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The aim of this paper was to examine the roles of working memory, single-step mental
addition skills, and strategy use in multi-step mental addition in two independent
samples of Chinese elementary students through different approaches to manipulate
two dimensions of task characteristics (the primary task). In Study 1, we manipulated
strategy types through the dimension of schema automaticity (whether intermediate
sums were 10s) and the dimension of working memory load (WML, two steps versus
four steps). A hierarchical linear model (HLM) analysis was conducted at case level,
strategy level, and individual level. In Study 2, we manipulated task characteristics
through schema automaticity (one-time versus two-time regrouping) and the WML
(partial versus complete decomposition). A three-level HLM analysis was applied. The
general findings of Study 1 and Study 2 suggested that shorter response time on
single-step mental addition corresponded to shorter response time on multi-step mental
addition. The use of strategies (from easier to more difficult strategies) negatively
predicted response time on multi-step mental addition. Easier strategy was associated
with shorter response time on multi-step mental addition. Better phonological loop was
associated with shorter response time on multi-step mental addition. The findings in
both studies highlighted the important role of phonological loop in mental addition
in Chinese children, suggesting that the involvement of a specific subcomponent of
working memory in mental arithmetic might be subject to linguistic, instructional, and
contextual factors.

Keywords: working memory, automaticity, strategy use, mental addition, Chinese elementary students

INTRODUCTION

Research in mental arithmetic has received increasing attention in the past four decades (e.g.,
Groen and Parkman, 1972; Ashcraft, 1992, 1995; Sowder, 1992; Carroll, 1996; LeFevre et al.,
2003; Liu et al., 2015). Mental arithmetic refers to the process of performing arithmetical
calculation in the mind without external support such as using paper and pencil, calculators,
or computers (Reys, 1984; Maclellan, 2001). Within basic arithmetic operations of addition,
subtraction, multiplication, and division, addition is often learned more easily in children’s
learning trajectory, and addition serves as the foundation for learning the other three operations
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(Beishuizen et al., 1997; Bryant et al., 1999; Torbeyns et al.,
2009). In the domain of mental addition, researchers often
explored simple (single-digit) mental addition and factors that
affected simple mental addition in adult learners such as
college students (LeFevre et al., 1996; Butterworth et al., 2001;
De Rammelaere et al., 2001; Hecht, 2002). In recent years,
more attention has addressed complex mental addition (e.g.,
addition involving two or more digits); however, the participants
have been predominantly adult learners (Green et al., 2007;
Imbo and LeFevre, 2009; Klein et al., 2010; Moeller et al.,
2011).

Mental addition can be affected by individual characteristics
such as experiences in arithmetic problem solving, working
memory capacities, age, schema automaticity obtained by each
individual, and strategy used for problem solving (Zbrodoff
and Logan, 1986; Geary et al., 2004; Tronsky, 2005; Imbo
et al., 2007; Arnaud et al., 2008). Mental addition can also
be affected by task characteristics such as the difficulty level
of the presented problems, types of problems (e.g., addition,
subtraction, multiplication, and division), practice effects, and
working memory load (WML) required by the tasks (DeStefano
and LeFevre, 2004; Kalaman and LeFevre, 2007; Imbo and
Vandierendonck, 2008). In our previous studies, we examined the
effects of simple mental addition on complex mental addition,
the effects of subcomponents of working memory on complex
mental addition, and the moderating effects of working memory
on single-step mental addition in relation to multi-step mental
addition (Ding et al., 2017; Liu et al., 2017; Ding et al.
unpublished). For our current studies, we recruited Chinese
elementary students (Chinese children are anticipated to achieve
a high level of proficiency of basic arithmetics in the early
years of elementary school; People’s Education Press, 2017) and
focused on complex mental addition to explore the roles of
working memory, single-step mental addition, and strategy use
(manipulated by schema automaticity and WML) in multi-step
mental addition.

Working Memory and Mental Arithmetic
Although children might activate different strategies for addition
and multiplication, it is generally believed that children tend
to be slower and make more errors with larger problems (the
problem-size effect) and with problems that require carrying
(DeStefano and LeFevre, 2004). If a certain amount of working
memory is required for calculation of single-digit problems, we
anticipate that increased working memory would be required
for calculations involving multi-digit problems. Thus, in the
following review of literature, we summarized findings according
to single-digit problems and multi-digit problems, rather than
types of calculation (i.e., addition versus multiplication).

Mental arithmetic involves encoding the presented
information, executing the calculation in the mind, and providing
a response (LeFevre et al., 2005). During the calculation process,
one must temporarily maintain the intermediate results while
continuing the calculation in order to reach the final solution.
The role of working memory in mental arithmetic has been
examined in empirical studies (e.g., Lemaire et al., 1996;
Campbell, 1999; Lee and Kang, 2002; DeStefano and LeFevre,

2004; Meyer et al., 2010; Friso-van den Bos et al., 2013). Based on
Baddeley’s (1992) model of working memory, many researchers
explored phonological loop, visuospatial sketchpad (VSSP), and
central executive as the subcomponents of working memory in
relation to mental arithmetic. However, the findings regarding
the involvement of subcomponents of working memory in
mental arithmetic have been quite mixed (DeStefano and
LeFevre, 2004; Meyer et al., 2010; Caviola et al., 2012; Friso-van
den Bos et al., 2013).

The phonological loop was found to be involved in the process
of maintaining intermediate sums during multi-digit mental
addition (Ashcraft and Kirk, 2001; Noël et al., 2001; DeStefano
and LeFevre, 2004). Seitz and Schumann-Hengsteler (2000,
2002) found that maintaining intermediate results requires the
involvement of both the central executive and the phonological
loop, and they reported the involvement of the phonological
loop on two-digit plus two-digit addition tasks. Heightened
phonological loop skills appear to facilitate performance in
complex mental addition, indicating that strong phonological
loop is associated with shorter response time (Fürst and Hitch,
2000; Trbovich and LeFevre, 2003; Caviola et al., 2012).

The findings regarding the VSSP in mental arithmetic are
mixed, although there was some evidence to suggest that VSSP
might be involved in multi-digit problems (e.g., Logie et al., 1994;
Lee and Kang, 2002; Trbovich and LeFevre, 2003; Ashkenazi
et al., 2013; Laski et al., 2013). However, some studies reported
null findings regarding the role of VSSP in multi-step mental
arithmetic (Noël et al., 2001; Liu et al., 2017). Some reported that
the impact of VSSP on mental arithmetic decreased as children
matured (McKenzie et al., 2003; Holmes et al., 2008). In short,
the role of the VSSP in multi-step mental arithmetic remains
uncertain and warrants further research (DeStefano and LeFevre,
2004). The findings were not sufficiently comprehensive to draw
a conclusion.

The central executive is responsible for planning,
manipulating, and sequencing of information. The central
executive also coordinates the activities of phonological loop and
the VSSP. The findings regarding the central executive in mental
arithmetic are inconsistent. In terms of single-digit arithmetic,
some evidence pinpointed that central executive resources are
required to process single-digit problems (Kaye et al., 1989;
Ashcraft et al., 1992; Lemaire et al., 1996; De Rammelaere et al.,
1999, 2001; Seitz and Schumann-Hengsteler, 2000, 2002; Hecht,
2002). In multi-digit arithmetic, there has been evidence for the
involvement of the central executive in maintaining intermediate
results during calculation (Heathcote, 1994; Logie et al., 1994;
Fürst and Hitch, 2000; Seitz and Schumann-Hengsteler, 2000,
2002), whereas the influence of updating (one component of the
central executive) was not significant (Liu et al., 2017).

