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The essentially active nature of vision has long been
acknowledged but has been difficult to investigate
because of limitations in the available instrumentation,
both for measuring eye and body movements and for
presenting realistic stimuli in the context of active
behavior. These limitations have been substantially
reduced in recent years, opening up a wider range of
contexts where experimental control is possible. Given
this, it is important to examine just what the benefits are
for exploring natural vision, with its attendant
disadvantages. Work over the last two decades provides
insights into these benefits. Natural behavior turns out
to be a rich domain for investigation, as it is remarkably
stable and opens up new questions, and the behavioral
context helps specify the momentary visual
computations and their temporal evolution.

Introduction

Research in vision has always been strongly influ-
enced by the technology available at the time. Until the
1970s, the primary device for presenting visual stimuli
was the Maxwellian view optical system, which allowed
precise control of stimulus size, duration, color, and
luminance of patches of light. However, with only these
basic parameters to control, the kinds of questions that
could be asked were somewhat restricted. Vision
research at the time therefore focused on early visual
mechanisms, in step with the breakthroughs in retinal
neurophysiology, with recording from photoreceptors
and retinal ganglion cells. Maxwellian view systems
required that the head be stabilized by a bite bar in
order to control the retinal illuminance. Eye-tracking
devices also required that the head be stabilized, and
this constraint persists to a large extent in modern eye-
tracking experiments, where the head is frequently
stabilized with a forehead rest. The drawback of having
the head fixed in space is that the repertoire of
behaviors that the subject can engage in is limited.
Vision is designed to function in the context of a
constantly moving observer, executing goal-directed

actions. While this has long been recognized, for
example, in the context of the ecologically focused
perception and action tradition, designing experiments
to investigate vision in the context of active behavior
has been quite challenging. Experimental convenience
has always been a strong influence, and as display
technology has become more sophisticated and eye and
body monitoring in unconstrained observers has
become easier, so too has the range of convenient
experiments broadened. Head-mounted eye trackers
have become lighter and less expensive, with higher
spatial and temporal resolution. Head-mounted dis-
plays for virtual reality are now cheap and comfortable,
eye tracking within virtual-reality displays has vastly
improved, and realistic environments are easy to
generate. Body-movement monitoring has also im-
proved.

These technical developments lead to a variety of
exciting possibilities. However, it is important to
analyze just what difference it makes to investigate
vision in the context of ongoing behavior, given its
attendant complexities and the reduction in experi-
mental control. What insights can be gained from
doing this? I will review some of the work in my lab and
others over the last two decades to gain perspective on
this question. I will focus in particular on situations
involving ongoing natural behavior, extending over
periods of several seconds or more, where there is only
limited experimental intervention. This means that we
are looking at sequences of actions chosen by the
subject, in contrast to the traditional trial structure
controlled by the experimenter. This means that we can
examine the factors that influence the transitions from
one action to the next, something which is harder to get
at in more controlled paradigms. Natural behavior also
allows us to ask just what information is available to
vision and what computations or tasks need to be
performed within a given context. Again, these
questions are important but hard to answer without
looking at natural behavior. Of necessity, there are
many large gaps in this review, and a lot of important
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work is not covered. A more extensive review can be
found in Hayhoe (2017).

Decomposing complex behavior
into tasks

I first consider how to simplify the understanding of
complex behavior by breaking it down into specific task
components. I will focus on gaze control, since it is a
central aspect of active vision. In natural behavior, gaze
is used to acquire information about the world to
choose and control actions. Looking at behaviors
extended in time over periods of seconds or more,
different sets of questions emerge, and the behavioral
context provides clues to the answers. Consider
ordinary behavior such as walking across the street,
illustrated in Figure 1. To accomplish a simple task like
this, a person must identify a goal to determine the
direction of heading, perhaps establish that the light is
green, avoid tripping over the curb, locate other
pedestrians or vehicles and their direction of heading so
as to avoid bumping into them, and so on. Each of
these particular goals requires some visual evaluation
of the state of the world in order to make an
appropriate action choice in the moment. We can think
of this as a sequence of decisions about where to look
and what direction to walk. How are these decisions
made? What is controlling the gaze changes? Why does
gaze move from one location to another so that the
walker gets the visual information she needs at the right
time? This example is more challenging in some ways
than a task context such as making tea or sandwiches
(Land, Mennie, & Rusted, 1999; Hayhoe, Shrivastrava,
Myruczek, & Pelz, 2003), where there is presumably a
remembered task sequence that can guide the next

