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Abstract: Graphene and its derivatives are frequently used in cancer therapy, and there has been
widespread interest in improving the therapeutic efficiency of targeted drugs. In this paper, the
geometrical structure and electronic effects of anastrozole(Anas), camptothecin(CPT), gefitinib (Gefi),
and resveratrol (Res) on graphene and graphene oxide(GO) were investigated by density functional
theory (DFT) calculations and molecular dynamics (MD) simulation. Meanwhile, we explored
and compared the adsorption process between graphene/GO and four drug molecules, as well
as the adsorption sites between carriers and payloads. In addition, we calculated the interaction
forces between four drug molecules and graphene. We believe that this work will contribute to
deepening the understanding of the loading behaviors of anticancer drugs onto nanomaterials and
their interaction.

Keywords: DFT calculations; MD simulations; adsorption and aggregation; graphene; graphene
oxide; anticancer drugs

1. Introduction

Nanomaterials have broad application prospects in the biomedical field because of
their unique characteristics. Drug delivery based on nanoparticles has been extensively
studied to maximize the therapeutic efficacy of drugs [1]. Among the diverse nanomaterials
that have been found, graphene and its derivatives have been demonstrated to provide
efficient drug delivery and are considered as promising and ideal nanocarriers for drug
delivery systems, and have been widely studied in the field of cancer treatment [2] due
to their remarkable physical and chemical properties [2]. Graphene is a two-dimensional
(2D) sheet of sp2 hybrid carbon atoms; the carbon atoms are tightly packed in a (2D)
honeycomb lattice, which exhibits excellent properties such as large surface area and good
biocompatibility, as well as providing a defect-free plane [3]. These pivotal characteristics
allow it to interact with drugs through non-covalent interactions such as π-π interaction.
As a derivative of graphene, GO is also a promising drug delivery vehicle [4]. Apart from
features similar to pristine graphene, abundant hydroxyl, epoxy, and carboxyl functional
groups in GO enable it to have a higher adsorption capacity for drug molecules than
pristine graphene [5].

There are many drugs that could be delivered by graphene and its oxide, such as
camptothecin, a widely used anticancer drug [6,7]. Its main target in cells is the type I
DNA topoisomerase, which can inhibit DNA synthesis through chain break, causing cell
death during the S phase of the cell cycle, making it an effective inhibitor of leukemia cell
growth [8–10]. Based on this mechanism, Liu et al. studied the inhibitory effect of CPT on
the growth of prostate cancer cells, as it can selectively inhibit the androgen-responsive
growth of prostate cancer cells [11]. Therefore, CPT is also a potential candidate drug
for the treatment of prostate cancer. Furthermore, resveratrol is a phytoalexin extracted
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in many edible plants that may play a role in preventing inflammation, atherosclerosis,
cancer, and so forth [12,13]. For example, Kueck et al. found that Res inhibits glucose
metabolism in human ovarian cancer cells. Zhou et al. [14] proposed that Res can induce
apoptosis of pancreatic cancer cells. These studies suggest that Res is an effective cancer
drug. In addition, gefitinib, an oral epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitor, is the first approved targeting drug for the treatment of non-small cell lung
cancer (NSCLC) [15]. It has also been widely studied as a prospective drug for other cancers
besides NSCLC, Li et al. [16] studied the potential role of Gefi in the treatment of pancreatic
cancer and found that it can inhibit the growth, invasion, and colony formation of pancreatic
cancer cells/Kalykaki et al. evaluated the effects of Gefi on circulating tumor cells (CTCs)
in patients with metastatic breast cancer (MBC) [17,18]. Last but not least, anastrozole is a
third generation aromatase inhibitor. As a potent inhibitor of intratumoral estrogen [19],
clinical trials showed that Anas reduced the risk of breast cancer in postmenopausal women
by 53% [20]. In the treatment of advanced breast cancer, it has significant survival benefits
and tolerability advantages compared to other treatment drugs [21]. Therefore, it plays an
important role in the prevention and treatment of breast cancer [22].

In this paper, the adsorption behavior of these drugs on graphene and GO carriers
was investigated in depth using density functional theory (DFT) and molecular dynamics
(MD) simulation, aiming to find the most stable adsorption conformations of different drug
molecules on graphene and GO, and to compare the adsorption performance of the same
carrier for different drugs. We hope that the results of this study can provide significant
value for further design and development of new nanomaterial drug delivery systems,
which we believe will ultimately improve the efficacy of targeted drugs in cancer therapy.