In short, there were relevant consistent findings regarding
the role of the phonological loop, rather than the VSSP and
the central executive system, in mental arithmetic. In addition,
because the Chinese mathematics curriculum emphasizes rote
memorization, drills, and practices to enhance proficiency in
mental arithmetic, the phonological loop appeared to be more
relevant to the instructional and linguistic contexts in which
Chinese children learn mental arithmetic. In Liu et al. (2017),
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Chinese children’s accuracy and response time on mental
multiplication were most susceptible to phonological loop
influence, when phonological loop, VSSP, and central executive
tasks were tested. Thus, our examination of working memory
focused on the phonological loop in the present studies.

Direct Retrieval and Schema
Automaticity in Relation to Mental
Arithmetic
Many factors contribute to how quickly and accurately an
individual can execute mental arithmetic. One general factor
is the individual’s ability to understand and apply problem-
solving strategies. Research has shown that it takes a long time
for most students to transition from a direct modeling of the
problem context, counting all of the numbers one by one, to the
point that they can use direct retrieval of math facts (Mulligan
and Michelmore, 1997; Downton, 2008). In comparison to low-
achieving students, Zhang et al. (2014) found that high-achieving
students demonstrated greater strategy flexibility during problem
solving and were more accurate in direct retrieval and performing
mathematics algorithm strategies. Direct retrieval is an important
component of the elementary mathematics curriculum. Direct
retrieval of number combinations is often achieved by typically
developing students by the beginning of third grade (e.g.,
approximately 8 to 9 years old) in the United States (Miller
and Hudson, 2007). Through repetitive practice, students learn
to directly retrieve mathematics facts. Although direct retrieval
is listed as one of the strategies for problem solving, it
involves the retrieval of mathematics facts from long-term
memory (i.e., the answer is obtained immediately) and does
not involve the process of using multiple steps for problem
solving.

According to the cognitive load theory (Sweller, 1988; Paas
et al., 2003; van Merriënboer and Sweller, 2005), human beings
have limited working memory to deal with all conscious activities
and unlimited long-term memory to store facts and schemas.
When students achieve automaticity with mathematic facts, they
have attained a level of mastery that enables them to retrieve
those facts from long-term memory without conscious effort or
attention, which reflects a highly efficient process (Ponser and
Snyder, 1975). A schema can be considered as a single entity
that comprises multiple elements and allows humans to bypass
irrelevant details. Automaticity is an important component in the
process of forming schema and is often achieved after practice.
In the domain of mathematics operation, an individual who
has attained the level of automaticity can directly retrieve facts
from long-term memory without conscious cognitive processing,
which is considered direct retrieval (Siegler and Shrager, 1984;
Siegler and Jenkins, 1989; Shrager and Siegler, 1998; Geary, 2011).
When multiple elements of basic arithmetic facts form large
operation units, students reach the level of mastery of schema
automaticity after repeated practice and frequent exposure to
the tasks (Sweller, 1988; Logan and Klapp, 1991; Wilkins and
Rawson, 2011). For example, when a student encounters 25 × 6
the first time, he or she might use a regular algorithm to obtain
the result. However, after repeated practice, the student might

memorize the result and directly retrieve the mathematics fact
(Compton and Logan, 1991; Wilkins and Rawson, 2011) without
utilizing regular operations or complex strategies.

Liu et al. (2017) reported that Chinese school systems
predominantly emphasize rote memorization of single-digit and
two-digit arithmetic facts. Because of repeated practice, many
Chinese elementary students eventually reach the level of mastery
of direct retrieval of basic arithmetic facts. Many Chinese
elementary students not only retrieve basic arithmetic facts, but
also rote memorize many schemas such as 25× 4 and 17+ 13. In
single-step mental addition, Chinese elementary students utilize
direct retrieval and schemas that become automatic. Thus, direct
retrieval and schema automaticity in single-step mental addition
might have an impact on the response time and accuracy rate of
multi-step mental addition.

Strategy in Relation to Complex Mental
Arithmetic
Children attempt different strategies such as decomposing and
transformation when they solve complex arithmetic problems
(Ashcraft and Fierman, 1982; Beishuizen et al., 1997; Lucangeli
et al., 2003; Arnaud et al., 2008; Lemaire and Callies, 2009). For
example, children could decompose “45+ 39” into “45+ 40− 1,”
“40 + 40 + 5 − 1,” “40 + 30 + 5 + 9,” “45 + 30 + 9,”
or “50 + 34.” When children apply different strategies during
mental arithmetic, they might utilize some schema such as
“40 + 30” or “45 + 30” and need to activate working memory
to complete processes such as transformation, temporarily
memorizing intermediate sums, and operation.

When children process complex mental arithmetic, they use
different strategies that are associated with different levels of
schema automaticity and WML. Given an arithmetic problem
(e.g., 16 + 27), a student could use complete decomposition
(e.g., decomposing 16 + 27 to 10 + 6 + 20 + 7, three steps
in total) to carry out the calculation step by step. Step-by-step
full decomposition or the use of an arithmetic algorithm often
involves many steps requiring a large amount of working memory
resources, which in turn might increase the response time to
obtain a solution. In contrast, a student could use an automatized
schema (e.g., converting 16+ 27 to 16+ 24+ 3 = 40+ 3 = 43, two
steps in total) that leads to fewer steps (requiring fewer working
memory resources) and shorter response time, in comparison
to full decomposition or the use of an arithmetic algorithm.
As a result, the effectiveness of a strategy used for mental
arithmetic might be contingent upon the automaticity level of
the strategy that was retrieved and the WML involved during
problem solving.

In a previous study, we examined schema automaticity and
WML through the perspective of task characteristics (Ding et al.,
2017) and manipulated the levels of schema automaticity and
WML (i.e., the original problem was 8 + 18 = 26). Schema
automaticity was operationalized by having the intermediate sum
being 10 or the intermediate sum not being 10. In terms of
WML, it was operationalized in the way that the problem had
fewer versus more steps. There were four strategy conditions:
(a) problems with high schema automaticity and low WML
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(8 + 12 + 6 =), (b) problems with high schema automaticity
and high WML (8 + 2 + 7 + 3 + 6 =), (c) problems with
low schema automaticity and low WML (8 + 6 + 12 =),
and (d) problems with low schema automaticity and high
WML (8 + 6 + 3 + 7 + 2 =). We were able to find
significant main effects of schema automaticity and WML and
a significant interaction effect between these two factors in
mental multiplication and addition among Chinese elementary
students. Our findings supported the important roles of schema
automaticity and WML during mental arithmetic.

