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Abstract: Over recent years, the long known class of small nucleolar RNAs (snoRNAs) have gained
interest among the scientific community, especially in the clinical context. The main molecular
role of this interesting family of non-coding RNAs is to serve as scaffolding RNAs to mediate site-
specific RNA modification of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). With the
development of new sequencing techniques and sophisticated analysis pipelines, new members of
the snoRNA family were identified and global expression patterns in disease backgrounds could
be determined. We will herein shed light on the current research progress in snoRNA biology and
their clinical role by influencing disease outcome in hematological diseases. Astonishingly, in recent
studies snoRNAs emerged as potent biomarkers in a variety of these clinical setups, which is also
highlighted by the frequent deregulation of snoRNA levels in the hema-oncological context. However,
research is only starting to reveal how snoRNAs might influence cellular functions and the connected
disease hallmarks in hematological malignancies.
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1. The Biogenesis and Lifecycle of Small Nucleolar RNAs (snoRNAs)

It has become increasingly evident that non-protein coding RNAs (ncRNAs) play a
fundamental role in regulating cellular processes, both in developmental and patholog-
ical contexts. Accounting for more than 90% of the transcribed RNAs, it has prompted
researchers to develop more advanced sequencing technologies, leading to the global detec-
tion of several ncRNA classes, such as microRNAs (miRNAs), long ncRNAs (lncRNAs) and
small nucleolar RNAs (snoRNAs), among others [1]. The existence of snoRNAs was proven
already in the 1960s (reviewed in: [2]) but was characterised in further detail with the
development of more sophisticated experimental procedures in the 1980s and 1990s [3–5].
SnoRNAs were considered important for fundamental cellular processes but have also been
seen as unglamorous transcriptional products. However, recent evidence has demonstrated
that aberrant expression of snoRNAs might play crucial roles in controlling oncogenic cell
properties, especially in hematologic tumours. However, its precise contribution in the
regulation of normal and malignant hematopoiesis remains largely unknown.

SnoRNAs are essential, short (60–300 nucleotides) and non-polyadenylated ncRNAs
that predominantly reside in the nucleolus of eukaryotic cells and their localization implies
a direct connection to their canonical function: guidance of post-transcriptional modifica-
tions and subsequent maturation of ribosomal RNAs (rRNAs) and small nuclear RNAs
(snRNAs) [6–8]. These post-transcriptional modifications in rRNAs are essential as they
are required to facilitate rRNA processing and secondary structure formation in order to
accurately and efficiently produce the ribosomal machinery [9,10].

1.1. Classification of snoRNAs

The majority of snoRNAs are divided into two major structural classes depending on
the type of evolutionary conserved sequences defined as ‘boxes’: C/D box and H/ACA
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box snoRNAs. These boxes are crucial as they influence overall snoRNA structure and
define the binding specificity with proteins to form stable and catalytically small nucleolar
ribonucleoprotein (snoRNP) complexes (Figure 1). In both cases, the snoRNAs hybridize
to the relevant target RNAs (e.g., rRNA) and guide the associated protein complexes for
modification of the substrate RNAs [11,12]. C/D box snoRNA structure consists of a closed
loop with two conserved motifs, RUGAUGA in box C and CUGA in box D, located at
the 5′ and 3′ ends of the RNA molecule, respectively. These snoRNAs form the snoRNP
complex with SNU13, NOP56, NOP58 and fibrillarin (FBL), which possesses the catalytic
activity for 2′-O-ribose methylation (2′-O-Me) of rRNAs [7]. This modification protects
RNA from hydrolysis and modifies flexibility of the RNA molecule, which contributes to
the translation capacity of the ribosomes [13]. On the other hand, H/ACA box snoRNAs
consist of two stem loops connected by a hinge region or box H (ANANNA motif) with the
box ACA located at the 3′ end. This snoRNA class forms the snoRNP complex with GAR1,
NHP2, NOP10 and dyskerin (DKC1), the latter one endowed with the catalytic activity to
carry out pseudouridylation of small nuclear RNAs (snRNAs) and rRNAs [14,15]. These
pseudouridines (Ψ) have been found to provide greater rigidity to the RNA molecule
by increasing duplex stability and affecting secondary structures. Interestingly, most
of these Ψ are concentrated in crucial regions of the rRNAs (i.e., decoding site, mRNA
channel or tRNA binding site) for the correct assembly of the ribosome and proper protein
synthesis [16–19].
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Figure 1. SnoRNA biogenesis. The majority of snoRNAs are produced as ‘byproduct’ during pre-
mRNA splicing. Hence, mature snoRNAs associate with RNA-binding proteins in snoRNPs to
guide 2′-O-methylation (C/D Box) or pseudouridylation (H/ACA Box) of target RNAs (rRNA and
snRNAs). Figure created with BioRender.com (accessed on 20 October 2021).