2. Computational Methods
2.1. Quantum Chemistry Calculations

We used quantum chemistry calculations methods to investigate the energetics of
graphene and GO, and the effect of adsorption on drugs. DFT calculation is a quantum
mechanical approach to study electronic systems and is commonly used to calculate the
bind band structure of solids in physics. This method has been used for graphene-related
research [23] All the quantum chemistry calculations were carried out with the Atomistix
ToolKit (ATK) package. Generalized gradient approximation (GGA) [24] with Perdew–
Burke–Ernzerhof (PBE) parametrization [25,26] was used as the exchange-correlation func-
tional. The basis set consists of the double numerical atomic orbitals augmented by polariza-
tion functions, which are comparable to Gaussian 6–31G**. Compared with other methods,
this calculation method is more effective and can meet the accuracy requirements [27,28]. To
avoid neighboring interaction, the distance between the neighboring molecules was larger
than 15 Å. The real-space global cutoff radii were set as 3.7 Å. The convergence criterion
on the energy and electron density was set to be 10−5 hartree. Geometry optimizations
were performed with convergence criteria of 2 × 10−3 hartree/Å on the gradient, and
5 × 10−3 Å on the displacement.

The adsorption energy of CPT on to the studied nanosheets and GO is calculated using
the relation:

Ea = Ecomplex − Enanosheet − Edrug (1)

where Ecomplex, Ecarrier, and Edrug are the total energy of the complex, energy of the carrier
(GRA or GO), and energy of the drug molecule (Res, Ana, Gefi, or CPT).

2.2. Molecular Dynamics Simulation

MD simulation is a method of simulating molecules in chemistry using classical
Newtonian mechanics with computer simulations [29] to obtaining material properties.
MD has been widely used in the calculation of the materials such as graphene. Due to
problems such as speed and difficulty in calculating large systems, we chose classical
molecular dynamics as our research method. The force-field parameters were taken from
the CHARMM force-field. We used the SwissParam web server to obtain the force-field
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parameters of the drug molecules. All the simulations were carried out by using the
GROMACS 2018 software package. The initial structure of graphene containing 480 carbon
atoms was constructed with the Nanotube Modeler package. To create GO, we randomly
decorate the graphene surface with hydroxyl and epoxy groups. The final oxygen to carbon
(O/C) ratio of GO nanosheets is 1:8. As for the relaxation of drug molecules, a box with
a size of 4 nm × 4 nm × 4 nm was firstly established, small molecules were randomly
inserted into the box, and the steepest descent method was used to optimize the system
to remove close contact and overlapping. Since both sides of the graphene can be used
for drug binding, it was placed in the middle of the box and the drug molecules were
allowed to be randomly distributed on both sides. In all systems, the center of the graphene
sheet was set as the zero point. Each system performed 10 ns NVT relaxation at 298 K and
1 atm, followed by 10 ns NPT-relaxation. After that, 50 ns MD simulation was conducted at
298 K and 1 atm equilibrium, and the integration step was 2.0 fs. The Berendsen thermal
bath method was employed to control the temperatures. The cutoff radius of non-bonding
interaction was set as 1.4 nm. Trajectories were collected every 5000 steps for further
analysis. Visual molecular dynamics (VMD) was used to observe the movement trajectory
of the system.

3. Results and Discussion
3.1. Electrostatic Potential (ESP) of Drug Molecules

The reactivity and the interaction (especially for non-covalent interaction) of molecules
can be determined by molecular surface electron density and electron activity, which is
usually described by molecular electrostatic potential (ESP). In order to unveil the possible
active sites in different drug molecules during drug adsorption, we have drawn electrostatic
potential diagrams of different molecules, as shown in Figure 1. The red region represents
positive electrostatic potential and shows electrophilicity, while the blue region represents
negative electrostatic potential, which is more nucleophilic.
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As shown in Figure 1a, graphene has uniform electron density and abundant π elec-
trons on its surface. According to previous studies, graphene is prone to π-π electron donor
acceptor interactions and van der Waals (vdW) interactions due to its large ring plane
structure [30]. The graphene oxide shown in Figure 1b is plotted in blue at the oxygen
atom. GO has reduced π electron activity to some extent due to the presence of oxygen-
containing functional groups, but it may form hydrogen bonds with other molecules. The
oxygen-containing functional groups of GO possess higher chemical reactivity compared
to graphene. The ESP of Gefi is shown in Figure 1c, with lower ESP at the oxygen atom
position. The ESP distribution of CPT is the same as that of Gefi, as shown in Figure 1d,
with lower ESP near the functional group, which is more nucleophilic compared to the
position of the hydrogen atom. The nitrogen atom position is shown in Figure 1e. The
nitrogen atom position is plotted in blue with lower ESP, as shown in Figure 1f, and the
oxygen atom position is plotted using red, indicating that the point has higher ESP [31].