Because this study focused on Chinese children, it is important
to have a brief review of how Chinese children learn math.
According to Wei (2014), math education in China has a number
of unique characteristics. Chinese children start learning the
mathematics facts at a very young age (age 4 or 5 years through
informal family education). According to People’s Education
Press, 2017, addition and subtraction of single-digit numbers
should be mastered with high fluency by the end of first grade
(age 6). Multiplication is introduced in the fall semester of second
grade (age 7) and should be mastered by the end of second
grade (People’s Education Press, 2017). Most simple arithmetic
facts such as addition, subtraction, multiplication, and division
are taught through memorization and routine practice (People’s
Education Press, 2017). Children take at least one math class
(40 min) with a single-subject math teacher (i.e., math teachers
teach math classes in multiple classrooms at the same grade) each
day, with at least 30 min of math homework on a daily basis.
One main goal of China’s math education is to develop not only
conceptual understanding (what), but also procedural knowledge
(how to) through practice and application (People’s Education
Press, 2017). Accuracy and fluency are highly regarded. From
Chinese math teachers’ standpoints, knowing a math concept
(knowing the concept) without the abilities to efficiently solve the
math problem (executing the operations) does not indicate skill
acquisition. Thus, Chinese children are expected to have a very
high level of accuracy and fluency on basic math facts. Given the
structure of Chinese math education, automaticity and working
memory appear to play a critical role in children’s learning.

The Purpose of the Present Study
In Ding et al. (2017), we found significant main effects of schema
automaticity and WML in relation to mental multiplication
through the perspective of task characteristics (examining
how the same group of students responded differently to
different strategy conditions). In Liu et al. (2017), our findings
indicated the important role of the phonological loop in
mental multiplication through the perspective of individual
characteristics (examining how individuals’ subcomponents
of working memory affected mental multiplication). Similar
findings were revealed in our study regarding mental addition
in Chinese children (2018). In short, the effectiveness of mental
arithmetic is contingent upon an individual’s basic mental
addition skills, the strategy selected, and the working memory
involved during problem solving. The purpose of this study was
to examine the effects of single-step mental addition skill, strategy
use, and working memory on multi-step mental addition.

Previous studies often examined the effects of simple mental
arithmetic skill, strategy use, and working memory on complex
mental arithmetic in isolation. We extended the previous studies
in four ways. First, we simultaneously examined the effects of
single-step mental addition, strategy conditions, and working
memory on multi-step mental addition. Second, we manipulated
the strategy through two dimensions of task characteristics,
including schema automaticity and WML, to control the
difficulty levels of strategy conditions. Thus, we generated four
strategy conditions. We utilized the no-choice format based on
Siegler and Lemaire (1997) in order to require all participants
to execute the four strategies to examine how the difficulty
levels of strategy use affected mental addition and this approach
was validated in Ding et al. (2017). Third, we used a three-
level hierarchical linear model (HLM) analysis to examine the
relations of key variables at the student level, strategy level,
and item level. Fourth, we tested our research questions in two
studies. In Study 1 and Study 2, we used different approaches to
decompose the addition problems and used different approaches
to manipulate the levels of schema automaticity and WML.
We wanted to explore whether Study 1 and Study 2 both
supported the effects of single-step mental addition skill, strategy
conditions, and working memory on multi-step mental addition.
Based on the findings of Ding et al. (2017), Liu et al. (2017),
Ding et al. (unpublished), we anticipated that better single-step
mental addition performance would be associated with better
multi-step mental addition performance (Hypothesis 1); the
strategy with high schema automaticity and low WML would
be associated with shorter response time on multi-step mental
addition (Hypothesis 2); and better working memory capacity
would be associated with shorter response time and higher
accuracy rate on multi-step mental addition (Hypothesis 3) in
both Study 1 and Study 2.

STUDY 1

Design
The dependent variable was the response time of the multi-
step mental additions. The independent variables included the
response time of the single-step mental additions, strategy
conditions (we manipulated the levels of schema automaticity
and WML to reflect four strategy conditions), and the
phonological loop task. We considered the single-step mental
addition performance as an indicator of children’s basic mental
addition skills. We considered the multi-step mental addition
performance as an indicator of children’s skills on complex
mental addition.

To account for student-level, strategy-level, and item-level
variances, a three-level HLM analysis was applied. At the item
level (Level 1), we used multi-step mental addition performance
as the dependent variable and single-step mental addition
performance as the independent variable to examine the effect
of single-step mental addition on multi-step mental addition. At
the strategy level (Level 2), we used the four strategy conditions
as the independent variable and the intercept of Level 1 as the
dependent variable to examine the effects of strategy use on
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multi-step mental addition. At the student level (Level 3), we
used the phonological loop task as the independent variable and
the intercept of Level 2 as the dependent variable to examine the
effect of phonological loop on multi-step mental addition.

Measures and Procedures
Strategy
In order to manipulate the levels of schema automaticity and
WML to reflect the strategy used for each question, we alternated
two aspects of the structural features of addition problems:
WML was manipulated by the steps involved in operations
(i.e., two steps versus four steps,) and schema automaticity
was manipulated by whether the single-step addition involved
intermediate sums of 10 (Lemaire and Callies, 2009; Klein et al.,
2010). In teaching practice, students are often taught to add base
5 numbers such as 1 + 4, 2 + 3, and then base 10 numbers,
such as 1 + 9, 2 + 8, 3 + 7, 4 + 6, and 5 + 5. In Chinese
math curriculum, speeded arithmetic strategies are often taught
to help students develop more efficient strategies and adding
intermediate sums to base 10 is often utilized (e.g., transforming
7 + 9 + 13 to 7 + 13 + 9 = 20 + 9 = 29). Thus, in the present
study, the problems with intermediate sums of 10 indicate a high
level of schema automaticity, in comparison to problems without
intermediate sums of 10. Given a problem such as 7 + 22 = 29,
there were four strategy conditions: (1) problems with high
schema automaticity and low WML such as 7 + 13 + 9 (there
was one intermediate sum being 10 and there were two steps),
(2) problems with high schema automaticity and high WML such
as 7 + 3 + 4 + 6 + 9 (there were two intermediate sums being
10 and there were four steps), (3) problems with low schema
automaticity and low WML such as 7 + 9 + 13 (there were no
intermediate sums being 10 and there were two steps), and (4)
problems with low schema automaticity and high WML such as
7 + 4 + 6 + 9 + 3 (there were no intermediate sums being 10
and there were four steps) (see Table 1). In order to ensure the
participants would perform according to the imposed problem
order and format, all problems were presented in the left-to-right
order.

Regression analysis treats all independent variables in the
analysis as numerical, which means that these variables are
interval or ratio scale variables. Our four strategy conditions

were nominal scale variables that included four categories of
strategies. Thus, dummy variables were created to correctly
analyze categorical variables. First, we treated the strategy
condition (1) as one category and the remaining three conditions
as another category. Then, we had the coding for strategy-a
(3, −1, −1, −1). Second, among the strategy conditions (2),
(3), and (4), we treated the condition (2) as one category, and
conditions (3) and (4) as another category. Then, we obtained
strategy-b (0, 2, −1, −1). Finally, we compared conditions (3)
and (4), so we obtained strategy-c (0, 0, 1, −1). We did not need
a fourth dummy variable to represent condition (4) because all
four strategy conditions were mutually exclusive (they did not
overlap) and exhaustive (no other levels exited for this variable;
Ding, 2000).

