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ru-
minococcus albus were reported as the 4 most important cellulolytic bacteria for digestion
and utilization of fiber in the rumen [21–23]. However, to our knowledge, there is less
information on rumen fermentation, cellulolytic bacteria populations, and microbiota for
female goats fed a negative DCAD diet. Based on the strong buffering capability (BC) of
ruminal fluid, we hypothesized that a negative DCAD would not affect the rumen fermen-
tation parameters. Therefore, the present study was conducted to evaluate the effect of a
negative DCAD diet on rumen pH, BC, volatile fatty acid (VFA) of acetic acid, propionic
acid, butyric acid, sum of acetic acid, propionic acid, butyric acid, and acetic acid/propionic
acid (A/P), as well as ruminal cellulolytic bacteria populations of Butyrivibrio fibrisolvens,
Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus, and microbiota.
Growth performance, fluid acid–base balance, and plasma Ca level were also measured.
The results should provide a further evaluation on the feasibility of feeding a negative
DCAD diet to goats.

2. Materials and Methods
2.1. Animals and Experimental Design

The animal treatment procedures were approved by the Guizhou University Com-
mittee of Experimental Animal Ethics with the number code EAE-GZU-2020-P016. Using
a completely randomized block design, 18 Qianbei miscellaneous-color female goats (a
native goat breed in the southwest of China) at around the 30th day of pregnancy with a
similar body weight (BW; 30.07 kg, SD = 0.55) and age (13 months) were blocked to 3 treat-
ments of 6 replicates with 1 goat per replicate. Animals were fed 1 of 3 diets with varying
DCAD levels (mmol/kg DM): +350 (high DCAC; HD), +100 (control; CON), and−150 (low
DCAD; LD). The diet was pelleted as total mixture ration (TMR) with a ratio of concentrate
to roughage at 30:70. The NaHCO3 and NH4Cl was included to increase and reduce DCAD
for HD and LD, respectively.

Goats were fed in their individual metabolic cages during the whole experiment.
The experiment duration was 45 d including a 30-d adaption period and 15-d trial period.
The adaption period was divided into 3 stages. In the first stage (1–12 d), goats were ob-
served for health conditions, treated for parasites, and disinfected. During the second stage
(13–18 d), goats were allowed to adjust to their respective diets. In the third stage (19–30 d),
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steady dry matter intake (DMI) was measured for individual goats. After that, in the trial
period (31–45 d), goats were strictly fed the treatment diets according to the established
DMI at 09:00 and 18:00. All goats had free access to water during the whole experimental
process. Ingredients and chemical components of diets are shown in Table 1. The DCAD
levels were measured as +338, +152, and −181 for HD, CON, and LD, respectively.

Table 1. Ingredients and chemical components of diet for goat (%, dry matter (DM) basis).

Items
DCAD 1

HD CON LD

Ingredients
Concentrate 2 30 30 30
Peanut straw 50 50 50

Faba bean straw 20 20 20
NaHCO3 (g/d) 12 – –
NH4Cl (g/d) – – 15

Chemical components 3

Dry matter 93.70 93.77 93.90
Crude protein 13.40 13.64 14.21

Neutral detergent fiber 39.40 39.64 39.82
Acid detergent fiber 30.35 30.62 30.64

Crude ash 11.98 12.97 12.29
Na 0.52 0.19 0.14
K 1.08 0.98 0.87
Cl 0.23 0.27 1.25
S 0.16 0.17 0.18

DCAD (mmol/kg DM) +338 +152 −181
1 DCAD: Dietary cation-anion difference; HD: High DCAD; CON: Control; LD: Low DCAD. 2 Composition and
proportion (%): Corn 51.07, soybean meal 24.82, wheat bran 11.19, rapeseed meal 8.07, CaHPO4 0.45, lysine 0.27,
methionine 0.29, NaCl 0.77, and premix 3.06. 3 Actually measured values.