action. Thus, when one has put peanut butter on the
knife, the next action would be to look at the bread,
then guide the knife to the bread, and so on. These
tasks clearly reveal the extent to which fixations in a
scene are tightly linked to momentary behavioral goals,
in both space and time. During performance of tasks
like making tea or a sandwich, over 95% of the fixations
can be accounted for by the task (Land et al., 1999;
Land & Hayhoe, 2001; Hayhoe et al., 2003).

Tasks like walking across the street are more
difficult, because the scene is less predictable and there
is no obvious predetermined sequence of gaze loca-
tions. The default strategy has been to consider how
properties of the visual image might attract gaze,
leading to a large body of work on saliency (Borji, Itti,
Liu, Musialski, & Wonka, 2013). While this will
account for some fraction of gaze changes, it is not
known how much of the visual information accrued in
the course of everyday experience is the result of
looking at salient stimuli, because much of the
important information may not be particularly salient,
and salient information might not be important (Tatler
& Land, 2011). The approach taken here, instead, is to
consider what information is needed in a task such as
crossing an intersection and how gaze targets are
chosen to gather that information. What determines
task-driven changes in gaze location? Analysis of
visually guided behavior in this way focuses on how
selective attention is sequentially controlled to gather
behaviorally relevant visual information.

The first issue to consider is what the particular
subasks in natural behavior are and what information
is required for them. This is something that we typically
make assumptions about, but it requires a natural
behavioral context to answer. Until we look at natural
behavior, we do not know the properties of the
stimulus milieu that the visual system must deal with.
For example, optic flow is typically presented as a

Figure 1. A sequence of gaze locations when walking across an intersection recorded using a head-mounted portable eye tracker. Gaze

is shown by the red crosshairs. A possible function of each fixation is indicated above each frame.
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constant velocity pattern, but recent measurements of
the stimulus array during locomotion reveal complex
time-varying optic-flow patterns with rhythmic accel-
erations and decelerations linked to gait (Matthis,
Muller, Bonnen, & Hayhoe, 2017). In a similar vein, W.
Sprague, Cooper, Tosic, and Banks (2015) have shown
that natural-image statistics depend on the convergence
distances humans choose. We need to examine both the
stimulus and the linked behavior in order to be
confident about what visual information is required for
different aspects of locomotion, such as control of
heading direction, foot placement, way finding, and so
on (e.g., Fajen & Warren, 2003). Many of these
questions remain unresolved. The second issue is which
of several tasks to choose. That is, should a walker
execute a visual search for an obstacle or check the
traffic light at a particular moment? This question has
been investigated more directly, and I will examine
several of the factors influencing task choice in what
follows.

Rewards and costs

An important factor that influences choice of gaze
location is the value of the information for the current
behavioral goal. It has been demonstrated that primary
rewards, in the form of money or points in humans or
juice in monkeys, influences eye movements in a variety
of experiments (Navalpakkam, Koch, Rangel, &
Perona, 2010; Gottlieb, 2012; Schütz, Trommershäuser,
& Gegenfurtner, 2012). It remains to be established
how to make the link between the primary rewards
used in experimental paradigms and the secondary
rewards that operate in natural behavior, where eye
movements are for the purpose of acquiring informa-
tion (Tatler & Land, 2011; Hoppe & Rothkopf, 2016;
Tong, Zohar, & Hayhoe, 2017). In principle, the neural
reward machinery provides an evaluation mechanism
by which gaze shifts can ultimately lead to primary
reward, and thus potentially allows us to understand
the role that gaze patterns play in achieving behavioral
goals. A general consensus is that this accounting is
done by a secondary reward estimate, and a huge
amount of research implicates dopamine in this role. It
is now well established that cells in many of the regions
involved in saccade target selection and generation are
sensitive to expectation of reward, in addition to coding
the movement itself (e.g., Platt & Glimcher, 1999;
Sugrue, Corrado, & Newsome, 2005; Gottlieb, 2012;
Yasuda, Yamamoto, & Hikosaka, 2012). There is also
good evidence that the neural reward machinery acts in
ways predicted by reinforcement-learning models
(Schultz, 2000; Lee, Seo, & Jung, 2012). The challenge
is to understand just how the rewards modulate

momentary action selection in the context of ongoing
behavior.