Multi-Step Addition Problems (Simultaneous
Presentation)
In total, there were six original questions, and each original
question was presented as four strategy conditions to reflect
high or low schema automaticity and high or low WML. For
example, an original problem was 12 + 25. There were four
strategy conditions: (a) problems with high schema automaticity
and low WML (12 + 18 + 7 =), (b) problems with high schema
automaticity and high WML (12+ 8+ 6+ 4+ 7 =), (c) problems
with low schema automaticity and low WML (12 + 7 + 18 =),
and (d) problems with low schema automaticity and high WML
(12 + 4 + 7 + 6 + 8 =). Thus, there were 24 multi-step
addition problems. E-prime was used for programming. All
problems were randomly presented by computers to counter the
order effect. Prior to testing, a stimulus of “+” appeared in the
center of the computer screen for 150 ms. The performance
on addition problems measured by simultaneous presentation
indicated student performance on multi-step mental addition.
The participants were instructed to orally report the answer as
soon as possible. When the examinee orally reported the answer,
the examiner entered the answer and clicked the “return” key.
Then, a stimulus of “+” appeared in the center of the computer
screen and the examinee moved on to the next testing item.
The computer recorded the accuracy and response time (i.e., the
duration was from the point of stimulus presentation to the point
that the examiner hit the enter key) for each testing item (i.e., both

TABLE 1 | Addition problems used during the testing (Study 1).

Original problems High automaticity Low automaticity

Low WML (1) High WML (2) Low WML (3) High WML (4)

8 + 18 = 26 8 + 12 + 6 = 8 + 2 + 7 + 3 + 6 = 8 + 6 + 12 = 8 + 6 + 3 + 7 + 12 =

12 + 25 = 37 12 + 18 + 7 = 12 + 8 + 6 + 4 + 7 = 12 + 7 + 18 = 12 + 4 + 7 + 6 + 8 =

21 + 25 = 46 21 + 19 + 6 = 21 + 9 + 3 + 7 + 6 = 21 + 6 + 19 = 21 + 3 + 6 + 9 + 7 =

24 + 27 = 51 24 + 26 + 1 = 24 + 16 + 2 + 8 + 1 = 24 + 1 + 26 = 24 + 2 + 1 + 8 + 16 =

17 + 17 = 34 17 + 13 + 4 = 17 + 3 + 9 + 1 + 4 = 17 + 4 + 13 = 17 + 1 + 4 + 3 + 9 =

19 + 35 = 54 19 + 31 + 4 = 19 + 1 + 12 + 18 + 4 = 19 + 4 + 31 = 19 + 18 + 1 + 4 + 12 =

RT M/SD in seconds 3.48 (1.86) 5.28 (2.81) 6.48 (3.56) 9.03 (3.89)

Cronbach’s α for RT 0.81 0.68 0.71 0.85

WML, working memory load; (1), (2), (3), and (4), conditions (1), (2), (3), and (4). RT, response time.
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correct or incorrect items). Cronbach’s α was 0.89 for response
time and 0.69 for accuracy, which is acceptable (DeVellis, 1991).

Single-Step Addition Problems (Successive
Presentation)
The same 24 addition problems were re-used. However, to obtain
the accuracy and response time on single-step addition, the
presentation of each testing item such as “8 + 6 + 3 + 7 + 2 =”
was successive. In other words, the computer first presented the
single step of “8 + 6 =.” The participant obtained the answer of
“14” and pressed the “Enter” key. Then, the computer presented
the next step “+3”; the participant obtained the answer of “17”
and pressed the “Enter” key. When the examinee orally reported
the answer, the examiner entered the answer and clicked the
“return” key. Then, a stimulus of “+” appeared in the center
of the computer screen and the examinee moved on to the
next testing item. There were 24 items in total. The response
time on single-step addition was defined as the total response
time on each successively presented item divided by the steps
involved in that item. All problems were randomly presented by
the computer. The computer automatically recorded the accuracy
and response time for each item. The internal consistency for this
instrument ranged from 0.68 to 0.86.

Working Memory Measure (Phonological Loop Task)
Based on our previous study examining subcomponents of
working memory among Chinese elementary students, only
phonological loop played a significant role in mental arithmetic,
whereas VSSP and central executive did not play a significant
role (Liu et al., 2017). Thus, we only included phonological
loop as a measure of relevant working memory in the present
study. The phonological loop task was developed based on
Grant and Dagenbach (2000) and Wang et al. (2008). In total,
there were 50 equations. Ten groups of equations consisted of
two independent sequences of three, four, five, six, and seven
equations. Participants were asked to determine whether the
presented equation was correct or incorrect while they tried to
memorize the second number of the equation (e.g., 7–3 = 4). Both
correct and incorrect answers were provided. The participants
used either the “left” or the “right” button of the mouse to
indicate “correct” or “incorrect.” Participants were exposed to
each equation a maximum of 4,000 ms. If a participant did
not respond within 4,000 ms, the next equation automatically
appeared on the computer. After one group of equations were
presented, the participants were asked to enter all of the second
numbers of those equations in a row. The E-Prime program
randomly presented all equations. The second number in two
adjacent equations should not be the same, and the second
number in each equation should not be the same as the correct
answer for that equation. The scores ranged from 0 to 50.
Higher scores indicated better phonological loop. The internal
consistency for this instrument in this sample was 0.81.

To counter an order effect, all problems of each task were
randomly presented by the computers. E-prime was used for
programming. Prior to testing, the participants received training
through practice items. The participants completed three tasks in
a random order.

Participants
Chinese elementary students master under-100 addition and
subtraction with and without regrouping by fall semester of
Grade 2. They learn under-100 multiplication and division by
the end of Grade 2. Running a power analysis on a repeated
measures ANOVA with four measures, a power of 0.80, an
alpha level of 0.05, and a medium effect size (f = 0.25) requires
a sample size of at least 24 (Faul et al., 2013). We recruited
40 participants for Study 1. Thus, we recruited 40 typically
developing third graders who should have fluently mastered
under-100 addition, subtraction, multiplication, and division by
the time of testing. The average age for the participants was
8.56 years (SD = 0.89) and 22 were females and 18 were males.
The participants were randomly recruited from an elementary
school in China. This study was approved by the Research Ethics
Committee of Beijing Normal University and the principals of
the participating schools. Written and Informed consent was
obtained from the parents/legal guardians of participants.

Results and Discussion
In Study 1, the main goal was to examine how single-step mental
addition, strategy use, and working memory affected multi-step
mental addition. To account for student-level, strategy-level, and
item-level variances, a three-level HLM analysis was applied.
Chang (2003) described HLM as a “regression of regression.”
The Level 3 sample size was 40, the Level 2 sample size was
160 (40 students completed four strategy conditions), and the
Level 1 sample size was 960 (40 students completed all 24
items). We maintained four decimals in the HLM results because
HLM results often carry very small but practically meaningful
numerical values (Chang, 2003, 2004).

All of the participants had very high levels of accuracy
(ranging from 84.17 to 95.71% among four conditions), and
there was little variation among the participants (M = 91.5%,
SD = 8.2%). Thus, the measure of accuracy was excluded as a
variable for analysis. We only used participants’ correct response

TABLE 2 | Descriptive statistics of response time at item-, strategy-, and
student-level (Study 1).