2.2. Sample and Measurement

Diet samples were collected daily during 19–45 d and were composited and dried
at 65 ◦C and then ground to pass a 1-mm screen for proximate chemical composition
determination of DM, crude protein (CP), crude ash (Ash) [24], neutral detergent fiber
(NDF), and acid detergent fiber (ADF) [25]. An atomic absorption spectrophotometer (iCE
3000 SERIES, Thermo Fisher Scientific, USA) was used to measure Na and K contents. Silver
nitrate titration was used to determine Cl concentration. The S level was determined using
the magnesium nitrate method as previously described [26]. The DCAD was calculated
using the following equation according to Block [2]:

DCAD = Na (%)/0.0023 + K (%)/0.0039 − Cl (%)/0.00355 − S (%)/0.0016

All goats were weighed on day 32 as the initial body weight and on day 46 as the
final body weight. The DMI was recorded daily for each goat calculated by allowance of
refusals. The average net body gain (ANG) was determined by subtraction of initial body
weight from final body weight. The average daily body gain (ADG) was determined by
dividing ANG with the trial period (15 d). The feed conversion ratio (FCR) was the ratio of
DMI to ADG.

At 8:30 on day 44, rumen fluid was collected through the esophageal cannula via a
vacuum pump (VP30, Labtech Instrument Co. Ltd., Beijing, China) in accordance with the
methodology [27]. Rumen pH was measured using a portable type pH meter (PHS-3C,
Youke Instrument Co. Ltd., Shanghai, China). Rumen BC was assessed in accordance with
Tucker et al. [28]. To determine the rumen VFA, samples were centrifuged at 10,000× g
for 10 min at 4 ◦C (Thermo Fisher-ST 16R), and the supernatant fraction filtered through a
0.45-µm filter; at least 1.5 mL supernatant was promptly transferred to a 2 mL centrifuge
tube. The 1280 µL of filtrate was mixed with 600 µL of 20% metaphosphoric acid and 120 µL
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of crotonic acid (internal standard), and the mixtures were centrifuged again under the same
conditions. All the steps above are performed on ice. Finally, 1 mL supernatant was trans-
ferred to a 2-mL sample vial. The VFA concentrations in filtered samples were determined
by gas chromatography (GC-2010-plus, Shimadzu, Japan) equipped with an AOC-20i
autosampler, and coupled to a flame ionization detector. The chromatographic separation
was performed on a Shimazu SH-Rtx-Wax capillary column (30 m × 0.25 mm × 0.25 µm).
Three µL of the sample solution was injected in split mode at a ratio of 50:1. The injection
temperature was 200 ◦C and the detector temperature was 220 ◦C. The initial temperature
of the column was 100 ◦C for 2 min, increased to 150 ◦C at a rate of 5 ◦C per minute.
The flow rate was set to 1.08 mL/min. The carrier gas was N2 (99.999%) and its pressure
was 0.5, H2 0.4, air 0.3~0.4 MPa.

Ruminal fluid samples were stored at −80 ◦C in aliquots. In order to assure complete
breakage of cells for DNA extraction, we performed a bead-beating step before using a
Qiagen Mini Stool Kit for DNA extraction. We added 0.25 g sterile 0.1 mm zirconia beads,
oscillated for 2 min with the mill, and then performed DNA extraction in accordance
with the kit procedure. The DNA was extracted from 200-mg samples using a QIAamp
DNA Stool Mini Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions.
The DNA concentration and purity were checked by running samples on 1.0% agarose gels.
The PCR amplification of 16S rRNA genes was performed using general bacterial primers:
515F 5′-GTGCCAGCMGCCGCGGTAA-3′ and 926R 5′-CCGTCAATTCMTTTGAGTTT-3′.
The primers also contained the Illumina 5′-overhang adapter sequences for the two-step
amplicon library building, following the manufacturer’s instructions for the overhang
sequences. The initial PCR reactions were carried out in 25-µL reaction volumes with 1–2 µL
of DNA template, 250 mM dNTPs, 0.25 mM of each primer, 1×reaction buffer, and 0.5 U of
Phusion DNA Polymerase (New England Biolabs, Ipswich, MA, USA). The PCR conditions
consisted of initial denaturation at 94 ◦C for 2 min, followed by 25 cycles of denaturation
at 94 ◦C for 30 s, annealing at 56 ◦C for 30 s, and extension at 72 ◦C for 30 s, with a final
extension of 72 ◦C for 5 min. The second step of PCR with dual eight-base barcodes was
used for multiplexing. Eight-cycle PCR reactions were used to incorporate two unique
barcodes to either end of the 16S amplicons. Cycling conditions consisted of one cycle
of 94 ◦C for 3 min, followed by eight cycles of 94 ◦C for 30 s, 56 ◦C for 30 s, and 72 ◦C
for 30 s, and a final extension of 72 ◦C for 5 min. Prior to library pooling, the barcoded
PCR products were purified using a DNA gel extraction kit (Axygen Biotech, Hangzhou,
China) and quantified using FTC-3000 TM real-time PCR. The libraries were sequenced
by 2 × 300 bp paired-end sequencing on the MiSeq platform using MiSeq v3 Reagent Kit
(Illumina) at Tiny Gene Bio-Tech (Shanghai) Co. Ltd.