One factor that is probably a pervasive influence on
action choices is energetic cost. Matthis, Barton, and
Fajen (2015) controlled the visibility of future
footholds and showed that walkers need to have visual
information from two steps ahead to take advantage
of passive dynamics of the body, which acts like an
inverted pendulum. Information from two or more
steps ahead avoids braking, and so allows optimal
energetic efficiency (Matthis, Barton, & Fajen, 2017).
Further observations in natural outdoor walking have
shown that walkers naturally choose to fixate loca-
tions that are two steps ahead, allowing minimization
of energetic cost. When the terrain becomes rough,
walkers also spend time looking three steps ahead, a
strategy that may reflect the need to balance energetic
costs with other needs such as choosing stable
footholds (Matthis, Yates, & Hayhoe, 2017).

Earlier work also attests to the importance of
energetic costs. Ballard, Hayhoe, and Pelz (1995)
investigated a scenario where subjects copied a model
made up of eight colored Duplo blocks, as shown in
Figure 2. Typically, subjects make frequent looks back
to the model pattern in the course of copying it.
However, if the model pattern was located farther away
from the location where the copy was made, separated
so that a head movement was required in order to look
at the model, subjects made fewer fixations on the
model. This suggests that fixations on the model were
more costly when a combined eye-and-head movement
was required, so now memory was used more. Thus,
the choice to fixate the model depended on the cost of
the fixation. Subsequent work by Hardiess, Gillner, and
Mallot (2008) and Solman and Kingstone (2014) has
found similar results.

There are other intrinsic costs that are revealed in
natural behavior. For example, Jovancevic and Hay-
hoe (2009) measured gaze distribution while subjects
walked around a room in the presence of other

Figure 2. The layout for the block-copying task studied by

Ballard et al. (1995). Subjects pick up blocks from the Supply

area and make a copy of the Model pattern. When Model and

Copy are separated by a distance of 1108 and looking between

them thus entails a head movement as shown on the right in

the Far condition, the number of fixations on the Model pattern

goes down from 2.1 to 1.5 fixations per block.
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walkers. Some of the walkers behaved in an unex-
pected and potentially hazardous manner, by briefly
heading toward the subject on a collision course
before reverting to a normal avoidance path. Subjects
rapidly modified their gaze-allocation strategies, and
the probability of fixations on these pedestrians was
increased. Perhaps more importantly, the latencies
and durations of these fixations also changed, as
shown in Figure 3, so that fixations on the veering
walkers became longer and occurred sooner after the
walker appeared in the field of view. This tightly
orchestrated aspect of gaze distribution suggests an
underlying adaptive gaze-control mechanism that
learns the statistics of the environment and allocates
gaze in an optimal manner as determined by potential
costs.

The point of all these examples is that the
momentary costs of actions factor into sensorimotor
decisions that are being made on a timescale of tens of
milliseconds. Thus, whether to step to the right or left
of an obstacle, how to allocate attention, and exactly

when to make the movement are flexibly adjusted to
satisfy global task constraints. Rothkopf and Ballard
(2013) and Tong, Zhang, Johnson, Ballard, and Hay-
hoe (2015) have shown that it is possible to recover an
estimate of the intrinsic reward value of particular
actions such as avoiding obstacles in a walking task.
Thus, it seems likely that subjects learn stable values for
the costs of particular actions like walking and obstacle
avoidance, and that these subjective values factor into
momentary action decisions. The unexpectedly low
variability between subjects in many natural behaviors
may be the result of a common set of costs and
optimization criteria. By looking at natural behavior
that extends over timescales of seconds, we can gain
insight into the factors that affect momentary action
choices, what the task structure might be, and what the
subjective values of different actions are.