Additionally, small Cajal body-associated RNAs (scaRNAs) represent a subdivision
from the canonical snoRNAs which accumulate in other subnuclear structures (Cajal bodies)
and whose structure differs from C/D and H/ACA box snoRNAs, only including Cajal
body localization signals. Although scaRNAs are involved in the same functions as the
other snoRNAs, they differ in their target RNAs, which are the spliceosomal RNAs U1-U5,
U12, U4atac and U6atac [20,21].
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1.2. Biogenesis of snoRNAs

Most snoRNAs genes are encoded in introns and transcribed by RNA polymerase
II (Pol II) together with their host gene. After transcription, introns from snoRNA host
genes are removed by splicing. However, in contrast to classical introns snoRNA-encoding
introns are subjected to a defined processing mechanism, which involves debranching of
the intron, exonucleolytic processing steps and association of ribonucleoproteins that guide
nucleolar localisation (Figure 1) [22,23].

As mentioned above, most of the so-far identified human snoRNAs are processed
from intronic regions of either protein-coding genes or long non-coding RNAs whose
function is still poorly understood. Interestingly, most of the protein-coding host genes (e.g.,
ribosomal proteins) encode for proteins involved in ribosome biogenesis and translation
factors, thus suggesting that co-regulation of these proteins and the ‘hosted’ snoRNAs
is required for efficient translation [24]. However, snoRNA expression does not always
correlate with expression of the host genes. Several transcribed human snoRNA host genes
produce RNA isoforms that are eventually degraded via nonsense-mediated RNA decay
(NMD) [25]. This suggests that at least some non-coding host genes primarily serve a role
as snoRNA-precursor.

1.3. Detection, Analysis and Targeting of snoRNAs

SnoRNAs represent a heterogenous class of ncRNAs regarding their structure, type
of RNA modifications, targeted sites and protein interactors, thus sophisticated and in-
terdisciplinary approaches to analyse their cellular role are required. For standard small
scale snoRNA expression profiling and detection of quantitative PCR (qPCR), RNAse
protection assay and Northern blotting are used. However, these methods might fail to
discriminate between closely related snoRNA family members due to cross hybridisation.
For these reasons, aforementioned methods are currently used as validation of large scale
transcription profiling [26]. The identification and mapping of snoRNAs in the genome
have traditionally been performed by microarray analysis or standard RNA sequencing
(RNA-seq). Although RNA-seq has transformed the field of RNA biology allowing un-
precedented mapping of the transcriptome, most next-generation sequencing approaches
are focusing on profiling medium and long RNAs (>200 nucleotides) or very short se-
quences (17–26 nucleotides), thus snoRNA expression data is usually underrepresented
in these studies. To address this gap, recent studies showed an enhanced next-generation
sequencing approach with optimised library preparation and bioinformatic tools, which
enables more sensitivity towards detecting novel snoRNAs, more efficient resolution of
homologous snoRNA species and the capacity to discriminate between primary transcripts,
mature and fully processed snoRNAs [27,28]. Furthermore, there are bioinformatic tools for
prediction of RNA targets of snoRNAs available, such as snoTARGET [29], RNA snoop [30]
and PLEXY [31]. However, these tools generally suggest snoRNA targets assuming that
snoRNAs recognize canonical folding structures or validated snoRNA:rRNA pairs, which
might not cover all snoRNA:target interactions [32]. To experimentally determine the
global snoRNA target spectrum in a given cell context crosslinking and immunoprecipita-
tion (CLIP) of snoRNP components or RiboMeth sequencing [33] as well as crosslinking,
ligation, and sequencing of hybrids (CLASH, [34]) was successfully employed. To in-
vestigate the role of snoRNAs in cell depletion strategies had to be established. Since
siRNA-mediated knockdowns were predicted to fail depleting the nuclear snoRNA pool,
RNAse H-mediated knockdown strategies (ASOs/GapmeRs, [35,36]) or CRISPR/Cas9
techniques for snoRNA knockout/mutation [37] were used successfully.

