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Abstract
It is now more than 10 years since the publication of the first microbial genome sequence and
science is now moving towards a post genomic era with transcriptomics and proteomics offering
insights into cellular processes and function. The ability to assess the entire protein network of a
cell at a given spatial or temporal point will have a profound effect upon microbial science as the
function of proteins is inextricably linked to phenotype. Whilst such a situation is still beyond
current technologies rapid advances in mass spectrometry, bioinformatics and protein separation
technologies have produced a step change in our current proteomic capabilities. Subsequently a
small, but steadily growing, number of groups are taking advantage of this cutting edge technology
to discover more about the physiology and metabolism of microorganisms. From this research it
will be possible to move towards a systems biology understanding of a microorganism. Where
upon researchers can build a comprehensive cellular map for each microorganism that links an
accurately annotated genome sequence to gene expression data, at a transcriptomic and proteomic
level.

In order for microbiologists to embrace the potential that proteomics offers, an understanding of
a variety of analytical tools is required. The aim of this review is to provide a basic overview of mass
spectrometry (MS) and its application to protein identification. In addition we will describe how the
protein complexity of microbial samples can be reduced by gel-based and gel-free methodologies
prior to analysis by MS. Finally in order to illustrate the power of microbial proteomics a case study
of its current application within the Bacilliaceae is given together with a description of the emerging
discipline of metaproteomics.

Background
Mass spectrometry has its origins in the studies performed
by J. J. Thomson and his student F. W. Aston around the
turn of the last century [1]. An advantage of mass spec-
trometers over other analytical instruments is that it
affords a high degree of accuracy (~0.01–0.001%) and
sensitivity (detection of 10-9 – 10-18 mol of sample
required) when determining the molecular weight of bio-
logical compounds [2]. A mass spectrometer is an instru-
ment that produces ions from a sample, separates them

according to their mass-to-charge ratio (m/z) and records
the relative abundance of each of the ions to obtain a mass
spectrum [3]. The mass spectrometer may be broken
down into three principal components; the ion source,
mass analyser and the detector (Figure 1). Until relatively
recently mass spectrometry was restricted in its use to
determining the molecular weight of relatively volatile
compounds. The development of 'soft ionisation' tech-
niques in the 1980s by Fenn et al permitted the ionisation
and vaporization of large, polar, and thermally labile bio-
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molecules such as proteins and peptides that previously
did not lend themselves to such analytical techniques
[2,4]. Soft ionisation refers to the ability to ionise and vol-
atilise thermally labile compounds, such as peptides,
without inducing fragmentation [2]. The characterisation
and quantification of proteins has been greatly enhanced
by the development of two critical 'soft ionisation' tech-
nologies namely electrospray ionization mass spectrome-
try (ESI-MS) and matrix-assisted laser desorption
ionization time of flight mass spectrometry (MALDI-TOF
MS). Both these techniques have had immense impor-
tance in the field of biological and pharmaceutical science
so much so that one quarter of the 2002 Nobel Prize for
Chemistry was awarded to both John Fenn and Koichi
Tanaka for their revolutionary work in ESI and MALDI
respectively.

Electrospray Ionisation (ESI)
The pioneering work of Fenn et al in the 1980s [4] her-
alded the development of electrospray ionisation for mass
spectrometry (ESI-MS) of large biomolecules. ESI has
become a mainstream method for life science research as
a result of its high sensitivity and broad applicability. ESI
is typically carried out in tandem with high performance
liquid chromatography (HPLC) usually for proteomic
applications in conjunction with a nano electrospray con-
formation [5]. ESI generates charged microdroplets con-
taining analyte ions. The sample of interest is dissolved in
a solvent and then pumped through a thin capillary or
needle that is raised to a high potential that may be posi-
tive or negative. As a result of the electric field the solution
exits the tip of the capillary in the shape of a cone, known
as the Taylor cone [6]. At the apex of this cone charged
droplets are sprayed from the capillary when the electro-
static repulsion of the charged molecules approaches the
surface tension of the solution. These small charged drop-
lets travel down a pressure and potential gradient towards
an orifice in the mass-spectrometer. As the droplets

traverse this path they become desolvated and reduced in
size however their charge remains constant [7]. As the
droplet shrinks this increases the electrostatic stress near
the surface of the droplet. The droplet can no longer sus-
tain the charge when the force of electrostatic repulsion
between like charges becomes equal to the surface tension
force known as the Rayleigh stability limit. At this juncture
the droplet undergoes Coulombic fission leading to the
production of smaller droplets. This process continues
until the point is reached that either an ion desorbs from
the droplet or the solvent is completely removed [1] (Fig-
ure 2). The gas phase ions are then detected as a series of
multiply charged ions. To determine the molecular weight
(Mr) of the compound, a simple algorithm transforms
this ion series into a single Mr value. Under ESI, macro-
molecules such as proteins and peptides yield multiply
charged ions (e.g. [M+nH]n+). Electrospray ionisation is
typically characterised as a concentration sensitive meth-
odology where signal strength is proportional to concen-
tration. This holds true at µl min-1 flow rates however, at
very low flow rates of <100 nl min-1 extremely efficient
ionisation occurs and signal strength is proportional to
the absolute quantity of analyte present [7].