3.2. Simulation of Graphene Adsorption of Drug Molecules on Graphene

As for the adsorption energy between graphene and drug molecules, we mainly focus
on the parallel configuration of drug molecules due to the abundant π electrons on the
graphene, which would easily result in the adsorption of drug molecules through vdW
interactions. The optimized structures of graphene after adsorbing four drug molecules
and their adsorption energy are shown in Figure 2.
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Figure 2. Optimized geometries of RGO and drug systems; bonds are in Å (the vertical distance
refers to the distance between the centroid of benzene of different drugs to the carbon plane of RGO).
(a) Graphene-Gefi; (b) Graphene-Camptothecin; (c) Graphene-Anas; (d) Graphene-Res.

The vertical distance is the distance from the center of mass of the aromatic ring of
the drug molecule to the plane of the graphene. The vertical distances are between the
graphene and the aromatic rings of Gefi, CPT, Anas, Res are 3.358 Å, 3.462 Å, 4.991 Å, and
2.928 Å. The distance between graphene and different drug molecules follows the order:
Anas > CPT > Gefi > Res; and their adsorption energy is Anas < CPT < Gefi < Res from
small to large, indicating that the greater distance, the weaker the adsorption capacity of
the drug is [32–35].

We used MD simulations to study the effect of drugs adsorption on the graphene and
GO. We employed the root mean square deviation (RMSD), density distribution, radial
distribution function (RDT), hydrogen bond number (H- bond) and mean square displace-
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ment (MSD) to investigate the dynamics process of the adsorption of drug molecules
on graphene.

Figure 3a shows the RMSD curves for different systems to investigate the equilibrium
state of the simulated system. It can be seen that there are no large fluctuations in the RMSD
curves of the system at the later stages of the simulation, indicating that it is sufficient to
bring the system to equilibrium within the simulation time. As stated above, the main
driving force for the adsorption of different drug molecules by graphene stems from the
π-π interactions. The distribution of drug molecules on both sides of graphene was first
investigated and the results are shown in Figure 3b. Their mass density shows that different
drug molecules are effectively adsorbed on both side of the graphene sheet after the
adsorption has reached equilibrium and that their distribution on both sides is symmetrical.
Their two symmetry peaks are both at a distance of 0.38 nm, which is close to the vdW
radius of the carbon atoms on the graphene sheet. In the range of distance less than 0.5 nm,
all four kinds of drug molecules could appear on both sides of the graphene sheet. No
drug molecule was observed beyond the range of 1 nm after the equilibrium of the system,
because the mass densities of the drug molecules were all close to zero when the distances
greater than 1 nm, which also indicates that their adsorption is relatively tight. Radial
distribution functions (RDF) can be used to study the intermolecular interaction. Figure 3c
shows the interaction between drug molecules and graphene in the simulated system.
There are significant interactions between different drug molecules and graphene. Their
peaks are 0.482 nm for Gefi, 0.461 nm for CPT, 0.644 nm for Anas, and 0.436 nm for Res.
There are only vdW interactions between the four drug molecules and graphene, and the
strength of the interaction between drug molecules and graphene decreases as the distance
increases. Res has the strongest interaction with graphene, while Anas has the weakest
interaction. The adsorption capacities of graphene to the four drug molecules follow
the order Res > CPT > Gefi > Anas. To further investigate the interaction between drug
molecules and graphene, we calculated the probabilistic profiles of the distribution of the
angle between the aromatic ring for drug molecules and the graphene plane in molecular
dynamics. The ability of drug molecules to absorb on the graphene is mainly determined
by the superposition of π-π interactions. Effective interactions between aromatic rings
are considered to occur when the angle α < 30◦. Figure 3d shows that all angles between
the aromatic rings of four drug molecules and the graphene plane are small during the
simulations. The most observed angles between Gefi, CPT, Anas, Res and the graphene
were approximately 7◦, 7◦, 13◦, and 8◦, which indicates that their aromatic rings are almost
parallel to the graphene surface. This also demonstrates that the adsorptions between drug
molecules and graphene are stable and that π-π interactions are the main driving force
for this adsorption. The environment will have a strong influence on the motion of the
molecules in the system. Figure 3e shows the MSD results for different drug molecules
adsorbing on graphene. Table 1 show the self-diffusion coefficients of the drug molecules
in different systems. It can be seen that the diffusion coefficient of Anas is the largest,
and the diffusion coefficients of CPT, Gefi, and Res are relatively similar, indicating that
the diffusive motion of Anas is the most active among the four drugs. This result can
be attributed to the weak binding ability of Anas and its low molecule weight (293.73),
which facilitates its diffusion, whereas the other three drugs were strongly absorbed on the
graphene surface and thus diffused more slowly [36,37].
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(c) Radial distribution functions (RDF) of the different drug molecules with graphene. (d) The
probability of the angle between the aromatic rings of the drug molecules and the graphene plane,
(e) The MSD plots of the different drug molecules with graphene.