The raw fastq files were demultiplexed based on the barcode. The PE reads for
all samples were run through Trimmomatic (version 0.35) to remove low-quality base
pairs using parameters SLIDINGWINDOW: 50:20 and MINLEN: 50. Trimmed reads
were then further merged using the FLASH program (version 1.2.11) with default pa-
rameters. The low-quality contigs were removed based on screen.seqs command and the
singletons were filtered out from the spliced long reads using mothur V.1.39.5 following
filtering parameters, maxambig = 0, minlength = 200, maxlength = 580, and maxhomop = 8.
The 16S sequences were analyzed using a combination of software mothur (version
1.39.5), UPARSE (usearch version v8.1.1756, http://drive5.com/uparse/, 24 Novem-
ber 2020) and R (version 3.2.3). The demultiplexed reads were clustered at 97% se-
quence identity into operational taxonomic units (OTUs) using the UPARSE pipeline
(http://drive5.com/usearch/manual/uparse cmds.html, 24 November 2020). The OTU
representative sequences were used for taxonomic assignment against the Silva 128 database
with a confidence score ≥0.6 by the classify.seqs command in mothur. The OTU tax-
onomies (from phylum to species) were determined based on NCBI. In this study, the mean
valid sequence, optimized sequence, and OUT were 38,812, 30,716, and 724, separately.
The four members of the rumen cellulolytic bacteria community (B. fibrisolvens, F. suc-
cinogenes, R. flavefaciens, and R. albus, % of total bacterial 16S rDNA) were selected from

http://drive5.com/uparse/
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“Species” for statistical analysis. OTUs with a similar level of 97% were selected for
Venn analysis using R (3.4.1). Rarefaction curves based on observed species and phylo-
genetic distance whole tree measures plateaued. Rank-abundance distribution curves
was performed by ranking OTUs in order of abundance (number of sequences con-
tained) from largest to smallest. Alpha diversity was analyzed using mothur (http:
//www.mothur.org/wiki/Schloss_SOP#Alpha_diversity, 24 November 2020) and QIIME
(http://qiime.org/scripts/alpha_diversity.html?highlight = alpha, 24 November 2020).
Principal coordinate analysis (PCoA) was performed, using both weighted and unweighted
unique fraction metric (UniFrac) distances that measured the phylogenetic distance be-
tween sets of taxa in a phylogenetic tree as the fraction of the branch length of the tree,
on the 97% OTU composition and abundance matrix. The microbial community structure
was composed of a data table based on species classification information and plotted using
R (3.4.1) language GGPLOT2.

Urine pH was measured once every 3 d during the first (1–12 d) and second (13–18 d)
adaption periods, once every 2 days during the third stage (19–30 d), and daily for the
trial period (31–45 d). Briefly, urine was immediately dipped with special indicator paper
(5.4–7.0, SSSreagent Co. Ltd., Shanghai, China; 6.4–9.0, Fuyang Special Paper Co. Ltd.,
Hangzhou, China) when goats were urinating.