The role of state uncertainty in gaze
transitions

The natural world is complex, dynamic, and
unpredictable, so there are many sources of uncer-
tainty about its current state. Consider the previously
described example of crossing the street, illustrated in
Figure 4. At any moment there are a number of
behavioral needs competing for gaze or attention.
Suppose a walker is currently looking at the location
of an obstacle in order to gather information to
execute an avoidance action. The previous fixation
might have been in the direction of the goal, to control
heading. This information will be in the peripheral
retina with poor spatial resolution, so goal position
with respect to the body will probably be stored in
working memory, which will decay over time and will
also need to be updated as the observer moves in the
scene, introducing additional uncertainty. Other rele-

Figure 3. Fixation durations and latencies as a function of circuits around a room, for pedestrians exhibiting different behaviors.

Rogues briefly veered toward the subject, Safe walkers behaved normally, and Unpredictable walkers veered 50% of the time. Error

bars are 61 standard error of the mean across five subjects. Adapted from ‘‘Adaptive Gaze Control in Natural Environments’’ by
J. Jovancevic and M. M. Hayhoe, 2009, Journal of Neuroscience, 29(19), p. 6236. Copyright 2009 by Society for Neuroscience.

Figure 4. Schematic of task decomposition for walking across an

intersection, as in Figure 1, illustrating information held in

working memory following a fixation on an obstacle. Other task-

relevant information is also held in working memory and decays

over time.
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vant information acquired previously will also need to
be held in working memory and will decay over time.
The choice of the next gaze location will be determined
by these various uncertainties. The need to include
uncertainty to explain gaze choices stems from the fact
that the optimal action choice is unclear if the state is
uncertain (N. Sprague, Ballard, & Robinson, 2007).
Thus, the probability of a change in gaze to update
state increases as uncertainty increases (Sullivan,
Johnson, Rothkopf, Ballard, & Hayhoe, 2012; John-
son, Sullivan, Hayhoe, & Ballard, 2014; Tong et al.,
2017).

Examination of precisely when a gaze change occurs
can be revealing about the underlying mechanisms. In
an exploration of how gaze probability is modulated by
uncertainty, Hoppe and Rothkopf (2016) devised an
experiment where subjects had to detect an event
occurring at a variable time in either of two locations.
The event could not be detected unless the subject was
fixating the location, and the subjects learned to adjust
the timing of the saccades between the locations in an
optimal manner. Subjects readily learned the temporal
regularities of the events and traded off event-detection
rate with the behavioral costs of carrying out eye
movements. Thus, subjects learn the temporal proper-
ties of uncertain environmental events and use these
estimates to determine the precise moment to make a
gaze change.

While growth of uncertainty about task-relevant
information appears to initiate a gaze change, there is
also evidence for the complementary claim, that other
tasks rely on memory estimates when the associated
uncertainty is low. This has been shown in experi-
ments by Droll, Hayhoe, Triesch, and Sullivan (2005)
and Droll and Hayhoe (2007), illustrated in Figure 5.
In those experiments, subjects picked up virtual blocks
on the basis of a feature such as color, and then sorted
them on the basis of either the same feature (color) or
a different feature (e.g., size). On some trials, the color
was changed during the saccade after the block was
picked up, as illustrated in the figure. When subjects
were cued to place the block on the left or right
depending on its color, they frequently acted as if the
block was the original color that it was when they
picked it up. This information was presumably held in
visual working memory, and it was this information—
not the actual color of the block on the retina—that
was used for sorting. This occurred more frequently in
conditions that encouraged subjects to use working
memory, and less frequently in conditions when
subjects made more frequent refixations of the blocks.
Trials when subjects picked up blocks on the basis of
their color and also sorted them on the basis of color
on every trial are labeled Predictable One-feature
trials in Figure 5, and on these trials subjects used
memory for sorting on over 90% of trials. In the trials

labeled Unpredictable Two-feature, subjects always
picked up the block on the basis of a feature such as
color, but sorted on the basis on any of four features,
and did not know which feature would be needed until
they looked at the placement cue after they had picked
up the block. Consequently, there was a heavier
memory load in this condition and subjects frequently
waited until after pickup to look at the block in hand
to get the relevant information, so in this case they
sorted on the basis of memory on only 21% of trials.
Given that the increased memory load will also
increase uncertainty about the block features, is
appears that subjects use memory representations
when they have low uncertainty about the state of the
information, but use gaze to update state when they
are more uncertain. This flexible, context-dependent
use of memory versus immediately available infor-
mation is an important feature of natural visually
guided behavior.