Matrix-Assisted Laser Desorption-Ionisation (MALDI)
Matrix-assisted laser desorption-ionisation (MALDI) is a
method that was pioneered by Karas and Hillenkamp
when in 1987 they utilised an ultraviolet laser to desorb
intact molecular ions of proteins that were co-crystallised
in a nicotinic acid matrix solution [8,9]. Unlike ESI gener-
ally only singly charged ions are observed for MALDI. In
MALDI the analyte of interest is co-crystallised with an
excess of matrix, that is utilised as a diluent preventing the
analyte from forming large aggregates that would other-
wise be too large to desorb [10,11]. The matrix also
absorbs UV light from a laser thus facilitating analyte des-

Simplified representation of the process of ESIFigure 2
Simplified representation of the process of ESI.
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The three principle components of the mass spectrometer 
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orption and ionisation [10]. There are a number of differ-
ent matrixes that may be used in MALDI-MS. Typically for
protein analysis 3,5-dimethoxy-4-hydroxycinnamic acid
(sinapinic acid) is the standard matrix used whilst α-
cyano-4-hydroxycinnamic acid (CHCA) is often used
when analysing peptides. Analyte and matrix are both
spotted onto a metal target plate which is then inserted
into a high vacuum source region within the mass spec-
trometer [11]. The target plate is subjected to laser bom-
bardment and analyte molecules are vaporised along with
the matrix molecules. The process of desorption and ion-
isation in MALDI is not fully understood with several
influencing factors such as, laser wavelength, pulse width
and chemical properties of the matrix and analyte [12].
During laser irradiation a gas jet of matrix neutrals and
surrounding analyte molecules is formed (Figure 3). The
matrix molecules are strongly excited at this stage and ana-
lyte molecules are thought to be ionised as a result of
multi-step interactions with the matrix resulting in proton
transfer giving both protonated and deprotonated analyte
ions [10,11].

Mass Analysers
There are several different types of mass analysers availa-
ble commercially (Figure 1). Each mass analyser will have
intrinsic advantages and disadvantages over the other
types and all differ in their mode of operation and ability
to carry out particular types of analyses. Instrument per-
formance of all the mass analysers is dependent on the
analyte and the experimental setup of the analyses to be
undertaken. The choice of mass analyser will ultimately
be decided by the throughput needs of the research to be
undertaken, the cost of the machine and funds available
to the individual research group. Below is a brief overview
of the principles and standard mass analysers used in pro-
teomics, for further background information readers are

invited to read the following comprehensive reviews
[13,14].

Quadrupole Mass spectrometers
The single quadrupole mass analyser consists of four cir-
cular metal rods placed equidistance from each other with
an oscillating electric field applied through a combination
of direct current (DC) and radio frequency (RF) to the
rods. One pair of rods are supplied with a positive DC and
RF voltage, whilst the second pair are supplied with a neg-
ative DC and RF voltage 180° out of phase with the first
pair. This creates a quadrupolar electric field and for a par-
ticular amplitude of direct current and radio frequency
only ions of a given mass to charge (m/z) ratio will have a
stable trajectory and therefore be able to pass through to
the detector, all other ions will collide with the quadru-
pole rods. By adjusting the DC and RF voltages, ions of
different m/z values can pass through to the detector. The
ramping of these parameters can occur in less than 1/6th
of a second allowing ions over a wide m/z range to be
scanned in the one mass spectrometry experiment. Today
however it is unusual to see large scale proteomic or
metabolomic studies carried out using a single quadru-
pole instrument. More typically the instruments of choice
will be the hybrid quadrupole ion trap mass spectrometer
or a triple quadrupole mass spectrometer. Triple quadru-
pole mass spectrometers allow for tandem mass spec-
trometry and consist of three sections (Q1, Q2 and Q3).
Q1 acts as a mass filter allowing only ions of a certain
mass to move further into the mass spectrometer. Q2
functions as a collision cell for fragmentation of the ions.
Q3 acts as a second mass separating quadrupole allowing
the fragment ions to be separated and resolved before they
are measured by the detector [5].

Ion Trap Mass spectrometers
In the ion trap analyser, a rotating three-dimensional elec-
trostatic field effectively captures the ion of interest. The
trajectories of simultaneously trapped ions of consecutive
specific mass/charge ratio become sequentially unstable
and leave the trapping field in order of their mass/charge
ratio. Ion trap analysers have the advantage of fast data
acquisition with excellent sensitivity [13]. One of their
main characteristics is the ability of the ion trap to carry
out multiple fragmentation of precursor and product
ions, a process called tandem mass spectrometry (MS/
MS). In such experiments, all ions except for that under
investigation are ejected form the field, the remaining ion
is fragmented and the product ions sequentially released
to be further analysed at the detector [8]. Ions can be
trapped, fragmented and analysed several times in a
multi-stage process known as MSn. The actual amount of
MSn steps that can be achieved is dependent on the instru-
ment used although MS3 and MS4 are typical with up to
MS12 being reported in the literature [15]. The drawbacks

Simplified representation of the process of MALDIFigure 3
Simplified representation of the process of MALDI.
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of using this analyser are it has limited resolution, poor
trapping efficiencies and low mass accuracy due to space
charging effects [13]. The development of linear ion trap
analysers by the scientific community was an attempt to
overcome these inherent problems. Linear ion traps have
enhanced ion trapping capacities, and a larger volume
than 3D traps allowing more ions to be stored before
space charge effects are seen [16].

Time of Flight
A time of flight (TOF) mass spectrometer is one of the
simplest analysers available wereby ions are accelerated
by an electric field into a long, straight, evacuated tube
prior to detection. The distance of the tube to the detector
is fixed and the ions are accelerated to the same energy. As
the ions will have different velocities after they are accel-
erated they will be separated in space and time [17]. As the
ions have the same kinetic energy, the smaller the mass
the faster the ion will transverse the tube. The time taken
for the ion to traverse the tube is therefore proportional to
its mass to charge ratio with each ion having a character-
istic time of flight [5,18].