2. The Role of snoRNAs in Regulating Normal and Malignant Hematopoiesis

Hematopoiesis is the life-long process by which a small population of hematopoi-
etic stem cells (HSCs) primarily residing in the bone marrow (BM) continually gives rise
to all specialised blood cell types. In adults, these HSCs are defined by their ability of
self-renewal and produce multipotent progenitor cells that differentiate and produce ma-
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ture blood cells [38]. These lineage-restricted progenitors (myeloid and lymphoid) ensure
replenishment of the bulk of hematopoietic cells while the primitive HSCs remain in a
quiescent state, protecting them from genotoxic disturbances [39,40]. Hence, in order to
guarantee hematopoietic homeostasis throughout the lifetime of the organism, the balance
between self-renewal and differentiation must be tightly regulated and responsive to the
BM microenvironment. Insufficient differentiation along with an aberrant self-renewal
capacity of the HSC pool can eventually contribute to the development of myeloprolifera-
tive diseases and leukemia [41]. HSC activity is regulated through a highly sophisticated
network controlled by numerous cell-intrinsic factors involved in epigenetic, metabolic,
post-transcriptional and translational processes. In particular, regulation of ribosome
function has been shown to be a key factor directly linked to HSC expansion and differen-
tiation capacity [42]. A recent study showed that the most primitive HSCs exhibited low
global translation rates, but high translation efficiency of specific mRNAs required for HSC
maintenance whereas myeloid-committed progenitors showed overall higher translation
rates [43]. In this regard, rRNA and tRNA species are important players controlling the
balance of protein synthesis and translational fidelity in HSCs. Furthermore, chemical
modifications within these RNA molecules e.g., by the snoRNA-guided mechanisms, might
be crucial in linking the undifferentiated state of a cell to its translational outcome in order
to adapt to certain stress conditions produced in the BM environment [44].

HSCs depend on low protein synthesis to maintain an elevated proteome quality
by avoiding the production of misfolded proteins. These defects can lead to a potential
impairment of the self-renewal capacity of HSCs through accumulation of the well-known
oncogene c-Myc [45]. It is also interesting to note that c-Myc was reported to be a mas-
ter regulator of snoRNA biogenesis through direct binding to the promoter of their host
genes [46]. It is readily apparent then to assume that altered protein synthesis in HSCs can
disrupt normal hematopoiesis and promote the development and progression of hemato-
logical malignancies. For example, the function of the transcription factor RUNX1/AML1,
frequently mutated in myelodysplastic syndrome and human leukemia, is directly linked
to the expression of ribosomal proteins and rRNAs [47]. Early mutations in this gene can
create pre-leukemic stem cells that through clonal growth can expand in the bone marrow
and outcompete the normal hematopoietic stem and progenitor cells (HSPCs). Intriguingly,
a recent study investigated a multi-step pathway involving the fusion protein AML1-ETO
leading to an upregulation of certain snoRNAs, which were required for proper protein
translation in leukemic stem cells and maintenance of the disease [48].

Although recent evidence suggests that snoRNAs can take part in a crucial axis
along the hematopoietic process, what connects snoRNA expression and manifestation of
myeloproliferative diseases remains elusive. Herein, we review results of current studies
showing the prognostic potential, molecular role and therapeutic relevance of snoRNAs in
different hematological tumours.

2.1. Acute Leukemia: Focus on Acute Myeloid Leukemia (AML)

Acute leukemia represents a useful model system to study how aberrant snoRNA
expression profiles can influence leukemogenesis as this group of diseases is characterised
by restrictive mutations occurring along the hematopoiesis in myeloid and lymphoid pro-
genitors, which eventually leads to a block of differentiation. Furthermore, chromosomal
abnormalities such as translocations forming oncogenic fusion proteins, i.e., AML1-ETO
and MLL-AF9 in AML as well as ETV6-RUNX1 and TCF3-PBX1 in ALL, are frequently
observed [49,50]. Thus, it is worth investigating if certain snoRNA signatures could be
specific to clusters of pre-leukemic cells or subsets of chimeric proteins in leukemia.