To summarize: The need to update information
about task-relevant, potentially rewarding state is
important in determining the location and timing of
gaze changes, although it is not the only factor. There
is some evidence to suggest that working-memory
representations are used if they are reliable enough,
thus obviating the need for a gaze change. The trade-

Figure 5. Subjects picked up virtual blocks and sorted them onto

the left or right ‘‘conveyor belt’’ according to their color. On

some trials the block color was changed during a saccade.

Despite this, subjects frequently sorted on the basis of the

original color rather than the current color, even when directly

fixating the block while placing it on the belt. Thus, the color

information acquired when picking up was not updated to the

new state. Adapted from ‘‘Deciding When to Remember and

When to Forget: Trade-Offs Between Working Memory and

Gaze,’’ by J. Droll and M. Hayhoe, 2007, Journal of Experimental

Psychology: Human Perception and Performance, 33(6), p. 1360.

Copyright 2007 by American Psychological Association.
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off between memory and gaze deserves further
exploration.

The role of memory in gaze
targeting

Another insight that is made possible by investi-
gating natural behavior is the role of memory in action
decisions and control. Information for action deci-
sions can be made on the basis of current sensory data,
a memory representation, or some weighted combi-
nation of these. In natural behavior, subjects are
immersed in a relatively stable environment where
they have the opportunity to develop long-term
memory representations, and the use of memory in
targeting eye and body movements may allow more
energetically efficient strategies. Thus, natural behav-
ior introduces constraints that are not evident in
standard paradigms.

As an individual moves around in the environment,
it is necessary to store information about spatial layout.
One need for this information arises when orienting to
regions outside the field of view. Land et al. (1999)
noted instances when subjects made a number of very
large gaze shifts to locations outside the field of view in
a tea-making task. These gaze shifts involved a
combination of eye, head, and body movements, and
were remarkably accurate. When objects are within the
field of view, subjects have choice of searching for a
target on the basis of its visual features, so may not

need to use memory. However, it appears that memory
is indeed typically used in this instance. Experiments by
Epelboim et al. (1995) provide evidence that saccade
targeting is facilitated by memory in tasks such as
tapping a sequence of lights in known positions. In a
task where subjects built a toy model, Aivar et al.
(2005) showed that saccades were sometimes made to
the remembered locations of targets that had subse-
quently been moved to new locations, revealing that
subjects often planned saccades on the basis of a
memory representation even in the presence of con-
flicting visual information, and then had to make
corrective movements. The most likely reason for
choosing memory-based targeting over visual targeting
is that it allows planning ahead, and this presumably
leads to more efficient movements. For example, eye–
head–hand coordination patterns to known target
locations appear to be designed so that all the effectors
arrive at about the same time, which is presumably
optimal in terms of executing the next action (Hayhoe,
2009).

Another advantage of planning movements based on
spatial memory is that it allows more efficient use of
body movements. In a real-world search task, Foul-
sham, Chapman, Nasiopoulos, and Kingstone (2014)
found that 60%–80% of the search time was taken up
by head movements, so there is an advantage to
minimizing the cost of these movements. Whole-body
movements can also be minimized using spatial
memory. An example can be seen in Figure 6, where
subjects searched for targets in a virtual apartment.
After they searched for the target on three separate