Variables N Mean SD Min Max

Item-level (Level 1)

Multi-step RT 896 7.62 4.72 1.45 39.04

Single-step RT 896 3.69 1.85 0.86 19.59

Strategy-level (Level 2)

Strategy-a 160

Strategy-b 160

Strategy-c 160

Student-level (Level 3)

Phono 40 36.05 8.53 10.00 47.00

We only analyzed correct response time. RT, response time (measured in seconds).
There were 24 testing items. The multi-step response time was calculated based
on the response time on each testing item. The single-step response time was
calculated based on the response time on each testing item divided by the
presentation steps involved in that item. Phono, phonological loop.
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time for further analysis. The descriptive statistics of different
variables are listed in Table 2.

In Table 3, the dependent variable was the average response
time of multi-step addition at Level 1 (item level). The
independent variable was the average response time of single-
step addition at Level 1, indicating the basic single-step addition
skill. γ100 (0.4620) was significant, which suggested that single-
step response time (indicating automaticity) had an effect on
multi-step response time in the positive direction. This suggested
that shorter response time on single-step mental addition led to
shorter response time on multi-step mental addition, supporting
Hypothesis 1.

At Level 2 (strategy-level), the dependent variable was
the intercept of Level 1 (the response time of multi-step
mental addition). Four strategy conditions were treated as
dummy variables, including strategy-a, strategy-b, and strategy-
c. γ010 (−1.0303), γ020 (−0.5679), and γ030 (−2.2791) were all
statistically significant, suggesting that strategy use had effects on
multi-step response time in the negative direction. The higher
the coding values for the strategies, the smaller the intercept. As
we explained earlier, our dummy variables coding for strategy
conditions included strategy-a (3, −1, −1, −1), strategy-b (0, 2,
−1, −1), and strategy-c (0, 0, 1, −1). The values of coding of
dummy variables followed a descending order from strategy (1)
to strategy (4). In short, easier strategy had larger coding value
and more difficult strategy had smaller coding value. The negative
coefficients indicated that the strategy condition with larger
coding values (an easier strategy condition) corresponded to a
smaller intercept (shorter response time), whereas the strategy
condition with smaller coding values (a more difficult strategy
condition) corresponded to a larger intercept (longer response
time). As the students moved from strategy (1) (e.g., strategy
with high schema automaticity and low WML) to strategy (4)

(e.g., strategy with low schema automaticity and high WML),
the intercept increased. It supported our hypothesis that the
strategy with high schema automaticity and low WML would be
associated with shorter response time, supporting Hypothesis 2.

At Level 3 (student-level), the independent variable was
phonological loop and the dependent variable was the intercept
of Level 2. The phonological loop (γ001 = −0.1017) negatively
predicted response time on multi-step response time. As the
phonological loop skill increased, the portion of intercept at
Level 2 that was determined by phonological loop decreased. The
higher the score on phonological loop, the lower the score on
response time (shorter response time), supporting Hypothesis 3.

STUDY 2

DeStefano and LeFevre (2004) recommended that in order to
further understand the role of working memory in arithmetic,
researchers should systematically manipulate factors such as
problem conditions, problem complexity, task requirement, and
so on. Thus, it is important to manipulate task characteristics
through different approaches to examine whether similar
findings regarding automaticity and WML could hold true.
In Study 2, the task characteristics were manipulated through
the levels of schema automaticity by using one-time versus
two-time regrouping and through the WML by using partial
versus complete decomposition. The level of schema automaticity
was manipulated through regrouping. Regrouping is defined as
making groups of 10s when adding two numbers and is another
name for carrying (Green et al., 2007). High schema automaticity
is defined as one-time regrouping and low schema automaticity
is defined as two-time regrouping. Empirical studies showed that
the number of regroupings had an impact on the difficulty level

TABLE 3 | Effects of automaticity, strategy, and phonological loop on response time: three-level regression coefficients (Study 1).

Fixed effect Coefficient SE T-ratio Approx. df P

Multi-step RT as the outcome measure

Student-level (Level 3)

For INTRCPT1 π0

INTRCPT2 β00

INTRCPT3 γ000 9.6469 1.7847 5.41 38 <0.001

Phono γ001 −0.1017 0.0440 −2.31 38 0.027

Strategy-level (Level 2)

For STATEGY-A β01

INTRCPT3 γ010 −1.0303 0.0707 −14.58 117 <0.001

For STATEGY-B β02

INTRCPT3 γ020 −0.5679 0.1388 −4.09 117 <0.001

For STATEGY-C β03

INTRCPT3 γ030 −2.2791 0.2617 −8.71 117 <0.001

Item-level (Level 1)

For ST-RT slope π1

INTRCPT2 β10

INTRCPT3 γ100 0.4620 0.1136 4.07 695 <0.001

We only analyzed correct response time. INTRCPT, intercept; Phono, phonological loop; RT, response time; ST-RT, single-step response time. It is common to retain four
decimals for HLM results (Chang, 2003).
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of the arithmetic problems (Imbo et al., 2007; Klein et al., 2010),
which led to different levels of automatic retrieval (Siegler and
Shrager, 1984; Ashcraft, 1992; Ashcraft and Christy, 1995; Hoyer
et al., 2003). Problems with one-time regrouping corresponded
to higher levels of schema automaticity whereas problems within
two-time regrouping corresponded to lower levels of schema
automaticity. The WML was manipulated through complete
decomposition or partial decomposition, which led to a different
number of steps in problem solving (Lemaire and Callies, 2009).
In partial decomposition, only one operand was decomposed, so
WML was low. In complete decomposition, two operands were
both decomposed, so WML was high. Thus, we systematically
manipulated the difficulty levels of automaticity and WML using
different arithmetic approaches in Study 2. A similar three-level
HLM analysis was utilized. If the findings in Study 1 would
hold true in Study 2, it would enhance the generalization of the
findings regarding the roles of automaticity and WML in mental
arithmetic in Chinese students.

Design
The dependent variable was multi-step mental addition
performance. The independent variables included single-step
mental addition performance, strategy use (we manipulated
the levels of schema automaticity and WML to reflect four
strategy conditions), and phonological loop. To account for
student-level, strategy-level, and item-level variances, a three-
level HLM analysis was applied. At the item level (Level 1), we
used single-step mental addition as the independent variable
and multi-step mental addition as the dependent variable. At
the strategy level (Level 2), we used the four strategy conditions
as the independent variable and the intercept of Level 1 as the
dependent variable. At the student level (Level 3), we used the
phonological loop as the independent variable and the intercept
of Level 2 as the dependent variable.

Measures and Procedures
Strategy
Similar to the design used in Study 1, we alternated two
aspects of the structural features of addition problems: Schema
automaticity was manipulated by the steps of regrouping
involved in operations (i.e., one-time regrouping indicates high
schema automaticity and two-time regrouping indicates low
schema automaticity) and WML was manipulated by whether
the addition involved partial decomposition (low WML) or full
decomposition (high WML). There were four strategy conditions
for each original question (e.g., 29 + 14 =), consisting of
(1) problems with high schema automaticity and low WML
such as (29 + 10) + 4 =? (one-time regrouping and partial
decomposition), (2) problems with high schema automaticity
and high WML such as (10 + 10) + (9 + 4) =? (one-
time and complete decomposition), (3) problems with low
schema automaticity and low WML such as (29 + 8) + 6 =?
(two-time regrouping and partial decomposition), and (4)
problems with low schema automaticity and high WML such
as (13 + 9) + (16 + 5) =? (two-time regrouping and full
decomposition). See examples in Table 4.

