
Systems biology

Fast and accurate gene regulatory network inference by

normalized least squares regression

Thomas Hillerton 1, Deniz Seçilmiş 1, Sven Nelander2 and

Erik L. L. Sonnhammer 1,*

1Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, 17121 Solna, Sweden and 2Science

for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on August 13, 2021; revised on January 10, 2022; editorial decision on February 5, 2022; accepted on February 15, 2022

Abstract

Motivation: Inferring an accurate gene regulatory network (GRN) has long been a key goal in the field of systems
biology. To do this, it is important to find a suitable balance between the maximum number of true positive and the
minimum number of false-positive interactions. Another key feature is that the inference method can handle the
large size of modern experimental data, meaning the method needs to be both fast and accurate. The Least Squares
Cut-Off (LSCO) method can fulfill both these criteria, however as it is based on least squares it is vulnerable to known
issues of amplifying extreme values, small or large. In GRN this manifests itself with genes that are erroneously
hyper-connected to a large fraction of all genes due to extremely low value fold changes.

Results: We developed a GRN inference method called Least Squares Cut-Off with Normalization (LSCON) that
tackles this problem. LSCON extends the LSCO algorithm by regularization to avoid hyper-connected genes and
thereby reduce false positives. The regularization used is based on normalization, which removes effects of extreme
values on the fit. We benchmarked LSCON and compared it to Genie3, LASSO, LSCO and Ridge regression, in terms
of accuracy, speed and tendency to predict hyper-connected genes. The results show that LSCON achieves better or
equal accuracy compared to LASSO, the best existing method, especially for data with extreme values. Thanks to
the speed of least squares regression, LSCON does this an order of magnitude faster than LASSO.

Availability and implementation: Data: https://bitbucket.org/sonnhammergrni/lscon; Code: https://bitbucket.org/
sonnhammergrni/genespider.

Contact: erik.sonnhammer@ddb.su.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Inferring accurate gene regulatory networks (GRNs) is a key goal
in the field of systems biology (Kitano, 2002). However, gene regu-
latory network inference (GRNI) is a highly complex problem and
currently at least two factors severely limit the predictive ability of
GRNI methods. First, there is an inherent complexity in biological
systems making it hard to find accurate models. Second, and per-
haps even more central, is the current lack of knowledge of
expected properties in a biological GRN, and how patterns of gene
interactions coalesce on a large scale. Today, only a relatively
small number of gene regulatory interactions have been experi-
mentally validated and it is still largely unclear what properties a
true biological GRN should have (Banf and Rhee, 2017). Until
more knowledge is available for true GRNs it is important to con-
struct inference methods that account for this shortcoming by

being adequately conservative in their predictions. From the point
of view of a biologist that wants to pursue follow-up experiments,
it is often more important to minimize the number of false interac-
tions than finding all possible true interactions. A further challenge
for GRNI is ensuring that the inference method can be used at the
increasing scale of gene expression data available, something
which has become especially important in recent years (Sanguinetti
and Huynh-Thu, 2018; Subramanian et al., 2017) . A method that
encapsulates both scalability and high accuracy is the Least
Squares Cut-Off (LSCO) method (Tjärnberg et al., 2013). LSCO
relies on a computationally low complexity algorithm based on
least squares fitting. It posits that by perturbing each component
in a system according to a known experimental design matrix, and
measuring the system-wide gene expression effect of said perturba-
tions at steady-state, a high-quality GRN can be obtained through
least squares-based linear regression (Tjärnberg et al., 2013).

VC The Author(s) 2022. Published by Oxford University Press. 2263

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(8), 2022, 2263–2268

https://doi.org/10.1093/bioinformatics/btac103

Advance Access Publication Date: 17 February 2022

Original Paper

https://orcid.org/0000-0002-6362-0659
https://orcid.org/0000-0001-8284-356X
https://orcid.org/0000-0002-9015-5588
https://bitbucket.org/sonnhammergrni/lscon
https://bitbucket.org/sonnhammergrni/genespider
https://bitbucket.org/sonnhammergrni/genespider
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac103#supplementary-data
https://academic.oup.com/


LSCO is however affected by the inherent limitations of ordinary
least squares. One such limitation, which is the focus of this study, is
a vulnerability to extreme values in data (Anscombe, 1973). The
issue arises from ordinary least squares using inversion of the
observed variable to fit the model to the data. In this inversion, val-
ues that are considerably larger or smaller than the average will be
massively amplified or reduced, giving a false sense of importance or
unimportance in the fitted model. In LSCO, this results in a large
number of incorrect highly weighted links, especially for small val-
ues close to zero.