Figure 6. Bird’s-eye schematic of the layout of a virtual apartment with two rooms and a hallway separating them. The subject is

moving from the corridor into the bedroom to search for a target that has previously been located and whose spatial position has

been learned. The black dots show the subject’s path from the hallway into the bedroom at the top of the figure. The pink arrow

shows gaze direction and the red arrow shows head orientation. The green dot is the location of the target during previous search

trials. The subject orients to the old location of the target even before entering the room, when the target is not visible (left), and

fixates the old target location after room entry even though the target is no longer in that location and has been moved to the

location indicated by the pink dot. The head orientation and gaze direction must be targeted primarily on the basis of memory.
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occasions, it was moved to another location. The figure
shows the head and eye directed at the old target
location even before the subject entered the room. The
data revealed that subjects look at the old location on
58% of trials (Li, Aivar, Tong, & Hayhoe, 2017). In
addition, subjects rapidly encoded the global structure
of the space and reduced the total path walked by
eliminating regions where targets were unlikely to be,
confining search to more probable regions. Memory of
the large-scale spatial structure allows more energeti-
cally efficient movements, and this may be an
important factor that shapes memory for large-scale
environments.

Another aspect of natural behavior is that it provides
different sensorimotor information and may change the
nature of the memory structures. Chrastil and Warren
(2012) argue that idiothetic information deriving from
efferent motor commands and sensory reafference
generated by observer movements aid the development
of spatial memory, and Draschkow and Võ (2016)
found that active object manipulation influenced
memory. Thus, spatial memory is likely to be a
fundamental component of movement targeting, as it
allows more efficient use of attentional resources and
can be shared between different effectors, allowing
more efficient movement patterns.

Prediction

Examination of natural behavior immediately
makes apparent another factor, namely the central
importance of prediction. Body movements are slow,
so any action decisions need to be appropriate for the
state of the scene hundreds of milliseconds in the
future. It is commonly accepted that the propriocep-
tive consequences of a planned movement are pre-
dicted ahead of time using stored internal models of
the body’s dynamics (Wolpert, Miall, & Kawato,
1998; Mulliken & Andersen, 2009), and the compar-
ison of actual and predicted somatosensory feedback
is a critical component of the control of movement.
Indeed, when somatosensory feedback is severely
compromised by somatosensory loss, the conse-
quences for movement can be devastating (Cole &
Paillard, 1995).

Perhaps not surprisingly, it is in the context of
movements that prediction is most apparent, since
movements generate a time-varying visual input. One
clear-cut demonstration of prediction is in the context
of visual stability, where the need to predict the
consequences of one’s own movements is readily
apparent. These predictions appear to be revealed in
the remapping of visual receptive fields before a saccade
(Duhamel, Colby, & Goldberg, 1991; Melcher &

Colby, 2008). Predictive remapping occurs not only in
lateral intraparietal cells, but also in superior colliculus,
frontal eye fields, and area V3. Evidence indicates that
predictive remapping is mediated by a corollary
discharge signal originating in the superior colliculus
and the mediodorsal nucleus of the thalamus. Cicchini,
Binda, Burr, and Morrone (2013) present evidence that
this predictive remapping is part of a mechanism for
visual stability that relates the pre- and postsaccadic
images of a stimulus.

Other evidence for prediction also comes from the
oculomotor system. Both smooth pursuit and saccadic
eye movements reveal prediction of the future visual
stimulus in a variety of experimental paradigms
(Madelain & Krauzlis, 2003; Orban de Xivry, Missal, &
Lefèvre, 2008; Ferrera & Barborica, 2010; Kowler,
2011; Spering, Schütz, Braun, & Gegenfurtner, 2011).
Predictive eye movements are also robust and pervasive
in natural behavior, where trajectories are complex and
predictions are presumably more difficult. Athletes
playing cricket, table tennis, and squash make predic-
tive eye movements to the ball’s future location (Land
& Furneaux, 1997; Land & McLeod, 2000; Hayhoe et
al., 2012). Diaz, Cooper, Rothkopf, and Hayhoe (2013)
investigated a more controlled setting using a virtual
racquetball environment, where unskilled subjects
intercepted a virtual ball that bounced prior to
interception. Subjects made a saccade ahead of the ball,
just before it bounced, to a location on the future ball
trajectory. Gaze was held in this location during the
bounce and until the ball passed within 18–28 of the
fixated location about 170 ms after the bounce. The
location of the predictive saccade was dependent on the
ball’s elasticity as well as its velocity. The accuracy of
the predictions both in time and in space, despite
variation in ball properties, suggests that subjects rely
at least in part on their history of experience with balls
in order to target the eye movements to the ball’s future
location.