Our four strategy conditions were nominal scale variables that
included four categories of strategies. Thus, dummy variables
were created to analyze categorical variables. First, we treated
strategy condition (1) as one category and the remaining three
conditions as another category. Then, we had the coding for
strategy-a (3,−1,−1,−1). Second, among the strategy conditions
(2), (3), and (4), we treated condition (2) as one category, and
conditions (3) and (4) as another category. Then, we obtained
strategy-b (0, 2, −1, −1). Finally, we compared conditions (3)
and (4), so we obtained strategy-c (0, 0, 1, −1). We did not need
a fourth dummy variable to represent condition (4) because all
four strategy conditions were mutually exclusive (they did not
overlap) and exhaustive (no other levels exited for this variable;
Ding, 2000).

Multi-Step Addition Problems (Simultaneous
Presentation)
First, we selected eight addition problems (the range of sums was
43 to 91, M = 68, SD = 15.48). The eight problems were designed
following four rules: (a) within half of the problems, the larger
operands were in the left position (e.g., 63 + 18 =); within the
other half of the problems, the larger operands were in the right
position (e.g., 12 + 49 =); (b) the digits were not repeated in the
same unit or place value across operands (e.g., 64 + 14); (c) no
digits were repeated within operands (e.g., 55 + 11); and (d) no
operand had 0 in the ones place value (Lemaire and Callies, 2009).

By alternating the levels of automaticity and WML, there were
four conditions for eight original problems. Thus, we had 32
problems in total. Table 4 presents how we alternated schema
automaticity and WML in the four testing conditions. Cronbach’s
α was 0.92 for response time and 0.67 for accuracy, which is
acceptable (DeVellis, 1991). E-prime was used for programming.
The details of the procedure were similar to the description in
Study 1.

Single-Step Addition Problems
The same 32 addition problems were re-used. However, to
obtain accuracy and response time on single-step addition, we
decomposed the multi-step addition problems and generated 77
single-step addition problems. For example, (29 + 10) + 4 =
would be decomposed to two single-step addition problems,
including 29 + 10 = and 39 + 4 =. Some decomposition of
the multi-step addition problems would lead to repeated single-
step addition problems, and we only retained one of them.
All problems were presented randomly by the computer. The
stimulus of “+” was flashing in the center of the computer
screen and it continued flashing for 150 ms. Then, the single-step
addition problem was presented. The examinee orally reported
the answer, and the examiner manually entered the answer and
pushed “enter” for the next item to be presented. After the
examinee completed 20 items in a row, the examinee took a
short break. The computer automatically recorded the accuracy
and response time (i.e., the duration was from the point of
stimulus presentation to the point that the examiner hit the enter
key) for each item (i.e., both correct or incorrect items). We
considered the mean response time of all single-step addition
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TABLE 4 | Addition problems used during simultaneous presentation and descriptive statistics (Study 2).

Original problems High automaticity Low automaticity

Low WML (1) High WML (2) Low WML (3) High WML (4)

29 + 14 = 43 (29 + 10) + 4 = (10 + 10) + (9 + 4) = (29 + 8) + 6 = (13 + 9) + (16 + 5) =

18 + 34 = 52 (18 + 30) + 4 = (10 + 30) + (8 + 4) = (18 + 26) + 8 = (12 + 25) + (6 + 9) =

12 + 49 = 61 (10 + 49) + 2 = (10 + 40) + (2 + 9) = (8 + 49) + 4 = (4 + 23) + (8 + 26) =

14 + 49 = 63 (10 + 49) + 4 = (10 + 40) + (4 + 9) = (6 + 49) + 8 = (6 + 25) + (8 + 24) =

43 + 28 = 71 (40 + 28) + 3 = (40 + 20) + (3 + 8) = (17 + 28) + 26 = (26 + 7) + (17 + 21) =

63 + 18 = 81 (63 + 10) + 8 = (60 + 10) + (3 + 8) = (24 + 18) + 39 = (29 + 16) + (34 + 2) =

23 + 59 = 82 (20 + 59) + 3 = (20 + 50) + (3 + 9) = (16 + 59) + 7 = (17 + 34) + (6 + 25) =

57 + 34 = 91 (57 + 30) + 4 = (50 + 30) + (7 + 4) = (57 + 16) + 18 = (14 + 28) + (43 + 6) =

RT M/SD in seconds 5.73 (2.45) 6.02 (2.61) 11.75 (6.53) 20.30 (10.53)

Cronbach’s α for RT 0.83 0.85 0.82 0.87

WML, working memory load. (1), (2), (3), and (4), conditions (1), (2), (3), and (4). Condition 1: one-time regrouping and partial decomposition. Condition 2: one-time
regrouping and complete decomposition. Condition 3: two-time regrouping and partial decomposition. Condition 4: two-time regrouping and complete decomposition.
RT, response time.

problems involved in a multi-step mental addition as the single-
step response time corresponding to that multi-step mental
addition response time.

Working Memory Measure (Phonological Loop Task)
The details of the phonological loop task were provided in
Study 1.

To counter an order effect, all problems of each task were
randomly presented by the computers. E-prime was used for
programming. Prior to testing, the participants received training
through practice items. The participants completed three tasks in
a random order.

Participants
Running a power analysis on a repeated measures ANOVA with
four measures, a power of 0.80, an alpha level of 0.05, and
a medium effect size (f = 0.25) requires a sample size of at
least 24 (Faul et al., 2013). We recruited 43 typically developing
fourth graders (female = 25, male = 18) who should have fluently
mastered under-100 addition, subtraction, multiplication, and
division by the time of testing. They ranged from 9 to 11 years
old (M = 9.42, SD = 0.79), with 22 females and 21 males. The
participants were randomly recruited from an elementary school
in China. All children did not carry documented disabilities and
did not receive training on mental arithmetic. This study was
approved by the Research Ethics Committee of Beijing Normal
University and the principals of the participating schools. Written
and Informed consent was obtained from the parents/legal
guardians of participants.

Results and Discussion
In Study 2, the main goal was to examine how single-step
mental addition, strategy use, and working memory measure
affected multi-step mental addition. A three-level HLM analysis
was applied to account for student-level, strategy-level, and
item-level variances. The Level 3 sample size was 43, the Level
2 sample size was 172 (43 students completed four strategy
conditions), and the Level 1 sample size was 1,375 (43 students

completed 32 items and there were missing items). Based on
Chang (2003, 2004), we maintained four decimals in the HLM
analysis.

All of the participants had very high levels of accuracy (89.24%
for all conditions, SD = 7.8%) and there was little variation among
the participants. Thus, the measure of accuracy was excluded as a
variable for analysis. We only used participants’ correct response
time for further analysis. The descriptive statistics for different
variables are listed in Table 5.