Tandem Mass Spectrometry (MS/MS)
In order to acquire structural or peptide sequence infor-
mation, it is necessary to induce fragmentation of the pep-
tides of interest. This is not possible with soft ionisation
techniques such as ESI and MALDI, however, the use of
these techniques in conjunction with tandem mass spec-
trometry (MS/MS) has allowed the structural elucidation
of a wide range of peptides. MS/MS spectra of peptides
however, are often complex and difficult to interpret [19].
In MS/MS peptides are individually ionised in the source
region using ESI or MALDI. These peptides are then fur-
ther separated, based on their m/z ratio. The selected ions
are allowed into a collision cell, which is filled with an
inert gas such as xenon, argon or nitrogen, collisions then
occur between the precursor ion and inert-gas atoms
(molecules). In these collisions part of the precursor ion's
translational energy can be converted into internal energy,
and as a result of single or multiple collisions an unstable
excited state is populated. Excited precursor ions decom-
pose to produce product ions in a process termed 'colli-
sion-induced dissociation' (CID) [1]. The types of
fragment ions observed in a MS/MS spectrum depend on
many factors that include the primary sequence of the
peptide, the amount of internal energy and the charge
state [20]. The main types of ions observed in the frag-
mentation of protonated peptides are well established
noting that fragments can only be detected if they carry a
charge. If the charge is retained on the N-terminal frag-
ment the ion is classified as a, b, or c and x, y, or z if the
charge is carried on the C-terminal. The nomenclature for
fragmentation ions is described by Johnson et al [20] and
is shown in Figure 4. These product ions are then mass

analysed producing a spectra [1]. The tandem mass spec-
trometry data can be used to elucidate the primary
sequence of a peptide. The process of deducing an amino
acid sequence from the tandem mass spectra is aided by
the ready availability of protein and DNA databases [21].

Other Mass Spectrometers
Other commercially available mass spectrometers include
the Fourier transform ion cyclotron (FT-ICR) mass spec-
trometer, an extremely high resolution instrument that
determines ion masses very accurately with low attomole
sensitivity for proteins [22]. However, the expense of such
an instrument has limited its availability within the aca-
demic world. Another mass spectrometer that is exten-
sively used in proteomics is the Q-TOF, a hybrid
combining a triple quadropole instrument with a reflector
TOF in place of Q3. This instrument is considerably less
expensive than the FT-ICR whilst still having a wide
dynamic range and also a high degree of mass accuracy, >5
ppm in MS/MS mode [14]. The orbitrap mass analyser is
the first new mass analyser to be introduced commercially
for three decades [13]. The orbitrap traps ions not using
magnets or radio frequency but using electrostatic fields
[23]. The orbitrap like the FT- ICR mass spectrometer
affords high mass resolution and high mass accuracy
experimentation [24]. This instrument is only recently
commercially available however its relatively compact
size and lower cost may make this analyser attractive to
academia.

Proteomics
Proteomics may be defined as the analysis of the entire
protein complement expressed in a cell or any biological
sample at a given time under specific conditions [25]. The
field can be split into two areas, expression proteomics
and functional proteomics, the former aims to measure
differential expression of proteins within a cell under var-
ying conditions while the latter seeks to characterise the
components of cellular compartments, multiprotein com-

Ions Generated from Fragmentation of Peptide/ProteinsFigure 4
Ions Generated from Fragmentation of Peptide/Proteins.
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plexes and signalling pathways [5]. Unlike DNA microar-
ray analysis, proteomics currently does not have the
equivalent of the polymerase chain reaction to enhance
the signal, making proteins of low copy number difficult
to detect. Developments in the ability to study gene
expression at the genome level have been complemented
by the development of high throughput multi-dimen-
sional methods for proteome analysis [26].

Mass spectrometry has greatly enhanced research in the
field of microbial proteomics. In the areas of global
microorganism identification through intact cell mass
spectrometry; identification of membrane, cellular, peri-
plasmic and extracellular proteins; full proteome expres-
sion in organisms (2D-PAGE coupled to MS and 2D LC
coupled to MS); differential protein expression levels
under stress and non stress conditions and identification
of posttranslational modifications of proteins within
organisms [27].

Top Down Proteomics
The top down strategy was first introduced by McLafferty
and colleagues utilising the immense analytical power of
FT-ICR MS [28]. The goal of this methodology is to iden-
tify intact proteins utilising mass spectrometry, without
the need for prior proteolytic digestion of the sample. Sig-
nificantly, the protein also need not be purified to homo-
geneity. Initially proteins are introduced into the mass
spectrometer in the gas phase and are then fragmented.
The fragmentation profile generated is then analysed and
compared with a specifically designed database in order to
identify the proteins present [29-31]. The methodology is
not as widely used as peptide fragmentation and usually
requires a high resolution mass spectrometer such as FT-
ICR [28], Maldi/TOF-TOF [31] or Q-TOF [29,32]. This
methodology has, however, been used successfully for
microbial proteomics in the analysis of Bacillus spores in
order to ascertain the species that the spore was derived
from [31]. In addition it has also been used for the identi-
fication of pathogenicity biomarkers from a comparison
of 12 strains of Enterobacter sakazakii [32]. It should be
noted that the classification of top-down proteomics has
recently been widened to include the multidimensional
separation (gel based or LC based) of undigested protein
samples followed by tryptic digestion of isolated proteins
and subsequent analysis of peptides by MS [33].

Bottom Up Proteomics
This approach refers to any methodology that identifies
proteins from the analysis of peptides derived from the
proteolytic digestions of those proteins [34]. The resultant
peptide mixture is fractionated by chromatography before
being subjected to tandem mass spectrometry. The frag-
mentation pattern from each peptide produces a peptide
sequence tag and the resultant data is analysed by bioin-

formatics tools and searched through amino acid or pro-
tein databases in order to identify the protein [30]. The
simplest form of this approach is known as 'shotgun pro-
teomics'. This refers to the direct analysis of a complex
protein mixture without fractionation. The complex mix-
ture is enzymatically digested to produce peptides, this
peptide mixture is then fractionated on a reverse phase
C18 column before analysis on the mass spectrometer.
This methodology gives a rapid large scale global analysis
of the protein mixture, however, it gives limited penetra-
tion into the proteome [35,36]. The effectiveness and pro-
teome coverage of shotgun analysis has been greatly
enhanced by coupling it with multidimensional separa-
tion techniques [36].