2 Materials and methods

2.1 Data used
We used both synthetic and real data for this study. To measure cor-
rectness, simulated data generated with the GeneSPIDER tool were
used as it ensures that there is a complete, known true GRN for
comparison (Tjärnberg et al., 2017). To test prediction capability
over varying difficulties, data were generated with low to high noise,
using signal-to-noise ratio (SNR) steps of 1, 0.1, 0.01 and 0.001.
SNR 1 corresponds to almost no noise and at SNR 0.001 almost all
signal is masked by the noise. To show that Least Squares Cut-Off
with Normalization (LSCON) works on other data, we also used
simulated data from the GeneNetWeaver (GNW) tool (Schaffter
et al., 2011). As GNW does not allow for varying the noise only
high noise datasets were used here. For GeneSPIDER, two types of
data were created, one with properties that are susceptible to induce
hubs, here called hub-prone data. The other type does not have
properties that are prone to induce hubs, here called balanced data.
For GNW, only balanced data were used as the aim here is to ensure
that the initially observed trends were not caused by the
GeneSPIDER simulation model.

For both simulation models, the data were used as fold changes.
For GeneSPIDER these are directly simulated, whereas for GNW
they were calculated as log2 of the ratio between the simulated and
wild-type expression levels. Further details on data generation and
properties of the generated data are available in Supplementary
Note S1. To complement the simulated data, experimental data
from two human cell lines, A375 and A549, from the LINCS L1000
(Subramanian et al., 2017) were used. The cells are derived from
human melanoma and human lung carcinoma cells, respectively.
The L1000 datasets had an SNR comparable to that of the synthetic
data, with an SNR value of 0.0019 for A375 and 0.0017 for A549.
The condition numbers (the largest singular value divided by the
smallest singular value) were 824 and 665, respectively, which lies
in between the hub-prone and balanced data (Supplementary Table
S1). These particular datasets were selected partly as this is where
the megahub problem initially was encountered, but more import-
antly to ensure that the issue could be solved both in simulated data
and real data. The L1000 data used here are experimental gene
knock down data where each gene measured has been knocked
down one by one using shRNA in three experimental replicates with
multiple shRNAs for most genes. The effect was then measured at
72–96 h after perturbation using the L1000 luminex bead system
(Peck et al., 2006). The data were downloaded in the Level 3 format
provided at GEO: GSE92742. Before applying any GRNi method,
the data were further processed by removing any shRNA not present
in all replicates and averaging the effect of the remaining shRNAs
for each gene, to compensate for any off-target effects or unknown
differences in knock down strength.

SNR for both synthetic and experimental data was calculated
using the equation:

SNR ¼ Rmin Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ða;N; MÞk

p ; (1)

where Rmin is the smallest singular value, Y the measured fold
change in gene expression, v�2 a;NMð Þ the chi-square distribution
with N�M degrees of freedom and k the normally distributed vari-
ance of the noise. N is here the number of studied genes and M the

number of experiments performed. Note that to obtain regularly
spaced SNR levels for the data simulated by GeneSpider, Y was used
without any noise for the data simulation.

2.2 Inducing infinitesimal values in simulated data
In order to guarantee that the simulated data contained values close
to zero with the potential to cause megahubs, an algorithm was
developed for adding noise to random positions in the data. The al-
gorithm takes a generated synthetic dataset and returns a modified
response matrix. The modification affects 15% of the genes or a
minimum of 10 genes. For these genes, randomly selected, all ex-
pression fold change values are divided by a random value such that
each fold change value is rescaled according to:

Ci ¼
Gi

R 2 0:5N; 0:5N þ 250½ � ; (2)

where G is a vector of fold change values, C a vector of rescaled fold
change values, N the total number of elements in G, and R a random
number in the range 0.5N to 0.5Nþ250. R is stochastic to ensure
some variation in how strong the effect of the infinitesimal values
has on the system.