Molecules 2022, 27, 6742 7 of 12

Table 1. Self-diffusion coefficients of different drugs adsorbed on graphene surface.

Drug Molecules Gefi CPT Anas Res

Diffusion coefficient
(×10−5 cm2·s−1) 0.004027 0.003376 0.0123 0.002793

3.3. Simulation of the Adsorption of Drug Molecules on GO

As for the adsorption behavior of drugs on GO, apart from the π-π interaction, drug
molecules also generate hydrogen bonds with GO due to the functional groups, which
promotes the adsorption of drug molecules on GO. According to Figure 1, we investigate
the adsorption of different binding sites and named those structures as [GO—different
drug names—X] (X = 1,2 . . . ). Several configurations were optimized and only two stable
configurations for each kind of drug were selected to be further analyzed, which are
illustrated in Figure 4.
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As shown in Figure 4a,b, the adsorption energies of stable configurations after Gefi
adsorption on GO with active sites 2 and 4 of Gefi as binding sites are 1.823 eV and
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1.553 eV, respectively, and the vertical distances are 3.387 Å and 3.451 Å between the
aromatic ring of Gefi and GO, respectively. Thus, the adsorption of GO with Gefi is more
stable when atom number 2 is used as the adsorption site, which is also consistent with
the result of the electrostatic potential of molecule. Active sites 1 and 4 of the CPT were
investigated as binding sites for adsorption onto GO, and their optimized result is shown as
Figure 4c,d. The perpendicular distances between the aromatic ring of the CPT and the GO
are 3.542 Å and 3.781 Å, respectively, and the adsorption energies are 1.326 eV and 1.037 eV,
respectively; therefore, the configuration of the CPT molecules adsorbed on GO in Figure 4c
can be considered as relatively stable. Figure 4e,f show the stable configurations obtained
after adsorption on GO using active sites 1 and 2 of Anas as binding sites. The distances of
the aromatic ring and GO are 6.416 Å and 3.431 Å, respectively. In Figure 4e, although the
Anas molecule can form hydrogen bonds with GO, the vertical distance becomes larger,
thus weakening the π-π interactions and leading to a reduction in the overall adsorption
energy. Therefore, for Anas, the adsorption is more stable when binding at active site 2.
As shown in Figure 1, all three active sites of Res have relatively large in electrostatic
potential values and small differences; therefore, their adsorption with graphene is similar.
Figure 4g,h show the result of the adsorption of active sites 1 and 2 of Res with GO. The
configuration of the adsorption at active site 3 is not shown in the figure because it is
consistent with that of active site 2. It can be seen that the vertical distance and adsorption
energies of Res on GO are relatively close in both cases and, therefore, they are stable as
binding sites for adsorption with GO in both cases. Overall, in the adsorption of four drug
molecules onto GO, the final conformation is more stable when the binding site has higher
electrostatic potential. According to the binding configuration and adsorption energy, the
adsorption capacity of GO for the four drug molecules follows the order: Res > Gefi > CPT
> Anas [38–42]. Comparing Figures 2 and 4, the adsorption capacity of GO for four drug
molecules is generally better than that of graphene. The vertical distance between different
drug molecules and GO increased slightly, which weakened the π-π interaction between
them to some extent, but the formation of hydrogen bonds promoted the binding of the two
and the superposition of the two effects finally promoted the adsorption of drug molecules
on GO.

Figure 5a shows the RMSD result for the adsorption of four drug molecules on GO,
from which it can be seen that all the systems reach the equilibrium state in a short time.