Ten-mL blood samples of every goat were collected from the jugular vein at 45 d
and were centrifuged at 805× g for 15 min to harvest plasma for analysis of Ca, glucose
(Glc), urea nitrogen (UN), alanine aminotransferase (ALT), aspartate transaminase (AST),
alkaline phosphatase (AKP), total protein (TP), albumin (Alb), superoxide dismutase (SOD),
glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and catalase (CAT).

2.3. Statistical Analysis

The MIXED models in SAS 9.4 (SAS Institute Inc, Cary, NC, USA) were applied
for analysis of experimental data. A randomized complete block design with repeated
measures was used for data analysis. The DCAD levels (+338, +152, and −181) were
designated as fixed effects, and goats as the random effect, then Tukey’s method was
adopted to determine differences among means of the 3 DCAD treatments. Statistical
significance was defined as p < 0.05.

3. Results
3.1. Rumen Fermentation Parameters

There was no significant difference in rumen pH for HD, CON, or LD (p = 0.97;
Table 2). The variation of DCAD had no effect on ruminal BC, rumen acetic acid, propionic
acid, butyric acid, sum of acetic acid, propionic acid, butyric acid, or the A/P levels of the
goats (p ≥ 0.60).

Table 2. Effect of varying dietary cation-anion difference on the rumen fermentation parameters of
female goats.

Items
DCAD 1

SEM 2 p-Value
HD (+338) CON (+152) LD (−181)

pH 7.2 7.2 7.2 0.14 0.97
BC 3 (mL/L) 44.7 43.3 43.1 1.38 0.67

Acetic acid (mmol/L) 42.2 43.4 44.8 2.32 0.74
Propionic acid (mmol/L) 13.0 13.1 12.7 0.84 0.95
Butyric acid (mmol/L) 8.0 8.5 8.1 0.83 0.91

Sum of Ac + Pro + But 4

(mmol/L)
63.2 65.0 65.6 3.41 0.87

A/P 5 3.25 3.31 3.53 0.29 0.60
1 DCAD: Dietary cation-anion difference; HD: High DCAD; CON: Control; LD: Low DCAD. 2 SEM: Standard
error of mean. 3 BC: Buffering capability. 4 Ac = Acetic acid; Pro: Propionic acid; But: Butyric acid. 5 A/P: Acetic
acid/propionic acid.

http://www.mothur.org/wiki/Schloss_SOP#Alpha_diversity
http://www.mothur.org/wiki/Schloss_SOP#Alpha_diversity
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3.2. Rumen Cellulolytic Bacteria

The relative contents of Fibrobacter, Butyrivibrio, Ruminococcus, F. succinogenes, R.
flavefaciens, B. fibrisolvens, R. albus, and the sum of F. succinogenes, R. flavefaciens, B. fibrisolvens,
and R. albus were not significantly affected in goats that consumed HD, CON, or LD diets
(p ≥ 0.12; Table 3).

Table 3. Effect of varying dietary cation-anion difference on the relative abundance (%) of rumen
cellulolytic bacteria communities of female goats.

Genus Species
DCAD 1

SEM 2 p-ValueHD
(+338)

CON
(+152)

LD
(−181)

Fibrobacter (%) 0.444 0.362 0.326 0.10 0.69
F. succinogene (%) 0.443 0.362 0.324 0.10 0.70

Butyrivibrio (%) 1.015 0.459 0.478 0.13 0.12
B. fibrisolvens (%) 0.12 0.085 0.065 0.03 0.59

Ruminococcus (%) 1.054 1.538 1.276 0.27 0.79
R. flavefaciens (%) 0.343 0.414 0.119 0.21 0.51