Proteomic techniques for the large scale analysis of 
microorganisms
Until recently, the study of global protein expression was
performed nearly exclusively using two-dimensional gel
electrophoresis (2D PAGE), a technique developed in the
1970s [37] with significant advances in the intervening
decades. For a detailed description of the current status of
this technology the reader is directed to the excellent
review by Gorg et al [38]. The strength of 2D PAGE is that
it can separate up to 10,000 proteins in one gel [39]. Every
component is fractionated on the first dimension, by iso-
electric focusing and then further resolved according to
molecular weight in the second dimension [34,37]. At this
point in the proteomic workflow a snapshot of the organ-
ism/cell may be visualized. An emerging trend is to
deposit images of these 2D gels with databases such as
Swiss-2D PAGE or Gelbank as reference material [40]. The
usefulness of such repositories is yet to be demonstrated.
A limitation of 2D PAGE is typically many more spots are
resolved on the gel than are actually identified by the
researchers involved [41,42]. This is as a result of a second
analytical step that must be employed in order to identify
the proteins present. Proteins are excised from the gel,
subjected to proteolytic digestion, and identified or
sequenced; this step is usually carried out manually and is
very time-consuming [39,41] although the advent of com-
puterised gel visualisation and robotic spot excision
equipment has gone some way to alleviate these 'bottle
necks' [38]. The 2-D PAGE methodology has traditionally
had a number of practical limitations that the researcher
should be aware of with the main issue being the wide
dynamic range of proteins present within a biological
sample thus proteins present in low copy numbers, and
therefore low concentration, are often not visualised on 2-
D PAGE gels [39,41]. A number of additional limitations
can be encountered such as: most isoelectric focusing gels
can only focus proteins between the pI ranges 3–10, so
proteins with extreme pI will not be seen on the gels; how-
ever protocols have been developed to allow separation
and then visualisation of highly alkaline proteins with a
Page 5 of 14
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pI up to 12 [38]; Most 2-D PAGE gels cannot resolve pro-
teins smaller than 10 kDa and above 200 kDa. Due to the
nature of the buffers used in isoelectric focusing the range
of solubilising detergents that can be used in this method-
ology are restricted, thus making it difficult to solubilise
certain membrane proteins, however the inclusion of ami-
dosulfobetaines can enhance solubilisation of certain
membrane proteins [43].

Despite its limitations 2D-PAGE is still used as a standard
tool in the analysis of microbial proteomes. The idea
being to first identify the protein complement of the
microbe under normal conditions, then subject the organ-
ism to a stress stimulus so that the differential expression
of proteins can be visualised by either an increase or
decrease in spot intensity or by the appearance/disappear-
ance of spots on the gel [44].

Multi Dimensional Protein identification Technologies
An alternative to the traditional 2-D PAGE technology for
microbial proteome analysis is the high throughput
approach of multidimensional liquid chromatography
coupled to tandem mass spectrometry [34]. In its early
stage of development this process was used very success-
fully for the proteome analysis of the Saccharomyces cerevi-
siae ribosome allowing the identification of more than
100 proteins in a single 24-hour run [39]. The process was
further developed and led to the multidimensional pro-
tein identification technology (MUDPIT) [45]. A MUDPIT
experiment entails the following: A reduced, alkylated and
tryptically digested mixture of proteins are separated by
first running the peptide mixture on a strong cation
exchange (SCX) chromatography column. This solution is
then separated into several discrete fractions by a series of
wash steps with an increase in salt molarity at each step.
The peptides eluted at each salt wash step are then run
onto a reverse phase C18 column where they are further
separated and resolved. The resolved mixtures are then
passed directly into the mass spectrometer where tandem
mass spectrometry profiles are generated for each peptide;
this data is automatically trawled against protein data-
bases for identification. Finally, any novel peptides not in
the database can be subjected to de novo sequencing
[26,45].

This process, whilst seemingly complicated, is highly
automated with high throughput achieved in a short time.
Washburn and co-workers [45] using this process were
able to identify1484 proteins from the Saccharomyces cere-
visiae proteome in a single twenty-seven hour run. MUD-
PIT can be seen as complimentary to 2D PAGE as it
overcomes many of the problems and limitations of this
technique, identifying proteins with extreme pI, integral
membrane proteins and low abundance proteins [45].

Intact cell mass spectrometry
Intact cell mass spectrometry (ICMS) can be employed in
microbiology for the rapid analysis, identification and
subtyping of specific microorganisms. The use of MALDI-
TOF-MS allows the examination of specific peptides or
proteins that desorb from intact viruses, bacteria and
microbial spores, thus generating peptide mass finger-
prints that are unique to the individual microorganisms
[46,47]. Walker et al [46] assessed ICMS for the identifica-
tion and subtyping of methicillin-resistant Staphylococcus
aureus (MRSA) investigating the effects of different culture
media and the intra- and inter-laboratory reproducibility
of their results in previously characterised isolates of sta-
phylococcal species. Shah et al [48] used MALDI-TOF-MS
analysis on intact cells of human pathogens to give spe-
cific spectral profiles which could be used to delineate
bacterial species. Cells were then lysed and subjected to
Surface-enhanced laser desorption/ionisation time of
flight mass spectrometry (SELDI-TOF-MS): this is a modi-
fication of MALDI-TOF-MS in which the stainless steel tar-
get plate is replaced by a protein chip array. The chip has
a number of sample wells each containing a different
chemistry, thus specific classes of molecules may be cap-
tured from cell lysates and selectively analyzed. Using this
process several toxigenic and nontoxigenic strains of
Bacteroides fragilis were analyzed revealing potential
biomarkers specific to the toxigenic strains in the mass
range 3.5–18.5 kDa.

Expressional Proteomics
Whilst techniques described thus far provide the micro-
biologist with an invaluable snapshot of the processes
occurring within a biological system, assessing the quan-
titative change in protein expression patterns remains the
focus for those interested in the fundamental analysis of
microbial systems. There are presently several methodolo-
gies that attempt to provide quantifiable expressional
analysis. These include the label free emPAI technique;
the label based ICAT, iTRAQ and metabolic labelling as
well as the gel-based differential in gel electrophoresis
(DIGE).