Using microarrays and a high-throughput qPCR approach, Valleron et al. screened
for certain snoRNA patterns specific to AML and ALL patients when compared to CD34+
progenitors, CD33+ myeloid cells (for AML patients), CD3+ and CD19+ lymphoid cells
(for ALL patients) as well as healthy donors. They showed that 61% of the tested snoRNAs
were downregulated when compared with their non-neoplastic counterparts [51]. Even
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though most of the snoRNAs appeared to be downregulated, the study showed that a
cluster of snoRNAs located at the DLK1-DIO3 locus was overexpressed in samples of acute
promyelocytic leukemia (APL) carrying the PML-RARalpha_bcr1 translocation. This chro-
mosomal region contains a subset of intronic orphan snoRNAs (SNORD112, SNORD113
and SNORD114) produced from the Meg8 transcript whose function is still unknown. One
snoRNA variant, the SNORD114-1 (14q(II-1)), was experimentally validated to have an
impact on leukemic cell growth via inhibiting cell cycle and the retinoblastoma (Rb) path-
way. Intriguingly, only 40% of the snoRNA variants are expressed in APL patients and the
underlying regulatory mechanism could not be determined. However, the fusion protein
PML-RARalpha seemed to have a role in promoting snoRNA expression as binding sites
for PML-RARalpha were reported close to the DLK1 gene [52]. Interestingly, the expression
of these snoRNAs was lost under all-trans retinoic acid-induced (ATRA) differentiation
but increased when PML-RARalpha was re-expressed in PML-RARalpha-negative cell
lines. This is consistent with other reports showing high expression of ncRNAs located
in the DLK1-DIO3 locus in hematopoietic and progenitor cells [53,54]. Continuing this
line of studies, it was reported that expression of SNORD113-3, SNORD113-4, SNORD114-
2 and SNORD114-3 was significantly higher in APL when compared to other types of
hematologic tumours including AML, multiple myeloma and large B-cell lymphoma. In-
terestingly, these snoRNAs are transcribed from the 14q32 region, which is known to
be associated with the development of myeloproliferative diseases [55]. In accordance,
SNORD114-3 expression was reported to be highly correlated with t(15;17), the genetic
hallmark translocation in APL. The authors suggested that this snoRNA could be used as a
potential prognostic marker to differentiate between APL-negative and APL-positive cases
among both pediatric and adult AML [56].

To precisely and comprehensively screen for global snoRNA expression, Warner and
colleagues developed an optimised next-generation sequencing method with a special
focus on hematopoiesis and AML [27]. The study showed that snoRNAs are the most abun-
dant sncRNAs among all the hematopoietic subpopulations tested. They demonstrated that
certain clusters of orphan snoRNAs exhibit lineage-specific expression patterns, especially
those associated with the imprinted DLK1-DIO3 and SNURF/SNRPN loci. The DLK1-DIO3
locus was reported to contain 47 orphan C/D box snoRNAs with high expression levels
in CD34+ progenitor cells, which dramatically decreased during granulocytic differen-
tiation. The SNURF/SNRPN loci contained two C/D box snoRNA clusters, SNORD115
and SNORD116, showing a similar expression pattern. Interestingly, they also showed
differential expression of several snoRNAs targeting the peptidyl transferase center (PTC)
and the intersubunit bridge (ISB) of the ribosome. SCARNA15, which mediates the pseu-
douridylation of the U2 spliceosomal RNA [57], was decreased 2.8-fold in AML samples
when compared to CD34+ cells. SNORA21 and SNORA36C, which modify the PTC and ISB
respectively, were downregulated as well [27]. The authors also highlighted that reduced
expression of SNORA21 was correlated with specific AML subtypes harbouring genetic
mutations in the spliceosomal machinery. Genomic deletion of SNORA21 in K562 cells
(erythroleukemia) impaired normal ribosome biogenesis and reduced the global translation
rate. Overall, they observed a decreased expression of snoRNAs targeting site-specific
modifications of the PTC and ISB of the 60S ribosome in AML samples compared to
hematopoietic stem/progenitor cells [58].