2.3 Least Squares Cut-Off with Normalization
LSCON builds on the previously published method LSCO but adds
a normalization step of the network prediction to scale all gene
interactions to a similar scale (Fig. 1), to limit the effect of extreme
values in the input data. The idea to normalize the coefficients of a
least squares regression builds on previous work on standardized re-
gression that showed that rescaling coefficients is allowed as it main-
tains the relative importance among them (Bring, 1994). The
rescaling is performed column-wise such that the absolute sum of
each column is the same across the whole data, thereby reducing
outlier effects. Outliers and extreme values are known problems in
ordinary least squares fitting (Bronson and Costa, 2021), the under-
lying method that both LSCO and LSCON build on. The effect in
the fit comes from the inversion used by least squares to fit its
model. This inversion leads to amplification or reduction of extreme
values, giving them a false importance based on the faulty score. For
inferred GRNs, this effect is observed in data where a gene has al-
most no change in gene expression, causing all the fold change val-
ues to be extremely close to 0 (<0.001). These small values are then
inverted in the least squares fit, giving some genes a large number of
very strong interactions that are not real. By normalizing the pre-
dicted network, we can effectively reduce these extreme predictions
back into more realistic values while adding very little overhead to
the computationally efficient LSCO method. The normalization is
done using the equation:

Xij ¼
AijP
jAjj
� �

N
; (3)

where N is the number of genes, A is the original predicted GRN, X
the normalized GRN, j is a regulator gene in column j in the range 1
to N, and i is a target gene in row i in the range 1 to N. This is done
for each value in the network, ensuring that the total column sum is
equalized across the network.

2.4 Benchmarking
To benchmark LSCON against GRNI methods other than LSCO,
we compared it to a set of methods that have previously been shown
to accurately predict GRNs. The methods are LSCO, LASSO,
(Tjärnberg et al., 2013, 2015), ridge regression (Friedman et al.,
2010) with cut-off (RidgeCO) and Genie3 (Huynh-Thu et al.,
2010); note that the Matlab version of Genie3 was used here. All
methods were tested both on hub-prone data and balanced data. All
of these methods are available in the GeneSPIDER package
(Tjärnberg et al., 2017) in Matlab, allowing for easy use and com-
parison to LSCON. All methods have been set up to generate a set
of GRNs over a set of sparsities. Each method produces a full GRN,

2264 T.Hillerton et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac103#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac103#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac103#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac103#supplementary-data


i.e. a network with all possible edges included. From this, a series of
30 GRNs are created by stepwise reducing the number of total edges
from all to zero predicted edges based on the score of the edge.
Similar sparsity intervals were used for different methods to ensure a
fair comparison. When evaluating the benchmark, the inferred GRN
with a sparsity closest to the true GRN’s sparsity was used through-
out this work. All of the methods used for this benchmark are made
available in the GeneSPIDER repository. A number of popular
methods including TIGRESS, and ARACNe were not included in
this study as Genie3 has been shown to outperform them in the
DREAM5 challenge ((Marbach et al., 2012).