The exponentially modified protein abundance index
(emPAI) is a label free methodology for estimating abso-
lute protein abundance in a sample. This methodology is
a simple calculation that utilises the output information
obtained when tandem mass spectrometry data is proc-
essed through database search engines [49].

The aim of any labelling strategy is to derivatize all pro-
teins/peptides in a sample to allow their analysis [50].
Gygi and co-workers were the first to utilise isotope coded
affinity tagging (ICAT) for differential protein expres-
sional analysis of Saccharomyces cerevisiae when utilising
either galactose or ethanol as a carbon source [51]. The
Page 6 of 14
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original ICAT reagent consisited of an affinity tag (biotin),
to allow labelled peptides to be removed from a mixture
by attachment to an avidin column ; an isotopically
labelled linker region which was either 'light' containing
eight hydrogen atoms d0 or 'heavy' containing eight deu-
terium atoms d8; and a thiolate-reactive group that
allowed labelling of cysteinyl groups [51,52]. Protein mix-
tures from the two states were labelled separately one with
the light reagent and one with the heavy. The two samples
were then mixed, tryptically digested and the labelled pep-
tides were separated from the unlabelled by running the
sample on an avidin column which binds to the biotin
tag. The biotin is then removed and the sample separated
on a C18 column before analysis on a mass spectrometer.
The relative abundance of the light and heavy versions of
the peptides can then be compared and information on
the protein expressional changes can be identified

[51,52]. The present form of the ICAT reagent differs
slightly form the original. It contains the biotin affinity tag
which is attached to an acid cleavable linker, making it
easier to remove; the light and heavy isotopically labelled
region contains either nine C12 or nine C13 atoms (Figure
5a), these overcome slight differential elution problems
that were observed when using hydrogen and deuterium;
the thiol-specific labelling group remains the same
[52,53].

The latest reagent for use in protein labelling, which was
utilised by Ross and co-workers to analyse the global pro-
tein expression in a wild type Saccharomyces cerevisiae and
two isogenic mutant strains, is the amine reactive isobaric
tag for relative and absolute quantitation (iTRAQ) [54].
The iTRAQ reagent has several advantages over ICAT; four
or, in the most recent version, eight states rather than two

(a) Structure of the isotope coded affinity tag (ICAT)Figure 5
(a) Structure of the isotope coded affinity tag (ICAT). (b) Simplified version of the structure and protocol using the isobaric tag 
for relative and absolute quantitation (iTRAQ).
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can be measured; and free amine groups rather than
reduced cysteines, which are only present in 95% of pro-
teins, are labelled. The 4-plex reagent contains an amine
specific reactive group, a balance group and a reporter
group that can have a mass of 114, 115, 116 or 117. Sam-
ples of proteins from up to four states are first trypsinised
resulting in a peptide mixture with each cleaved peptide
having a free amine group. Each sample then is labelled
with one of the specific reagents by attachment of the
label via the amine specific reactive group. All four sam-
ples are then mixed, separated by liquid chromatography
and introduced into the mass spectrometer. During tan-
dem mass spectrometry of the labelled peptides the
reporter group is released, and measurement of the peak
areas of these resultant ions gives an assessment of the
abundance of that particular peptide under each condi-
tion (Figure 5b) [54].

Metabolic labelling offers one of the most comprehensive
methods of investigating microbial proteomes. Unlike
other labelling technologies samples to be analysed can
be combined before protein extraction thus removing the
main source of sample variation, which is the protein
extraction process itself [50]. The simplest methodology
involves comparison of 'normal' and 'stress' states by
growth of the microorganism on media enriched with N15

for one state and on media containing the naturally abun-
dant isotope N14 for the other state. The ratio of N14/N15

containing proteins from the two conditions are meas-
ured and changes in protein expression levels can be iden-
tified [50,52]. This methodology has been successfully
utilised by Washburn and co-workers when working on
Saccharomyces cerevisiae [55]. Additional isotopic variants
such as deuterium and C13 enriched media can also be uti-
lised for metabolic labelling [56,57].

Conventional comparative 2D-PAGE requires the produc-
tion of two gels, one for each condition being compared.
Several inherent problems with this approach include the
fact that there can be slight variation in the composition
of the gels thus giving rise to slight variations in the pro-
teomic profile observed, also sample loading errors can
give rise to similar misleading results. Subsequently sev-
eral replicate gels must be produced in order to obtain as
accurate a picture of the proteome as possible [58]. The
most efficient way to overcome these problems would be
to analyse the different protein samples on one gel. This
can now be achieved utilising a technique known as dif-
ferential in gel electrophresis (DIGE) [59]. In this method-
ology each protein sample is labelled with one of three
structurally similar but spectrally distinct fluorphores that
are N-hydroxy-succinymidyl esters of the cyanin dyes Cy2,
Cy3 and Cy5. The samples to be investigated are mixed
together and run on a 2D-PAGE gel. The resultant gel is
then imaged using filters specific to each fluorphor. The

ratio of the different signal intensities can be used to
determine changes in observed protein expression pat-
terns [58].

Post -translational modifications
Genomic data alone gives no information on post-trans-
lational modification events that occur within many pro-
teins as they are converted to their mature forms. There are
currently over 200 reported post-translational modifica-
tions [60] the vast majority of these are found in eukaryo-
tic systems. Many of these modifications are regulatory in
nature as exemplified by phosphorylation events [14,38].
Phosphorylation of proteins is a key post-transaltional
modification that governs the activity of a number of bio-
chemical pathways and enzymatic activities, [38,61]
although these phosphorylation cascades are widespread
in eukaryotic systems, prokaryotic proteins are also phos-
phorylated, markedly in the phosphorylation cascade of
bacterial two-component signal transduction systems
[62]. Therefore detection and identification of this post-
translational modification within microbial proteomic
investigations is highly desirable as it allows further
understanding and elucidation of the processes occurring
within a given system. Various methodologies have been
developed for investigation of protein phosphorylation.