The snoRNA mediated RNA modification on rRNAs, 2′-O-methylation, is the most
abundant rRNA modification and has also been recently shown to be of high relevance in
promoting leukemogenesis. SNORD42A was reported to be highly expressed in primary
AML blasts when compared to CD34+ progenitors, monocytes and granulocytes from
healthy donors [59]. This C/D box snoRNA directs site-specific 2′-O-methylation of 18S
ribosomal RNA and functional knockout of SNORD42A decreased 18S-U116 methylation,
impaired colony formation potential and inhibited proliferation of AML cell lines. The
authors argue that this site-specific methylation is required for the conformational switch
of the ribosome and ultimately influences overall protein translation rates.
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Interestingly, SNORD42A was reported, among other C/D box snoRNAs, such as
SNORD15, SNORD47, SNORD52, SNORD58, SNORD104, to be bound by nucleophosmin
1 (NPM1), a well-known phosphoprotein residing in nucleoli [60,61]. The NPM1 gene
bears frequent mutations in hematological diseases, especially in AML, with approximately
30% of patients harbouring a frameshift mutation resulting in aberrant NPM1 cytoplasmic
localisation (NPMc+) [62]. The aforementioned study showed that snoRNAs were the
most abundant RNA species bound to NPM1. Functional knockout of NPM1 resulted in
a significant reduction of five 2′-O-Me modifications in 28S rRNA in mouse embryonic
fibroblasts [61]. Even though 2′-O-Me levels were compromised, global translation rates
were not altered. In contrast, specific protein changes were observed for Cdkn1b, Xiap,
Vegf and Fgf2 with no alteration on the transcript level, suggesting translational effects.
The reduction in 2′-O-Me levels was also seen in human AML samples and AML cell lines
having the NPMc+ mutation, while the overall abundance of snoRNAs was not changed.
Inactivation of SNORD15, SNORD47 and SNORD104 led to a decreased colony formation
potential while knockout of SNORD15, SNORD52 and SNORD58 promoted erythroid
differentiation in K562 cells. Together, the importance of NPM1-mediated translation regu-
lation through direct binding of C/D box snoRNAs and its relevance in regulating cellular
growth, differentiation and hematopoietic stem cell maintenance was highlighted [61].

Following this line of evidence, C/D box snoRNAs were also analysed in the AML
context driven by the fusion protein AML1-ETO. The authors identified a pathway where
AML1-ETO required the presence of the groucho-related amino-terminal enhancer of split
(AES) in AML [48]. AES was capable of inducing snoRNP complex formation via the RNA
helicase DDX21 to eventually maintain the self-renewal capacity of leukemic stem cells.
Genomic deletion of either SNORD14D or SNORD35A suppressed clonogenic potential of
leukemia cells in vitro and significantly delayed leukemogenesis in immunodeficient mice.
Reduced expression of SNORD34 and SNORD43 was able to impair clonogenic growth of
AML cells. Furthermore, it was demonstrated that other well-known AML oncoproteins,
namely AML1-ETO9a, c-Myc and MLL-AF9, were able to induce expression of certain
snoRNAs. In contrast, global reduction of C/D box snoRNAs and subsequent reduced 2′-O-
Me of rRNA ultimately affected secondary transplantations in mice, a clear sign of impaired
self-renewal capacity of AML cells. Moreover, the set of snoRNAs SNORD14D, SNORD14E,
SNORD20, SNORD32A, SNORD34, SNORD35A, SNORD43, SNORD53, SNORD74A and
SNORD104 was identified to be strongly expressed in primary AML1-ETO+ samples with
high LSC content. This snoRNA signature was also associated with poorer response to
initial chemotherapy treatment [48].