R. albus (%) 0.005 0.018 0.007 0.01 0.50
Sum of F. succinogenes,

R. flavefaciens, B.
fibrisolvens and R. albus

0.911 0.879 0.515 0.16 0.57

1 DCAD: Dietary cation-anion difference; HD: High DCAD; CON: Control; LD: Low DCAD. 2 SEM: Standard
error of mean.

3.3. Sequencing and Diversity of Ruminal Microbiota

After Illumina Miseq high-throughput sequencing, a total of 698,626 valid reads were
obtained with an average length of 410 bp. The average valid sequence and optimized
sequence of 16 samples were 38,812 and 30,716, separately. The Venn graph showed
that there were 1075 identical OTU of total 1261 among 3 groups. There were 22, 25, 5
individual OTUs, accounting for 1.89%, 2.33% and 0.43% for LD, HD, CON, respectively
(Figure 1A). Rarefaction curves were established to quantify the OTU coverage of sampling
and each rarefaction tended to be gentle with the increase of sequence number (Figure 1B),
and meanwhile, the OTU rank abundance in the 3 groups exhibited a gentler slope and
wider distribution on the horizontal axis (Figure 1C).

Alpha diversity results showed that DCAD levels did not affect Coverage, Sobs,
Chao, Abundance Coverage-based Estimator (Ace), Simpson, Shannon, or PD_whole_tree
as listed in Table 4 (p ≥ 0.05). Both PCoA weighted UniFrac distance (Figure 1D) and
unweighted UniFrac distance (Figure 1E) displayed no obvious microbial community
differences between individuals and groups for CON, HD, and LD.

Table 4. Effect of varying dietary cation-anion difference on rumen bacterial community richness
and diversity of female goats.

Items
DCAD 1

SEM 2 p-Value
HD (+338) CON (+152) LD (−181)

Coverage (%) 99.52 99.49 99.45 0.06 0.96
Sobs 785 686 701 35.90 0.29
Chao 906 843 811 4.28 0.33
Ace 3 900 834 815 4.33 0.36

Simpson 0.027 0.033 0.028 0.04 0.76
Shannon 4.87 4.45 4.69 0.21 0.05

PD_whole_tree 55.05 49.90 50.42 1.08 0.10
1 DCAD: Dietary cation-anion difference; HD: High DCAD; CON: Control; LD: Low DCAD. 2 SEM: Standard
error of mean. 3 Ace: Abundance Coverage-based Estimator.
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Figure 1. Rumen bacterial diversity of female goats fed varying dietary cation-anion difference. (A) The Venn graph.
(B) Rarefaction curves. (C) Rank abundance distribution curves. (D) Principal coordinate analysis (PCoA) based on
weighted UniFrac distance. (E) PCoA based on unweighted UniFrac distance.

Taxonomic classification summary indicated that 16 phyla were detected in all sam-
ples (Figure 2A). At the phylum level, Bacteroidetes (61.60%) was the predominant phy-
lum followed by Firmicutes, Synergistetes, Proteobacteria, Spirochaetae, and Tenericutes
with average relative abundances of 25.32%, 5.84%, 1.82%, 2.08%, and 1.2%, respectively.
However, there was no difference (p ≥ 0.14) among the groups on the above phylum levels
except for Firmicutes, which was higher in HD and LD compared to CON (p = 0.008,
Table 5).

Table 5. Effect of varying dietary cation-anion difference on relative abundance (%) of bacteria
taxa > 0.1% of average abundance in the rumen fluid of female goats.

Phylum Genus
DCAD 1

SEM 2 p-Value
HD (+338) CON (+152) LD (−181)

Bacteroidetes 60.4 65.1 59.3 2.81 0.33
Prevotella 18.9 24.2 16.1 3.05 0.22

Paraprevotella 3.58 2.8 3.5 1.24 0.88
Firmicutes 28.4 a 18.7 b 28.8 a 2.23 0.008

Selenomonas 1.6 0.6 1.3 0.78 0.63
Ruminococcus 1.1 1.5 1.3 0.49 0.79
Succiniclasticum 1.3 0.7 0.7 0.25 0.14
Butyrivibrio 1.0 0.5 0.5 0.20 0.12

Quinella 2.3 0.7 3.7 1.27 0.28
Synergistetes 5.2 6.3 6.0 2.03 0.92

Fretibacterium 5.2 6.3 6.0 2.04 0.92
Spirochaetae 1.4 2.1 1.9 0.49 0.61

Treponema 0.7 1.0 1.4 0.37 0.46
Proteobacteria 1.1 4.5 0.7 1.40 0.14
Tenericutes 1.1 1.2 1.3 0.29 0.82

a,b Means in the superscript differs in the same row (p < 0.05). 1 DCAD: Dietary cation-anion difference; HD:
High DCAD; CON: Control; LD: Low DCAD. 2 SEM: Standard error of mean.
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Figure 2. Rumen bacterial diversity and taxonomic classification of female goats fed varying dietary cation-anion difference.
(A) Distributions of rumen microbiota at phylum level. (B) Distributions of rumen microbiota at genus level.