Phosphoproteins can be identified on 2 D PAGE by the
incorporation of radiolabelled orthophosphate into pro-
teins with identification by autoradiography [63]. This
method has limitations; it can only be carried out in vivo
and background staining of DNA and RNA occurs [62].
An alternative to this method is the staining of immuno-
blots from 2D PAGE with phosphoamino specific anti-
bodies [63]. These antibodies work well for
phosphotyrosine but are less effective in the identification
of phosphoserine and phosphothreonine [62,64].

An advantage of 2D PAGE over gel-free approaches is that
post-translational modifications will cause a mass change
and subsequently a shift in the pI of proteins that have
been modified, thus the modified and parent proteins
usually appear on the gel as horizontal or vertical sets of
spots [38,65]. This has been used to identify parallel pro-
files of phosphoylated and total proteins within a 2D
PAGE gel; using sequential staining the gel is first stained
with Pro Q™ Diamond phosphoprotein stain and then
imaged. The gel is then stained with Sypro Ruby which
reacts with all proteins present, the gel is then re-imaged
and the two images compared. The phosphorylated pro-
teins, with their increased negative charge, migrate to a
more acidic region of the gel compared to the parent pro-
tein. This pattern can then be visualised and proteins
identified. A multiplexing approach can then be taken by
running several gels and comparing the profiles [66].
Another useful method for identification of phosphoryla-
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tion sites by 2D PAGE is to run samples before and after
chemical or enzymatic removal of phosphate groups. In
this case spots relating to phosphorylated proteins will
disappear from the gel [38,67].

Various gel-free mass spectrometry based protocols have
also been developed for the identification of phosphoyla-
tion sites on peptides and proteins [61]. However, the
analysis of protein phosphorylation is complicated by the
fact that these proteins are present in low concentrations
and are poorly ionisable[14,61]. In order to better study
these post-translationally modified proteins from a pro-
teomic sample one must try to either enrich the intact
phosphoproteins or their derived phosphopeptides form
the sample to be investigated.

Phosphoprotein enrichment is usually achieved by
immunoprecipitation using antibodies directed against
phosphotyrosine [68]. However, a more commonly used
approach, which gives a more global overview in studying
the phosphoproteome, is the enrichment of phosphopep-
tides. Enrichment can be achieved with IMAC as demon-
strated by Ficarro et al [69] studying the
phosphoproteome of Saccharomyces cerevisiae and can also
be achieved utilising graphite [70] and titanium oxide
[71]. This approach both reduces the complexity of the
sample to be analysed and allows you to gain specific
information on the sites of phosphorylation.

Once the phosphoproteome has been enriched mass spec-
trometry techniques can be used to identify the sites of
phosphorylation. These include neutral loss scanning for
the loss of the 98 Da phosphoric acid moiety, which is lost
from phosphoserine and phosphothreonine during CID
in ion trap mass spectrometers. This method cannot be
used to detect phosphotyrosine as there is no loss of a
phosphoric acid moiety during CID [68]. However,
another technique, parent ion scanning in positive ion
mode searching for the immonium ion of phosphotyro-
sine at m/z 216.043 can be used for its identification. This
technique utilised in negative ion mode for an ion of m/z
79 (corresponding to PO3

-) can also be used for the iden-
tification of phosphoserine and phosphothreonine [72].

Some important considerations for proteomic data 
analysis
Even if researchers invest considerable time and effort in
establishing a robust proteomic workflow for their micro-
organism of choice, this good work can be undone if due
care and consideration is not given to a number of key
aspects in data acquisition, processing and analysis:

Replicate Injections
Due to the complexity of peptide mixtures within a pro-
teomic sample the separation capabilities of LC-MS sys-

tems are often exceeded. This, coupled to the limitations
of the data dependent acquisition for the selection of pep-
tides for MS/MS, requires that samples be run more than
once in order to gain as wide a proteome coverage as pos-
sible [73-75]. During a proteomic investigation of E. coli
by Taoka and colleagues [76] ten repeated injections of
the same sample was carried out and showed that the
number of new proteins identified in each run increased
until the third and fourth run, where further injections did
not greatly increase the number of proteins identified.
This suggests that researchers must perform at least tripli-
cate analysis of the same fraction and recent studies have
shown that such an approach leads to an increase in the
number of proteins identified by up to 40% [73-75].

Data curation
Large scale proteomic investigations generate huge
amounts of raw data, in some experiments up to 2 GB per
run [26]. This presents a considerable problem for the
conscientious researcher. In order to glean any meaning-
ful biological information from this raw data the
researcher must in some way curate it. The MS/MS spectra
from individual peptides from an LC-MS/MS run can be
analysed utilizing a number of bioinformatic tools, with
the probability-based tool, MASCOT, being the most
widely used [77]. The experimental mass values generated
by MS/MS of peptides from the sample under investiga-
tion are compared with precalculated peptide mass or
fragment ion mass values, that have been obtained by
applying specific cleavage rules to the primary sequence
entries of proteins contained within a database of interest.
By using an appropriate scoring algorithm, the closest
match or matches can then be identified. Previously we
have reported on the limitations of current automated MS
data interpretation from large-scale proteomics studies
[73-75]. One of the major challenges that we encountered
was the elimination of erroneous data that may lead to the
identification of 'phantom' proteins within any given
sample. To this end we suggested that until a reliable MS
data interpretation tool could be found, the only way to
proceed, and ensure integrity of data interpretation, was
to manually curate the MS data, resulting in many labori-
ous weeks of analysis. For example when working with the
subproteome of Geobacillus thermoleovorans we reported a
total processing time of 40 days, whilst Chong & Wright
[73] working with similar datasets from Sulfolobus solfa-
taricus P2 took over 43 days. This represents a bottleneck
in the proteomic workflow and a not inconsiderable effort
by researchers involved. In order to tackle this problem
reliable bioinformatics tools for curation of data may be
used. There are many such tools but in the course of our
research, to expedite the curation of the identified protein
list from MASCOT [77], we utilize the protein validation
tool PROVALT [78]. The result files from the MASCOT
search are reanalyzed with PROVALT. This automated
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program takes large proteomic MS datasets and reorgan-
izes them taking the multiple MASCOT results and identi-
fies peptides that match. Redundant peptides are
removed, and related peptides are grouped together asso-
ciated with their predicted matching protein; the program
dramatically reduces this portion of the curation process
[75,79].