In Table 6, the dependent variable was the average response
time of multi-step addition at Level 1 (item level). The
independent variable was the response time of single-step
addition at Level 1, indicating simple addition skills. γ100 (1.5751)
was significant and suggested that the single-step response
time had an effect on multi-step response time in the positive
direction. It indicated that better (faster) response time on single-
step mental addition decreased the response time on multi-step
mental addition, supporting Hypothesis 1.

TABLE 5 | Descriptive statistics of response time at item-, strategy-, and
student-level (Study 2).

Variables N Mean SD Min Max

Item-level (Level 1)

Multi-step RT 1224 9.98 7.73 2.50 66.22

Single-step RT 1224 2.80 1.32 0.94 10.87

Strategy-level (Level 2)

Strategy-a 171

Strategy-b 171

Strategy-c 171

Student-level (Level 3)

Phono 43 40.14 9.18 7.00 48.00

We only analyzed correct response time. RT, response time (measured by
seconds). There were 32 testing items. The multi-step response time was
calculated based on the response time on each testing item. The single-step
response time was calculated based on the response time on each testing item
divided by the presentation steps involved in that item. Phono, phonological loop.
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TABLE 6 | Effects of automaticity, strategy, and phonological loop on response time: three-level regression coefficients (Study 2).

Fixed effect Coefficient SE T-ratio Approx. df P

Multi-step RT as the outcome measure

Student-level (Level 3)

For INTRCPT1 π0

INTRCPT2 β00

INTRCPT3 γ000 8.2621 1.6268 5.08 41 <0.001

Phono γ001 −0.0530 0.0257 −2.06 41 0.045

Strategy-level (Level 2)

For STATEGY-A β01

INTRCPT3 γ010 −1.3622 0.0925 −14.73 125 <0.001

For STATEGY-B β02

INTRCPT3 γ020 −2.2642 0.1893 −11.96 125 <0.001

For STATEGY-C β03

INTRCPT3 γ030 −4.1992 0.3914 −10.73 125 <0.001

Item-level (Level 1)

For ST-RT slope π1

INTRCPT2 β10

INTRCPT3 γ100 1.5751 0.3050 5.16 1009 <0.001

We only analyzed correct response time. Phono, phonological loop; RT, response time; ST-RT, single-step response time; INTRCPT, intercept. It is common to retain four
decimals for HLM results (Chang, 2003).

At Level 2 (strategy-level), the dependent variable was the
average response time of multi-step mental addition. Four
strategy conditions were treated as dummy variables, including
strategy-a, strategy-b, and strategy-c. γ010 (−1.3622), γ020
(−2.2642), and γ030 (−4.1992) were all statistically significant,
suggesting that strategy use had effects on multi-step response
time in the negative direction. The negative coefficients indicated
that the strategy condition with larger coding values (easier
strategy condition) corresponded to a smaller intercept, whereas
the strategy condition with smaller coding values (more difficult
strategy condition) corresponded to a larger intercept. In other
word, as students moved from strategy (1) (easier strategy) to
strategy (4) (more difficult strategy), the intercept determined by
the strategies increased (indicating longer response time). This
supported our Hypothesis 2 that the strategy with high schema
automaticity and low WML would be associated with a shorter
response time.

At Level 3 (student-level), the phonological loop was the
independent variable and the intercept of Level 2 was the
dependent variable. The phonological loop (γ001 = −0.0530)
negatively predicted response time on multi-step mental
addition. As the phonological loop skill increased, the portion of
intercept of Level 2 determined by phonological loop decreased.
This finding supported our Hypothesis 3 that the higher the score
of the phonological loop, the shorter the response time.

GENERAL DISCUSSION

Main Findings
The findings reveal the important roles of working memory,
single-step mental addition skills, and strategy use in multi-
step mental addition. We manipulated the difficulty levels of the

tasks through the dimension of WML and schema automaticity
by using different approaches in Study 1 and Study 2. There
are three main findings revealed in Study 1 and Study 2. First,
children’s shorter response time on single-step mental addition
was associated with shorter response time on multi-step mental
addition, regardless of how we manipulated the levels of WML
and schema automaticity. Second, different strategy use was
enforced through the four strategy conditions for which we
manipulated the difficulty levels of schema automaticity and
WML. Easier strategy was associated with shorter response time.
Third, stronger phonological loop was associated with shorter
response time on multi-step mental addition.

Single-step response time was considered as children’s fluency
on simple addition facts. Our findings support the importance
of fluency in single-step addition facts in order for children to
perform efficiently on multi-step mental addition. These findings
confirm the importance of fluency in basic arithmetic facts,
which is consistent with previous findings indicating that direct
retrieval of simple mathematic facts is the most advanced and
most efficient strategy with regard to problem solving speed
and accuracy (Siegler, 1988; Geary et al., 2004). According to
the cognitive load theory (Sweller, 1988; Paas et al., 2003; van
Merriënboer and Sweller, 2005), high fluency on single-step
addition largely reduces the load on working memory, freeing
up working memory for more complex operations such as multi-
step addition. Low fluency on single-step addition facts indicates
that children who do not directly retrieve basic addition facts
from their unlimited long-term memory could be overwhelmed
by the number of interactive single-step addition facts that need
to be processed simultaneously before multi-step addition can
be processed (Paas et al., 2010). In the case that children are
not fluent with single-step addition facts, their execution of
single-step addition requires substantial resources of working
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memory in order to consciously process the intermediate sums
of single-step addition. Cumulatively, the process to execute
the intermediate sums of single-step addition, memorize the
intermediate sums, and add all intermediate sums to form the
total sums would warrant a large amount of processing time
(longer response time).

In Ding et al. (unpublished), we found that student response
time followed the order of strategy (1) < strategy (2) < strategy
(3) < strategy (4), from the fastest condition to the slowest
condition, by examining the descriptive statistics. The findings
of the HLM analysis concurred with our previous observations
(Ding et al., 2017), suggesting that high schema automaticity
and low WML corresponded with higher accuracy rate and
shorter response time. Under the strategy (1) condition, the
problems were presented with high schema automaticity and
low WML such as 8 + 12 + 6 (i.e., the difficulty levels on
both dimensions were low). The problem has an intermediate
sum of 10 and only has two steps. Thus, strategy (1) yielded
the fastest response time. Under the strategy (4) condition, the
problems were presented with low schema automaticity and high
WML such as 8 + 6 + 3 + 7 + 12 (i.e., the difficulty levels
on both dimensions were high). Thus, strategy (4) yielded the
slowest response time. Under strategy (2), problems with high
schema automaticity and high WML (8 + 2 + 7 + 3 + 6 =),
and strategy (3) problems with low schema automaticity and low
WML (8 + 6 + 12 =), only one dimension of the problem was
difficult and the other dimension of the problem was easy. The
findings in Ding et al. (2017) indicated that sacrificing resources
on WML while performing easier tasks (i.e., tasks that students
could retrieve automatically) rendered shorter response time,
whereas less demand on WML did not compensate for the limits
of automaticity, suggesting that children performed better in
condition (2) than they did in condition (3). Our Level-2 HLM
analysis supported our previous observations (Ding et al., 2017).
All coefficients at Level 2 are negatively significant, indicating
that an easier strategy condition (condition with larger dummy
variable coding value) led to a smaller intercept determined by
that strategy (i.e., shorter response time). In other words, the
use of a more effective strategy led to shorter response time on
multi-step mental addition.