At the genus level, taxon displayed that the relative abundance of 11 genera were not
affected by DCAD among all samples (p > 0.05; Figure 2B). At the same time, Prevotella,
Paraprevotella, Selenomonas, Ruminococcus, Butyrivibrio, Quinella, Fretibacterium, and Tre-
ponema showed no grouping difference of the genera across treatments (p ≥ 0.12). Among
the genera that showed more than 0.1% of relative abundance, Prevotella was the dominant
genus in each group with the highest proportion (Table 5).

3.4. Growth Performance

Levels of DMI were unaffected by DCAD variations (p = 0.89; Table 6). Lower DCAD
had no effect (p ≥ 0.63) on growth performance of the final weight, ANG, ADG, or FCR
for goats.

Table 6. Effect of varying dietary cation-anion difference on growth performance of female goats.

Items
DCAD 1

SEM 2 p-Value
HD (+338) CON (+152) LD (−181)

Initial body weight (kg) 30.3 30.4 29.4 1.36 0.86
Final body weight (kg) 31.3 31.5 30.4 1.48 0.82

DMI 3 (g/d) 899.0 857.5 864.0 64.85 0.89
ANG (kg) 1.0 1.1 1.0 0.21 0.89

ADG (g/d) 65.3 71.3 64.7 8.28 0.63
FCR 13.8 12.0 13.4 3.00 0.81

1 DCAD: Dietary cation-anion difference; HD: High DCAD; CON: Control; LD: Low DCAD. 2 SEM: Standard
error of mean. 3 DMI: Dry matter intake; ANG: Average net body gain; ADG: Average daily body gain; FCR:
Feed conversion ratio (the ratio of DMI to ADG).

3.5. Urine pH

There was no difference (p = 0.31) in urine pH for HD, CON, or LD during the
observation period of 1–12 d, with pH values of 8.48, 8.43, and 8.46, respectively (Figure 3).
Urine pH in LD reduced relative to HD and CON (p < 0.000) during days 13–18. Urine pH
decreased significantly with LD obviously lower (p < 0.000) than both HD and CON during
days 19–30. During the trial period (31–45 d), LD quadratically reduced urine pH over HD
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and CON (8.43, 8.42, and 6.75 for HD, CON, and LD, respectively; p < 0.000). Urine pH
values were unaffected between HD and CON (p > 0.05). Furthermore, urine pH had a
strong association with DCAD within the trial period (31–45 d; R2 = 0.9706; p < 0.0001;
Figure 4).

Figure 3. Urine pH variation of female goats fed varying dietary cation-anion difference throughout the experiment.

Figure 4. Association between urine pH and varying dietary cation-anion difference of female goats
within the trial period.

3.6. Plasma Metabolites

Feeding of the LD diet resulted in the highest plasma Ca level (Table 7), which was
higher than both HD and CON (p < 0.01). There was no significant difference in other
plasma metabolites of Glc, UN, ALT, AST, AKP, TP, Alb, GSH-Px, CAT, SOD, or MDA
among the DCAD treatments (p ≥ 0.37; Table 7).
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Table 7. Effect of varying dietary cation-anion difference on the plasma metabolites of female goats.