2.5 Measuring performance
For this study three different performance measurements were used.
Run time was measured using Matlab’s CPU time function (Matlab,
cputime). For timing, all methods were run on an Intel Xeon E5-
2690v3 CPU with 48 cores and 512 GB of RAM memory. Area
under the precision-recall (AUPR) curve was used to determine the
overall correctness of a method based on precision and recall. Recall
measures how many of the links in the simulated true GRN a
method can correctly predict and precision how many of the pre-
dicted links over all predictions are actually true (Prill et al., 2010).
The use of AUPR allows for a correctness measurement that
accounts for both true positives and false positives while not
accounting for true negatives, i.e. no link. When working on sparse
data like GRNs, not accounting for true negatives offers an advan-
tage that the relatively high number of zeros will not artificially in-
crease the accuracy. For capturing correctness in each different
sparsity for the generated GRNs, the F1 score was instead used as
this one allows for a single network to be compared with the true.
To test for statistical significance in the correctness measurements
the R programming language’s (R Core Team) rank-sum test func-
tion was used (R Core Team, wilcox.test). Finally, as a key question
in this study, a method’s ability to avoid amplifying infinitesimal
values was tested by looking at the maximum out-degree. Out-de-
gree was used rather than in-degree or total degree as it was rea-
soned that removing false regulators, especially with this large
number of regulations, was more relevant than a gene under control
of too many regulators. The reason is that hub regulators are more
prone to be used to draw biological conclusions from.

3 Results

The LSCON algorithm was evaluated by measuring performance in
three categories: (i) ability to avoid megahubs, (ii) similarity between
the predicted GRN and the true GRN and (iii) execution time.
LSCON’s performance was compared to that of established GRNI
methods: LASSO, Genie3, LSCO and ridge regression (RidgeCO).
As an initial test to verify that LSCON can fill the role of LSCO all
methods were run on balanced data without infinitesimal values.
Here all methods performed well with LSCON, LSCO, RidgeCO
and LASSO with an AUPR above 0.8 on SNR 1.0. Genie3 had a
lower AUPRs of about 0.3 (Supplementary Fig. S1). LSCO and
LSCON here performed equally well (rank-sum test P-value 1). For
further details on these results see Supplementary Figure S1. Once
the identical results were confirmed all further testing was carried
out on hub-prone data, data with small values of <0.0001, as this is
the key focus of this study. Note that Genie3 was computationally
too expensive to run for 800 genes so no results are presented for
this size for Genie3.

The first test evaluated, perhaps the one most aligned with the
goal of LSCON, was the ability to avoid predicting megahubs. To
ensure a fair comparison, all networks were selected with a median
degree as close as possible to the true GRN. Here, LSCON, LASSO
and Genie3 performed well, producing a maximum degree near or
below the true maximum degree (Fig. 2). In comparison, LSCO and
RidgeCO identified massive megahubs at all SNR levels. For all sizes
the LSCO megahubs were connected to almost all other genes. The
maximum degree in the GRNs for the other methods was almost al-
ways lower than in the true GRN. At the higher SNR levels,

LSCON and LASSO GRNs were the closest to the true maximum
degree.

Equally important to removing the amplification that causes
megahubs is to ensure high accuracy of the predicted GRNs. To test
for this the AUPR of the inferred GRNs was calculated on the simu-
lated data for all methods, see Figure 3. For all sizes and noise levels,
except SNR 0.001 where no method works, LSCON and LASSO
perform about equally well and significantly outperform all other
methods. They are followed by the considerably poorer performing
LSCO, which in turn outperforms RidgeCO and Genie3 at SNR 1,
but at other SNR levels all three methods perform poorly, with
AUPRs below 0.2. For the three methods that avoided megahubs
(LSCON, LASSO and Genie3), a tendency of increasing AUPR val-
ues was observed with increasing size of the input data, while for
RidgeCO and LSCO the opposite trend was observed. As LSCON,
LASSO and Genie3 do not find megahubs, they reach roughly the
same AUPR as for data lacking infinitesimal values. We further note
that when moving toward more biologically realistic noise levels
(SNR 0.01), LSCON outperforms the LASSO method in the two
larger datasets (N¼500 and N¼800; P¼0.15 and 0.007, respect-
ively), adding support to the usefulness of our approach.

To examine the maximum accuracy achieved by each method,
the F1-score metric was used. To compare the methods fairly we
used the maximum F1-score across all sparsities. The findings fur-
ther support the usage of LSCON for hub-prone data, with LSCON
and LASSO again being the best performing methods with a max-
imum F1-score of between 0.8 and 0.9 for hub-prone data at SNR
1.0. LSCO scored at around 0.6, and RidgeCO performed far worse
at between 0.2-0.5 in max F1 depending on the number of genes.
Finally, Genie3 performed the worst at around 0.2 (Supplementary
Fig. S2). These results largely mirror the AUPR results.