Children’s performance on the phonological loop task
negatively predicted the response time on multi-step mental
addition, concurring with Liu et al. (2017), Ding et al.
(unpublished). Higher phonological loop scores corresponded
to shorter response time on multi-step mental addition. The
findings underline the important role of phonological loop in
mental arithmetic in Chinese children. Although there have
been mixed findings regarding the role of phonological loop
in single-step mental arithmetic in empirical studies conducted
with Western participants (e.g., Lemaire et al., 1996; De
Rammelaere et al., 1999, 2001; Seitz and Schumann-Hengsteler,
2000, 2002; Hecht, 2002), the critical role of phonological
loop has been demonstrated in single-step mental arithmetic
in Korean participants (Lee and Kang, 2002) and in multi-
step mental arithmetic in Chinese participants (Liu et al.,
2017; Ding et al. unpublished). We attributed such a universal
role of phonological loop in mental arithmetic to the unique
mathematics instructional approach adopted in the Chinese

education system. The Chinese school system emphasizes
practice and drills on basic mathematic facts. A large amount of
class time is designed to enhance children’s fluency on simple
arithmetic such as addition, subtraction, multiplication, and
division. For example, children are required to rote memorize
multiplication tables from 1 × 1 to 9 × 9, and children
often memorize such arithmetic facts through verbal rehearsal
(e.g., one one equals one, one two equals two). For one-digit
or two-digit addition and subtraction, rote memorization is
also greatly encouraged. Thus, it is rare to observe Chinese
children attempting a wide range of strategies to tackle simple
arithmetic problems because they often rely on verbal modality
to directly retrieve the results from long-term memory. China’s
Compulsory Education Law (National People’s Congress, 1986)
is responsible for students ranging from Kindergarten to Grade
9, and students within the age/grade range are entitled to free
public education. According to the data released by the Ministry
of Education (2014), there were 254,000 public schools serving
students from Kindergarten to Grade 9, whereas there were only
10,425 private schools serving K-9 students (only 4% of the
K-9 schools are private). In China, the standard mathematics
curriculum is developed by the Ministry of Education to avoid
disparities in education caused by regional differences, and all
public schools (96% of all K-9 schools) utilize the standard
mathematics curriculum mandated by the central government. In
other words, there is very little variation in terms of how Chinese
children are taught basic mathematic facts. Early mathematics
teaching in China encourages language-specific representations
of basic mathematic facts, which supports the critical role of
phonological loop in our findings.

It is ideal to analyze findings from the aspects of accuracy
and response time. However, it is noteworthy that Chinese
children were fairly accurate on mental addition (91.5% accuracy
rate for Study 1 and 89.24% accuracy rate for Study 2),
regardless of how the testing conditions were manipulated.
Thus, we did not include accuracy in the final analysis due
to little variation among the students (i.e., students were
fairly accurate regardless whether they spent more or less
time on problems). The findings concurred with the high
accuracy rate of Chinese children reported in Ding et al.
(unpublished). In the present studies, we artificially increased
the difficulty levels of the strategy conditions (i.e., strategies
1, 2, 3, and 4), and the complexity of the problem formats
appeared to affect the response time (i.e., children took
longer to respond to more complex problems). However,
the Chinese children in our studies continued to accurately
execute the problems and provide correct answers, regardless
of the increased steps or decreased schema automaticity to
retrieve arithmetic facts. The increased difficulty levels of the
problems obviously sacrificed their response time, but not their
accuracy rate. In China’s elementary mathematics curriculum
(People’s Education Press, 2017), exact arithmetic calculation is
largely emphasized, with less emphasis on number estimation
(i.e., teachers discourage approximate answers or guessing but
encourage accurate answers). A large amount of homework and
in-class practice serve to enhance children’s calculation accuracy.
Our findings echoed the evidence of performance advances for
East Asian students in simple arithmetic that occur in elementary
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school as early as Kindergarten (Siegler and Mu, 2008), secondary
school (Stevenson et al., 1993), and beyond (Stevenson and
Stigler, 1992).

We used different approaches to alternate the difficulty levels
of the strategies in Study 1 and Study 2. In Study 1, we
alternated the task difficulty levels through the dimension of
WML (i.e., two steps versus four steps) and the dimension of
schema automaticity (i.e., intermediate sums were 10 or were
not 10; Lemaire and Callies, 2009; Klein et al., 2010). Study
1 extended our previous study (Ding et al., 2017) in mental
multiplication to mental addition, but followed the same design
for task development. In Study 2, the schema automaticity was
manipulated by the steps of regrouping involved in operations
(i.e., one-time regrouping versus two-time regrouping), and
WML was measured by whether the addition involved partial
decomposition (low WML) or full decomposition (high WML;
Lemaire and Callies, 2009), which was not utilized in previous
studies. The general findings in Study 1 held true in Study 2, even
though the strategy conditions were manipulated differently.

LIMITATIONS AND CONCLUSION

We note that our studies have shortcomings. First, the
participants were limited to two independent samples of third
graders and fourth graders in large cities of China. The findings
might not be generalizable to learning of arithmetic in other
countries due to possible differences in instructional approaches
and learner characteristics. Second, we assumed that if a problem
was presented in a specific way (e.g., imposed problem format
such as 8 + 12 + 6, then children would calculate 8 + 12 = 20
first and then calculate 20+ 6 = 26 in that order); that is, children
would solve problems according to the enforced problem format.
It remains unclear whether a small portion of participants might
have generated their own strategy (e.g., 8+ 12+ 6, then children
would calculate 12+ 6 = 18 first and then calculate 8+ 18 = 26),
regardless of the problem format we enforced. There was no
mechanism to prevent spontaneous strategy use that did not
follow the imposed problem format. Nevertheless, even if in
some cases the students used some strategies to reorganize the
sequence of calculating a problem, they must have spent some
time observing the digital features of the problem and then
making decisions on what strategies they could generate and
use, which would have led to increased response time. Third,
the measures of accuracy and response time should be used for
analysis in an ideal situation. For example, both analyses for
accuracy and response time were provided for the examination
of mental multiplication in Ding et al. (2017). However, in the
samples in the present study, students were fairly accurate on all
addition task conditions regardless of how we manipulated the

tasks, although they demonstrated differentiated response time
under different addition task conditions. Due to the little variance
of accuracy rates among the participants, the measure of accuracy
rate was excluded for final analysis.

Despite the shortcomings, the present studies extend the
literature in a number of ways. First, we extended our alternation
of WML and automaticity from mental multiplication (Ding
et al., 2017) to mental addition. Second, within mental addition,
we applied different approaches to alternate the difficulty levels
of WML and schema automaticity in Study 1 and Study 2,
and the general findings were consistent in both studies. Our
findings indicate that future researchers might consider utilizing
different approaches to alternate WML and schema automaticity
and examine whether the findings hold true under different
testing conditions. Third, the present studies underscore the
importance of enhancing children’s fluency in simple arithmetic,
the use of effective strategy, and the important role of verbal
representation of arithmetic facts in Chinese children. The
homogenous evidence supports the activation of phonological
loop during mental arithmetic problem solving in Chinese
children. It highlights the importance of evaluating the linguistic
features and instructional contexts in which children become
fluent with basic arithmetic facts.
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