Another consideration when publishing proteomics data
is the use of randomized databases in order to attempt to
make a statistical analysis of the number of false positive
identifications. These false positives can be generated due
to the peptides identified in the MS analysis randomly
matching entries in the databases giving positive identifi-
cations, when in fact the peptide did not actually originate
from that protein. Almost all of the major proteomic jour-
nals, led by Molecular and Cellular Proteomics, require
some information on false positive rates for large pro-
teomic datasets. Once again there are many methodolo-
gies for assessing this rate, in our research, however,
PROVALT can carry out this analysis automatically.

PROVALT uses peptide matches from a random database
to calculate false-discovery rates (FDR) for protein identi-
fications. Identifications from searching the normal and
random databases are used to calculate the FDRs and set
score thresholds and thus identify as many 'actual' pro-
teins as possible while encountering a minimal number of
false-positive protein identifications. Rather than calcu-
late error rates at the peptide level, the FDR calculations
employed by PROVALT provide a reasonable balance
between the number of correct and incorrect protein
assignments. The FDR is usually set at 1%, meaning that
99% of the reported proteins identified should be correct
[75,78,79].

Additional functional information can be achieved for the
generated protein list from any proteomic investigation
by attempting to assign these proteins to specific cellular
localization. This is important in allowing researchers to
identify those proteins that are retained and exported
from cells. It also has the potential commercial applica-
tion of enabling the identification of possible diagnostic
and therapeutic targets. Currently a number of bioinfor-
matics tools are available for this task including PSortB
[80], SignalP [81] and SecretomeP [82]. These attempt to
assign a subcellular location for each protein, based upon
the prediction of known motifs or cleavage sites, through
the use of a variety of computational algorithms and net-
works that analyse their amino acid composition.
Researchers are now however moving toward "smarter" in
silico strategies whereby a number of predictors based on
both structural and experimental data are being used to
attempt to predict protein localization [83]. Until this
next generation of bioinformatics tools are widely availa-

ble, the researcher must manually interpret the results to
gain any level of biological significance.

Microbial proteomic case study: The Bacillaceae
Reliable and detailed genomic information is required in
order for scientists to realize the maximum potential of
proteomics to assist in our understanding of how specific
microorganisms function under a given condition. The
Bacillaceae are one group of bacteria particularly well rep-
resented within the Comprehensive Microbial Resource
database at The Institute for Genomic Research [84] who
give details on the completed genome sequencing projects
for 20 members of this family, including: Bacillus anthracis
(9 strains); B. cereus (3 strains); B. licheniformis (2 strains);
B. subtilis; and B. thuringiensis konkukian. The availability
of such rich genomic information allows a systems biol-
ogy approach to be taken when investigating the Bacil-
laceae. Work on Bacillus subtilis by Michael Hecker and his
group at the University of Greifswald can be viewed as an
exemplar in this field. In a series of well crafted studies
Hecker has successfully exploited genomics and advances
in proteomics to provide insights into the physiology and
metabolism of B. subtilis under a myriad of conditions
ranging from salt stress to nutritional starvation [85].
Most recently this group has adopted a combined gel
based and gel free approach to further 'drill down' into the
proteome of this important model organism [86-89].

Whilst the aforementioned bacterial species represent a
number of organisms of major importance in medical and
food research, it is perhaps within the genomes of extrem-
ophilic bacilli that discoveries of significance for biotech-
nology and evolutionary theory will be made. Genome
sequences have been completed by both commercial and
government agencies within Japan for thermophilic, alka-
liphilic and halophilic organisms represented by Oceano-
bacillus iheyensis HTE831 [90], B. clausii KSMK16, B.
halodurans C-125 [91] and Geobacillus kaustophilus
HTA426 [92]. The commercial relevance of such organ-
isms can be seen in the industrial interest that has arisen
in Geobacillus species with their potential applications in
biotechnological processes, for example as sources of var-
ious thermostable enzymes, such as proteases [93], amy-
lases [94], lipases [95], and pullanases [96].

Our own group has a strong interest in such organisms
and has reported the first global proteomic analysis of the
soluble and insoluble subproteomes of the highly ther-
mophilic aerobic eubacterium, Geobacillus thermoleovorans
T80 [74]. This work allowed us to gain insight into cellular
processes within the cytosol of this bacterium, for exam-
ple, we identified a number of sigma factors, such as óA,
that initiate transcription of the heat shock operons con-
trolled by the HrcA-CIRCE complex within Gram-positive
bacteria. In addition within the insoluble subproteome
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we could identify membrane-associated proteins, secreted
proteins, and those integral to the membrane, with func-
tionalities including transport, osmoregulation, and heat
shock response [75].