Items
DCAD 1

SEM 2 p-Value
HD (+338) CON (+152) LD (−181)

Ca (mmol/L) 2.3 b 2.4 b 2.9 a 0.08 <0.01
Glc 3 (mmol/L) 4.6 5.1 4.6 0.34 0.56
UN (mmol/L) 6.2 5.6 6.2 0.41 0.50

ALT (IU/L) 8.6 10.2 10.8 1.70 0.85
AST (IU/L) 11.2 14.0 11.9 2.01 0.80

AKP(King unit/100 mL) 20.8 21.7 17.8 3.75 0.75
TP (g/L) 99.4 112.9 92.6 11.47 0.37
Alb (g/L) 36.4 37.1 35.2 2.35 0.85

GSH-Px (U/mL) 670.6 755.3 709.4 152.50 0.59
CAT (U/mL) 2.3 1.9 2.5 0.66 0.84
SOD (U/mL) 68.5 63.6 68.0 3.38 0.43

MDA (nmol/mL) 37.1 34.6 36.8 2.54 0.75
a,b Means in the superscript differs in the same row (p < 0.05). 1 DCAD: Dietary cation-anion difference; HD:
High DCAD; CON: Control; LD: Low DCAD. 2 SEM: Standard error of mean. 3 Glc: Glucose; UN: Urea nitrogen;
ALT: Alanine aminotransferase; AST: Aspartate transaminase; AKP: Alkaline phosphatase; TP: Total protein; Alb:
Albumin; SOD: Superoxide dismutase; GSH-Px: Glutathione peroxidase; MDA: Malondialdehyde; CAT: Catalase.

4. Discussion

In this study, rumen pH was unaffected for 3 DCAD treatments. This was also shown
in the study of Apper–Bossard et al. [29]. The reason is that rumen has a strong buffer
system to maintain a stable rumen status by keeping any sudden rise or fall in rumen
pH within a certain range [30]. Meanwhile, there was no difference for rumen BC for the
varying DCAD levels. Church [31] argued that this was because the rumen buffer system
was controlled by pH, pCO2, and VFA. In our study, the lack of difference in rumen BC
and pH indicated that negative DCAD would not exert deleterious influence on the rumen
internal environment. Thereafter, up to now there has been insufficient information on
rumen BC in female goats consuming reduced DCAD, and further study is needed due to
its effect on maintaining homeostasis of the rumen. Increasing DCAD, by adding K and
Na, had no effect on rumen VFA concentration [32]. Tucker et al. [33] reported that the
rumen VFA profile was unaffected by DCAD levels of −100, 0, 100, and 200 mmol/kg
DM. Apper–Bossard et al. [29] found no significant difference in VFA concentration with
varying DCAD. These results are consistent with our study in which rumen VFA profiles
were not significantly affected by DCAD variation. Correspondingly, the rumen A/P
level was unaffected by DCAD treatment. This indicates that the rumen fermentation
pattern was unchanged by the 3 DCAD treatments. With dairy goats as the experimental
animals fed 2 DCAD levels at 349 and −167 mmol/kg DM in our most recent study, it
was found that rumen VFAs were also not influenced (unpublished data). Results from
the current study show that DCAD variation had no influence on ruminal abundance of
B. fibrisolvens, F. succinogenes, R. flavefaciens, or R. albus, indicating that negative DCAD
would not affect the growth or colonization of rumen cellulolytic bacteria. This may be
likely associated with stable rumen pH maintained by the constant ratio of concentrate
to roughage (30:70) for the 3 DCAD diets used in this study. In addition, the overall low
abundance of cellulolytic bacteria is likely due to the systematic underestimation of the
particulate-associated community due to the use of stomach tubing as a sampling method,
which oversamples the planktonic community.

Rumen bacterial species, the Chao index, and the Ace index were closely related with
rumen pH levels because they could alter the bacterial community structure, which is
supported by Guo et al. [34], who found that decreased rumen pH upregulated the bacterial
diversity, composition, and abundance of bacteria. As mentioned above, rumen pH showed
no treatment effects by DCAD level. This exactly explained why the Chao index, Ace index,
Simpson index, and Beta diversity of the 3 groups were homogeneous. The Shannon index
of the HD group was the highest, possibly because NaHCO3 was added as a buffer to
neutralize gastric acid and was essential for stomach health by creating a suitable internal
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environment for rumen microorganisms. In addition, the dominant rumen bacteria of the
3 groups were Bacteroidetes followed by Firmicutes and Synergistetes, which coincided
with the results of a previous study in which the abundance of rumen bacteria is ordered by
Bacteroidetes, Firmicutes, and Synergistetes at the level of phylum [35]. In terms of genus
level, the relative abundance of Prevotella, one of the primary carbohydrate-degrading
microorganisms, was the highest, which was supported by the previous study [36].