The evidence for prediction in the visual system is
not entirely clear. Zhao and Warren (2015) argue that
actions are planned on the basis of current state using
a mapping that has been found as a result of learning
to be effective for future state. It may be necessary to
take into account a variety of factors in order to
understand any one situation. Belousov, Neumann,
Rothkopf, and Peters (2016) have shown that predic-
tive and reactive strategies may be optimal and
operate in different regimes depending on how much
time the observer has, the sensory latencies, and noise
both in the observation and in the stored model.
Within the framework of optimal probabilistic con-
trol, they show that the optimal policy depends on
perceptual and internal prediction uncertainties, time
to ground contact, and perceptual latency, and
switches between generating reactive and predictive
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behavior based on the ratio of system to observation
noise and the ratio between perceptual latency and
task duration.

Decision making

Recent approaches to sensorimotor decisions for-
malize the process within statistical decision theory
(Maloney & Zhang, 2010; Wolpert & Landy, 2012).
This provides a useful framework for understanding
natural visually guided behavior and shows how the
various factors so far discussed relate to one another.
Wolpert and Landy (2012) have reviewed a large body
of work over the last 10–15 years within this
framework, which is illustrated in Figure 7. To make a
good decision, the actor needs to evaluate the task-
relevant state, and this requires both sensory data and a
prior, as shown in the figure. Thus, the probability of a
particular world state depends on the likelihood of
obtaining that sensory data, given a particular state,
weighted by the prior probability of that state. These
priors can be thought of as instantiations of memory
representations, as already described. In order to
understand how a particular goal affects behavior, we
need to address the costs and benefits of the action in
bringing about the goal. Sensorimotor decisions in the
context of behavior reveal the pervasive effects of these
costs and benefits in momentary decisions of where to
look or walk. The framework is not strictly applicable
for describing sequences of decisions in behavior, where
we also need to consider the transitions from one
decision to the next, leading to the reinforcement-
learning framework. For simplicity this has been
represented as the dotted arrows in the figure indicating
where to look next, and I have discussed how
uncertainty and the need to update state information
factor into that decision. However, the decision-

theoretic framework provides a useful structure for
conceptualizing at least some aspects of natural
behavior.

What can be learned from natural
behavior?

The work reviewed here shows that investigation of
natural behavior has contributed a number of insights
to our understanding of visual guidance of actions.
Natural behavior forces consideration of exactly what
information is being gathered by the visual system from
moment to moment. First, it allows a more accurate
specification of exactly what the spatiotemporal prop-
erties of the visual stimulus are, as experienced by the
observer in the context of active behavior. In addition,
looking at behavior in situ, it becomes clear that
knowing the immediate behavioral goals is critical, as it
provides the rationale for momentary action decisions.
Knowledge of the current behavioral context allows us
to understand how various factors are integrated and
how they might be modulated in different contexts.
Analysis of natural behavior allows an evaluation of
the importance of particular factors in behavior. For
example, while it has long been accepted that memory
can guide movements, it is only in a behavioral context
that we can evaluate how important a factor memory
actually is. Similarly, the critical role of costs and
benefits emerges as a fundamentally important factor.
The commonality of the stimulus milieu that humans
experience, and the well-defined optimality criteria of
much natural behavior, means that the behavioral
measures are unexpectedly stable and similar between
different individuals. This stability points to the
lawfulness of the underlying principles. Finally, in
contrast to standard paradigms—where the focus is on

Figure 7. Schematic showing how memory and costs influence sensorimotor decisions.
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events during a single experimental trial—natural
behavior focuses attention on behavior over timescales
of seconds or minutes, so new questions emerge, such
as what factors control the transition from one gaze
location to the next within a larger-scale behavioral
goal. Thus, while there are many daunting challenges in
analysis of natural behavior, it allows the opportunity
for exceptional insights.

Keywords: natural behavior, eye movements, reward,
perceptual decisions, memory
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