3.1 Additional datasets
To ensure that the observed effects were not an artifact of the
data used, we tested the methods on data generated with
GeneNetWeaver, an alternative data simulation tool to
GeneSPIDER. For the GeneNetWeaver data all linear regression
methods had a moderate performance (AUPR � 0.5) while Genie3
performed noticeably worse in terms of AUPR (�0.1) and similarly
to the other methods in AUROC (Supplementary Fig. S3). Despite
the high noise a similar trend as with the GeneSPIDER data can be
observed, namely that LSCON performs equal to the other methods.
Note that since the GeneNetWeaver data are not hub-prone,
LASSO, LSCO, RidgeCO and LSCON perform about equally and
are not significantly different (P¼1) as previously observed for bal-
anced GeneSPIDER data.

To further evaluate LSCON’s performance on real data, we car-
ried out large-scale (�600 to 700 genes) inference of GRNs for the
cell lines A375 and A549 from the L1000 project. First, we demon-
strated the megahub effect in these data by looking at the relation-
ship between a gene’s fold change in the input data and the
regulatory importance in the predicted network (Fig. 4A and B).
This showed a clear trend for LSCO to give higher weights in the
predicted network for genes with low fold changes and low weights
for those with a high fold change. Next, we inspected the degree dis-
tribution of one GRN for each method, after selecting the GRN
across all sparsities with an average node degree closest to three.
LSCON results were compared with LSCO, RidgeCO and LASSO
results, while Genie3 was not tested as it previously did not show a
tendency of megahubs and has a prohibitive run time for data of this
size. For these cell lines, the trend found in the simulated data is mir-
rored, with LSCO and RidgeCO finding large hubs of up to 140
edges, compared to the maximum of 15 edges for LSCON and 25
for LASSO (Fig. 4C and D). These results clearly demonstrate
LSCON’s capability of avoiding megahubs for data where LSCO
and RidgeCO would fall victim to the effects of infinitesimal values.

Finally, to ensure that the methods can be used for large-scale
GRNI, either for inferring large GRNs or many GRNs in a boot-
strapping setup, we compared their execution times. As LSCO and
LSCON are based on the same algorithm, their speeds were essen-
tially identical. With an execution time of <1 s for a 100 gene

LSCON 2265

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac103#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac103#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac103#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac103#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac103#supplementary-data


dataset to about 25 s on a 800 gene dataset they are both highly scal-
able and can easily be run in thousands of bootstrap iterations. In

comparison, LASSO, and RidgeCO run about 10 times slower, and
Genie3 had a runtime far greater than any of the other methods, and
more than 1000 times slower than LSCON. For example, Genie3

required about 6 h for the 500 genes dataset, which LSCON runs in
a few seconds (Fig. 5).

4 Discussion

The presented new GRNI algorithm, LSCON, was shown to consist-

ently achieve top performance in both accuracy and speed, which is

not accomplished by any of the other tested methods. This makes it
an excellent choice for large-scale GRNI, both for tackling large
numbers of genes, and many repeated inferences, e.g. during boot-
strapping. LSCON performed similarly to the LASSO algorithm in
correctness, while outperforming LSCO, RidgeCO and Genie3 on
data with infinitesimal fold change values. LSCON was shown to
perform identically to LSCO on balanced data, suggesting that it
can replace LSCO in any situation.

We show that the data property which causes LSCO and
RidgeCO to produce megahubs is found in biological data. This is
further supported by previous work studying outlier detection and
handling in both microarray (Kadota et al., 2003; Shieh and Hung,
2009; Yang et al., 2009) and sequencing data (Love et al., 2014;
Mangiola et al., 2021). For GRNI, an example of a cause for such
an outlier is the inclusion of a gene that is not part of the studied sys-
tem. This gene would not change when the system is perturbed and
hence all fold changes would become negligible. This is likely to be a
common occurrence, and with an increasing number of studied
genes in a study it will become even more common.