It is well known that rumen pH, BC, VFA, cellulolytic bacteria population, and rumen
microbiota diversity are crucial in the fermentation status of goats. The unaffected parame-
ters in the present study provide the feasibility of feeding a negative DCAD diet to female
goats from the aspects of rumen fermentation.

The level of feed intake is the most important prerequisite for animal growth per-
formance. Generally, pure anionic salt would reduce feed intake when it was simply
mixed into the diet, due to its bitter taste and poor palatability [37]. Therefore, improving
palatability of anionic salt is important for DMI and growth performance. Our previous
study [38] showed that DMI of female goats fed a negative DCAD did not decrease be-
cause the anionic salts were mixed with molasses and dried distillers grains with solubles.
Takagi and Block [39–41] also observed that reducing DCAD did not impact DMI contain-
ing anionic salts when feeding a total mixture ration. Diets were pelleted in the study,
and therefore, they were unaffected for goats fed diet HD, CON, and LD. This indicates
that DMI is unaffected by anionic salts’ inclusion as long as the bitter taste is concealed.
The levels of DCAD had no effect on final body weights. This can be attributed to the
similar DMI level and possibly because the female goats were a local breed, with their
adult steady body weight averaging as much as 35 kg, and thus there was limited potential
for body weight gain. Accordingly, ADG and FCR did not show differences among HD,
CON, or LD treatments.

Urine pH is a useful indicator to monitor the effect of a reduced DCAD diet on
acid–base balance in goats, sheep [42], and dairy cows [38,43]. This phenomenon can be
explained using the strong ion difference theory [44], which argued that with reductions
of DCAD, the concentration of anions in blood would increase and cause the kidney to
expel redundant H+ in urine, resulting in lower urine pH. The recommended urine pH
is 6.5–6.8, because a urine pH level too low would exert a burden on the kidneys [45–47].
Our results showed that urine pH value in goats fed LD was lower than HD and CON.
This is accordant with the recommended level, and there is a strong association between
DCAD and the urine pH in the trial period, suggesting that the LD level is appropriate for
the diet of goats.

Muscle contraction, conduction of nervous impulses, and signal transduction are
closely dependent on blood Ca homeostasis. Following the study of Block [2] and subse-
quent results of ruminant researchers [48,49], reducing the DCAD level has been the most
commonly used strategy to increase blood Ca levels in transition mammary animals [50].
Our previous study showed that reducing DCAD could increase the plasma Ca concen-
tration of female goats [38]. In the current experiment, the LD caused a higher plasma Ca
level than HD and CON by 25.97% and 22.27%, respectively, indicating more stable blood
Ca homeostasis. Horst et al. [51] and Goff and Horst [52] claimed this may be because
LD-induced acidic status enhanced Ca absorption in the gastro-intestine and also increased
Ca resorption in the bone, facilitating Ca matrix flow into blood for easier transfer from
lumen to blood.

Blood measurements are useful to reflect the metabolic status of animals. Our results
showed that all plasma levels of Glc, UN, ALT, AST, AKP, TP, Alb, SOD, GSH-Px, MDA,
and CAT were unaffected by DCAD variation. This is supported by a previous study of
Melendez and Poock [9], who reported that lowering DCAD had little effect on blood
Alb. Our previous study also found that DCAD levels (+300, +150, 0, and −150) had no
significant effect on plasma GSH-Px or MDA content in female goats [38].
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5. Conclusions

In conclusion, negative DCAD has no deleterious influence on rumen fermentation
parameters and rumen microbiota, showing no harm to rumen fermentation of female
goats. The blood Ca level is increased and urine pH is decreased by DCAD reduction.
These results may provide the feasibility of feeding a negative DCAD to female goats.
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