With the prevalence of genomic data for Bacillus and
related genera, it has become possible to use advanced
bioinformatic approachs to propose hypotheses on how
these organisms adapt to extreme environmental condi-
tions. Takami et al. employed a comparative genomic
analysis of the alkaliphilic and extremely halotolerant O.
iheyensis, the alkaliphilic and moderately halotolerant B.
halodurans and the neutrophilic and moderately halotol-
erant B. subtilis to identify a number of candidate genes of
importance in adaptation to highly alkaline environ-
ments [97]. Recently we described the first proteomic
investigation of O. iheyensis [98] which allowed us to iden-
tify, at neutral pH, a number of proteins belonging to two
putative transport systems believed by Takami et al [97] to
be of importance in the alkalaphilic adaptation of Oceano-
bacillus iheyensis HTE831. Our observations reaffirm the
necessity of postgenomic expression studies to validate
hypotheses generated via comparative genomic analysis
of this and presumably other organisms.

MetaProteomics
Microbial derived commodities or processes can often be
as a result of mixed populations of organisms, the compo-
sition of which can vary and is often far from being highly
defined, rather than by single axenic cultures. Whilst
ongoing studies aim to catalog such systems by use of a
plethora of techniques aimed at the indentification of spe-
cies diversity this is of relatively limited use when it is
remembered that functional output is more important
than compositional diversity. This point is extremely well
illustrated by the work of Fernandez et al. [99], who ana-
lysed the community dynamics of a functionally stable
and well-mixed glucose fed methanogenic reactor over a
period of 605 days. Analysis of the distribution of opera-
tional taxonomic units (OTUs) generated from a range of
time-point samples revealed a chaotic pattern. It was pro-
posed that this extremely dynamic community structure
observed within the bioreactors helped maintain a stable
ecosystem function. Under such circumstances analysis of
the catalytic potential of the bioreactor, by detection of
the total protein content present, would give a more sim-
plistic and relevant 'picture' of system functionality.

In order to investigate such 'black box' systems transcrip-
tomics has been shown to be a useful tool that can be
applied to help understand the complex interactions
occurring within microbial communities [99]. Limita-
tions of this approach, however, have recently been
reviewed and include information bias due to the neces-
sary selection of specific genes for microarray construction

and the increasing evidence for the lack of direct correla-
tion between mRNA expression and protein expression
[100]. Metaproteomics, an emerging field that aims to
analyse the proteins of mixed microbial communities,
offers a complimentary and enhancing tool for transcrip-
tomics and is therefore of great potential to those inter-
ested in understanding the functionality of mixed
microbial systems.

The benefits of this approach are best illustrated by the
work of three groups in the metaproteomic vanguard.
Paul Wilmes and Phil Bond working at the University of
East Anglia developed 2D-PAGE methods for the pro-
teomic analysis of a mixed microbial community
involved in enhanced biological phosphorus removal
[101]. This work was further developed to allow analysis
of two laboratory-scale sequencing batch reactors with
dissimilar phosphorus removal performances [102]. Met-
aproteomic analysis of these systems found that protein
expression pattern was fairly stable within the reactor with
best phosphorus removal capability compared with its
poorly functioning companion reactor. Whilst the study is
still in its infancy it has allowed Wilmes and Bond to sug-
gest that a bioenergetic advantage is available to the opti-
mally functioning reactor due to its equilibrated protein
expression [103].

Schulze and coworkers at the University of Southern Den-
mark have also applied proteomic fingerprinting to the
analysis of dissolved organic matter from four different
environments and thus identify the potential catalytic
function of proteins within these ecosystems [104]. This
work revealed that enzymes involved in the degradation
of organic matter could not be found in free soil dissolved
organic matter. Rather enzymes such as laccases and cellu-
lases could be detected in proteins extracted from soil par-
ticles that may indicate that degradation of soil organic
matter only takes place within biofilms located on particle
surfaces [104].

Finally the most extensive metaproteomic analysis to date
was carried out on a natural microbial biofilm by Jillian
Banfield's group based in the University of California at
Berkeley. Ram et al [105] described the detection of 2033
proteins within the proteome of a biofilm growing inside
a mine in which the physiochemical conditions of the
biotope included low pH (~0.8), a relatively mesophilic
temperature (~42°C) and the presence of high concentra-
tions of heavy metals. The stringent curation of proteomic
data utilised by this group led to the identification of 48%
of the predicted proteins from the most abundant biofilm
member, a Leptospirillium group II. Those highly
expressed proteins detected within the biofilm included
those involved in oxidative stress response giving an
insight into how the microbial biofilm survives. A major
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benefit of metaproteomics is the removal of the need to
preselect the gene products thought to be present in the
environment being investigated as is necessary for tran-
scriptomic investigations. This removal of bias allowed
Ram et al [105] to detect an abundant and novel cyto-
chrome that was central to iron oxidation and actual for-
mation of the biofilm.

Conclusions and future directions
The generation of large genomic datasets is revolutionis-
ing both our understanding of microbiology and the way
in which we as microbiologists investigate the organisms
that interest us. Systems biology has been revitalized by
this expansion in genomic information and its exponents
now seek to explain complex biological systems in terms
of their molecular components and their interactions.
Microorganisms are therefore ideal candidates for systems
biology research and the field of systems microbiology is
expected to result in the development of tools and tech-
niques of general applicability across the life sciences
[106].

Proteomics has a key role to play in attempts to construct
comprehensive cellular maps of biochemical processes
occurring within specific microorganisms at given spatial
and temporal points. Proteomic data when coupled with
bioinformatic programs such as the BioCyc database
[107], a collection of 160 pathway/genome databases for
most eukaryotic and prokaryotic species whose genomes
have been completely sequenced, allows a virtual model
of biochemical pathways within a microorganism to be
constructed. It is then possible to begin to model and pos-
sibly regulate microbial cellular metabolic pathways and
processes in order to maximise production of commodi-
ties or to identify new drug targets. Indeed the experimen-
tal synthesis of pathways predicted by systems biology to
exhibit novel properties has resulted in the development
of a new and exciting field of study, termed as synthetic
biology [106,108]. An understanding of the complexities
and possibilities offered by mass spectrometry is essential
for those researchers who wish to further both our under-
standing of, and methods for studying microbial pro-
teomics and to fully exploit the exciting applications of
systems and synthetic biology.
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