Fig. 1. LSCON workflow. LSCON works by performing a least-squares fit between the gene expression data and a perturbation matrix and then applying a column-wise nor-

malization to the resulting GRN matrix to reduce extreme values

Fig. 2. Maximum node degree for predicted GRNs of varying SNR on hub-prone

data. Ten datasets were used for GRN inference with LSCON, LSCO, LASSO,

RidgeCO and Genie3. The prediction was done on simulated data containing infini-

tesimal values and the network selected was the predicted GRN with a median de-

gree closest to the median degree of the true GRN, from a set of 30 GRNs of

varying sparsity generated for each dataset by each method. The simulated data con-

tained 100 (A), 300 (B), 500 (C) or 800 (D) genes corresponding to the titles in the

figure. The average maximum degree of the true GRNs is shown as a dotted line.

The simulated data were generated from GRNs with scale-free topology

Fig. 3. Accuracy of GRNs predicted from hub-prone data. LSCON, LSCO, LASSO,

RidgeCO and Genie3 were used to predict GRNs from 10 datasets of 100 (A), 300

(B) and 500 (C) genes, as well as from 5 datasets of 800 (D) genes, corresponding to

the titles in the figure. The simulated data contained small singular values and was

generated from GRNs with scale-free topology. The AUPR is plotted over signal to

noise ratio (SNR) as the methods are expected to perform better at higher SNR

levels

2266 T.Hillerton et al.



LSCON was found to be about 1000 times faster than
Genie3, which is perhaps not surprising given that Genie3 gener-
ates 1000 trees to build its GRN from. Despite this heavy compu-
tation, Genie3 was outperformed by LSCON and LASSO in

accuracy, even though these methods were used in single-run
mode. With LSCON and LASSO run in single-run mode for this
study, it is important to note the possibility to improve their ac-
curacy by using bootstrapping techniques. A bootstrapping
method that has previously been shown to work well with LSCO
and LASSO is the Nestboot method (Morgan et al., 2019).
However, for infinitesimal data, the usage of LSCO is discour-
aged, and while LASSO can handle such data, it is generally too
slow for large-scale applications. To make good use of bootstrap-
ping, a complete inference should run 100 000 repeated GRN
inferences of bootstrap samples (Morgan et al., 2019). With
LASSO this would take about 4 months for 500 genes, while
LSCON would take about 3 days, making it a feasible task.

In addition to its excellent performance, LSCON also benefits
from the inherited functionality with tools previously designed for
LSCO thanks to the high similarity between the two in structure and
use. LSCON is implemented in the GeneSPIDER package giving
easy access to a large set of tools for simulation of GRNs and data,
GRNI and analysis of data and predicted GRNs.

In conclusion, we have here shown that LSCON can significantly
outperform the previously published LSCO method on hub-prone
data and perform equally well for balanced data. This allows the
LSCON method to be used in any place where the older LSCO
method was previously used. As they are part of the same software
package this can be done with little to no changes in existing pipe-
lines as both in and output are identical between the tools allowing
for simple updating of procedures and securing GRNI procedures
from amplification and reduction issues.

Funding

The authors thank the Swedish Strategic Research Foundation for financial

support. This project was performed with grant VR 2019-04095.

Conflict of Interest: none declared.

References

Anscombe,F.J. (1973) Graphs in statistical analysis. Am. Stat., 27, 17.

Banf,M. and Rhee,S.Y. (2017) Computational inference of gene regulatory

networks: approaches, limitations and opportunities. Biochim. Biophys.

Acta Gene Regul. Mech., 1860, 41–52.

Bring,J. (1994) How to standardize regression coefficients. Am. Stat., 48, 209.

Bronson,R. and Costa,G.B. (2021) The inverse. Matrix Methods, 93–129.

Friedman,J. et al. (2010) Regularization paths for generalized linear models

via coordinate descent. J. Stat. Softw., 33, 1–22.

Huynh-Thu,V.A. et al. (2010) Inferring regulatory networks from expression

data using tree-based methods. PLoS One, 5, e12776.