Previous studies have shown that not only π-π interactions, but also some hydrogen
bonds occur during the adsorption of drug molecules on GO. To deeply understand the
strength of the two kinds of interactions during the simulation, we investigated the average
interaction energy between the four drug molecules and the GO sheet. As shown in
Figure 5b. It can be seen that the vdW interaction accounts for the major part of the
potential energy and is much greater than the Coulomb interaction, indicating that vdW
interaction is the dominant force between GO and the drug molecules. This conclusion is
also supported by the results of the radial distribution function of the simulated system [43].

Figure 5c shows the RDFs between different drug molecules and GO sheets. Four drug
molecules had RDFs with GO in the range of less than 0.35 nm, indicating that the hydrogen
bonding between them is relatively weak. Furthermore, the peaks at 0.486 nm, 0.612 nm,
0.662 nm, and 0.455 nm indicate vdW interactions between the four drug molecules and
GO. This result is consistent with the analysis in Figure 5b, which indicates that vdW
interactions between the four drug molecules and GO still play a dominant role, while the
hydrogen bonding is relatively weak.

The distribution of the angle between the aromatic ring of the drug molecule and the
GO plane during kinetic adsorption was also analyzed; the results are shown in Figure 5d.
The probability of the angular distribution between the aromatic rings of four drugs and the
GO planes varied considerably compared to graphene during the simulation. Although the
most probable angle between Gefi, CPT, Anas, and Res and GO remained relatively small,
approximately 7◦, 10◦, 14◦, and 9◦ respectively, the probability of occurrence decreased
and, except for Res, there was a significant increase in the probability of the angle between
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the other three drug molecules and GO being greater than 30◦. This also indicates that the
π-π interactions between GO and drug molecules were weakened to some extent. This
result mainly originates from the presence of oxygen-containing functional groups on GO.
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The hydrogen bonding in the system also plays an important role in the overall adsorp-
tion process; therefore, the variation in the number of hydrogen bonds between different
drug molecules and GO during the simulation was investigated, as shown in Figure 5e.
Throughout the adsorption process, it can be seen that the number of hydrogen bonds
formed between all four drug molecules and GO is relatively small, which is also consistent
with the results obtained in Figure 5b. This further confirms that the hydrogen bonding
between the four drug molecules and GO is relatively weak during the adsorption process.

To further understand the movement of molecules in the system, the diffusion coeffi-
cients of the four drug molecules were studied separately, Figure 5f shows the MSD plots of
drug molecules adsorbed on GO. Table 2 shows the diffusion coefficients of drug molecules
in different systems in descending order. Comparing with Table 1, it is found that the
diffusion coefficients of all four drug molecules show different degrees of reduction, which
also indicates that the adsorption of these four drugs on GO is slightly stronger than that
on graphene [39,44,45].

Table 2. Self-diffusion coefficients of different drugs adsorbed on graphene oxide surface.

Drug Molecules Gefi CPT Anas Res

Diffusion coefficient
(×10−5 cm2·s−1) 0.001416 0.001032 0.007013 0.002307

4. Conclusions

In summary, we used DFT methods and MD simulations to investigate the adsorption
processes and interaction mechanisms of graphene and GO with Gefi, CPT, Anas, and
Res. From the result of DFT calculations, it is clear that GO has stronger adsorption
properties than graphene for the four drug molecules, and the adsorption energy follows
the order of Anas < CPT < Gefi < Res for both the graphene and GO systems. Regarding
the adsorption systems of drug molecules with graphene oxide, static calculations further
confirmed the preferential adsorption sites. By utilizing MD simulations, we found the
adsorption mechanisms of different drugs with graphene as well as GO; it was found that
π-π interactions and hydrogen bonding played an important role in the whole adsorption
process. Among the four drug molecules, Res molecules showed the strongest adsorption
capacity on graphene and GO, while Anas showed the weakest adsorption capacity on both
graphene and GO. Furthermore, vdW interactions played a dominant role in the dynamic
adsorption of drug molecules on both graphene and GO. Hydrogen-bonding had only a
small contribution to the adsorption of drug molecules on GO. Taken together, GO has
a stronger ability to adsorb these four drug molecules than graphene. Due to the good
adsorption properties of graphene and GO for the four drug molecules, this study helps
gain insight into the loading behavior of anti-cancer drugs on graphene, and also helps to
provide assistance in the development of carriers of loaded drugs for anti-cancer drugs.
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