Kadota,K. et al. (2003) Detecting outlying samples in microarray data: a critic-

al assessment of the effect of outliers on sample classification. Chem-Bio Inf.

J., 3, 30–45.

Kitano,H. (2002) Systems biology: a brief overview. Science, 295, 1662–1664.

Love,M.I. et al. (2014) Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. Genome Biol., 15, 550.

Mangiola,S. et al. (2021) Probabilistic outlier identification for RNA sequenc-

ing generalized linear models. NAR Genome Bioinf., 3, lqab005.

Marbach,D. et al.; DREAM5 Consortium. (2012) Wisdom of crowds for ro-

bust gene network inference. Nat. Methods, 9, 796–804.

MATLAB. cputime. version 9.7.0.1190202 (R2019b). Natick, Massachusetts:

The MathWorks Inc.

Morgan,D. et al. (2019) A generalized framework for controlling FDR in gene

regulatory network inference. Bioinformatics, 35, 1026–1032.

Peck,D. et al. (2006) A method for high-throughput gene expression signature

analysis. Genome Biol., 7, R61.

Prill,R.J. et al. (2010) Towards a rigorous assessment of systems biology mod-

els: the DREAM3 challenges. PLoS One, 5, e9202.

R Core Team (2021). R: A Language and Environment for Statistical

Computing (version 4.4.1). R Foundation for Statistical Computing,

Vienna, Austria.

R Core Team. wilcox.test: Wilcoxon Rank Sum and Signed Rank Tests. ver-

sion 3.6.1. rdocumentation.

Fig. 4. Analysis of GRNI with experimental data. (A) and (B) show the relationship

between a gene’s fold change in the input data and the magnitude of the predicted

regulatory effect, predicted with LSCO. The data come from two cell lines A375 (A)

and A549 (B). A clear trend is seen where genes with low-fold change tend to get a

higher predicted regulatory effect compared with those genes with a high expres-

sion. Panels (C) (cell line A375) and (D) (cell line A549) show the degree distribu-

tion for four GRN inference methods: LASSO, LSCON, RidgeCO and LSCO, for

one GRN per method which was selected by having the sparsity closest to three

links/node

Fig. 5. Mean execution time for five GRNI methods. The methods LSCO, LSCON,

LASSO, RidgeCO and Genie3 were run on simulated data of varying sizes and their

execution time measured in CPU time. Ten datasets at each size were used for deter-

mining average runtime for each method. Due to the excessive runtime of Genie3,

we could not run it on the 800 gene datasets as the total runtime exceeded 100 wall

clock hours

LSCON 2267



Sanguinetti,G. and Huynh-Thu,V.A. (2019) Gene Regulatory Networks:

Methods and Protocols. Gene Regulatory Networks. Methods in Molecular

Biology, vol 1883. Humana Press.

Schaffter,T. et al. (2011) GeneNetWeaver: in silico benchmark generation and

performance profiling of network inference methods. Bioinformatics, 27,

2263–2270.

Shieh,A.D. and Hung,Y.S. (2009) Detecting outlier samples in microarray

data. Stat. Appl. Genet. Mol. Biol., 8, Article 13.

Subramanian,A. et al. (2017) A next generation connectivity map: l 1000 plat-

form and the first 1,000,000 profiles. Cell, 171, 1437–1452.e17.

Tjärnberg,A. et al. (2013) Optimal sparsity criteria for network inference. J.

Comput. Biol., 20, 398–408.

Tjärnberg,A. et al. (2015) Avoiding pitfalls in L1-regularised inference of gene

networks. Mol. BioSyst., 11, 287–296.

Tjärnberg,A. et al. (2017) GeneSPIDER—gene regulatory network inference

benchmarking with controlled network and data properties. Mol. BioSyst.,

13, 1304–1312.

Yang,A.C. et al. (2009) Outlier filtering for identification of gene regulations

in microarray time-series data. In: 2009 International Conference on

Complex, Intelligent and Software Intensive Systems, Fukuoak Japan.

2268 T.Hillerton et al.