2.2. Acute Leukemia: Focus on Acute Lymphoblastic Leukemia (ALL)

In analogy to AML, defects in essential components of the translation machinery
have been reported in acute lymphoblastic leukemia (ALL). In T-cell acute lymphoblastic
leukemia (T-ALL), several studies have revealed mutations in ribosomal proteins, vital
components for correct ribosome function, which hindered translational fidelity and nor-
mal ribosome biogenesis [63–65]. T-ALL is related to leukemic transformation of lymphoid
progenitors and deletion of the long arm of chromosome 6 (del6q) is a frequent chromo-
somal aberration found in T-ALL as well as in lymphoblastic lymphoma patients [66–68].
To elucidate the underlying molecular effectors of this chromosome rearrangement that
accelerates T-ALL progression in vivo, a study identified affected genes located at the
deleted genomic region. One of these regions was the small nucleolar host gene 5 (SNHG5)
which also encodes two C/D box snoRNAs within its introns, SNORD50A and SNORD50B
(also known as U50A and U50B) [69]. These two snoRNAs were previously reported to
regulate ribosomal biogenesis through site-specific 2′-O-Me of pre-rRNAs [3]. Gachet and
colleagues described these two snoRNAs acting as tumour suppressor genes reducing
ribosomal functions and that the deletion induced leukemic transformation of LSCs in late
stages of T-ALL. They hypothesised that this genomic alteration influenced the translation
of key mitochondrial factors, resulted in reduced oxidative phosphorylation and aberrantly
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affected self-renewal capacity of normal HSCs. The genomic location of SNORD50 already
pointed to its potential involvement in malignancies, since the snoRNA gene is affected
by the recurrent breakpoint t(3;6) (q27;q15) involved in human B-cell lymphoma [70]. In
accordance, the physiological importance of mouse SNORD50 (mU50) and its possible
link in promoting tumourigenesis was also investigated [71]. By specific genomic deletion
of mU50, the authors observed an increase in abnormal events in the lymphoid organs,
including differentially regulated tissue-specific heat shock proteins.

As seen in AML, high expression of SNORD116 in patients with childhood B-cell
precursor lymphoblastic leukemia (BCP-ALL) carrying ERG-related genetic aberrations
was reported [72]. BCP-ALL is the most common subtype of ALL and importantly, patients
with ERG-related alterations show a good response to standard therapies. The specific
upregulation of a set of snoRNAs (SNORD64, SNORD107, and SNORD109A together with
the SNORD116 cluster) was reported and was able to discriminate between ERG-related
and non-ERG-related in BCP-ALL samples. Interestingly, these differentially regulated
snoRNAs map to the 15q11.2 genomic region involved in the Prader–Willi Syndrome
(PWS), a thoroughly studied locus that transcribes several orphan snoRNAs [73,74]. The
dysregulation of components of the rRNA methylation complex was also observed in
pediatric BCP-ALL. Here, snoRNA-associated FBL and NOP56 proteins were upregulated
by modulation of the upstream effector c-Myc. Myc has been previously reported to
positively affect levels of C/D box snoRNAs; as for p53, a negative impact on snoRNA
function has been reported [48,75,76]. Additionally, SNORD35B and SNORD46 showed
elevated levels in BCL-ALL patients with relapse compared to patients that maintained
complete remission [77].

2.3. Chronic Lymphocytic Leukemia (CLL)

Although most of the patients with chronic lymphocytic leukemia (CLL) survive for
many years even without treatment, others present an aggressively and rapidly evolving
disease. This highlights the need for biomarkers that help to distinguish patients that
can potentially develop more acute stages of CLL from those with chronic and stable
stages [78]. This prompted scientists to identify novel biomarkers that predict the clinical
outcome of CLL patients in early stages of the disease [79]. In this report, expression
profiles of sno/scaRNAs in CLL cells were compared to their normal B-cell counterparts
from patients with different karyotypes. SNORA6, SNORA31, SNORA62 and SNORA71C
showed downregulation in CLL cells irrespective of the molecular subgroup of the patient.
Interestingly, SNORA31 downregulation correlated with reduced expression of its host
gene TPT1, a protein known to regulate stemness by influencing TP53-tumour-suppressor
function [80]. SNORA70F was also reported in this study to be downregulated in CLL
patients with adverse prognostic markers such as cytogenetically normal IGHV status,
del11, ZAP70 or CD38+ [79]. The downregulation of this snoRNA also correlated with
reduced expression of its host gene COBLL1, a gene whose downregulation is associated
with poor prognosis in CLL patients [81]. Ronchetti et al. proposed an independent
2-snoRNA signature for predicting different prognostic groups in Binet stage-A CLL
patients. High-risk CLL patients showed elevated expression levels of at least one of the
two snoRNAs SNORA74A and SNORD116-18 [79]. So far, little is known about the exact
function of SNORA74A although studies have connected its biological role to multiple
myeloma [82]. SNORD116-18 is transcribed in a cluster of several copies located at the
SNURF-SNRPN locus, previously mentioned to host several orphan snoRNAs.

Moreover, another study in CLL investigated snoRNA expression profiles in CLL
patients with different IGHV mutational status and common mutations in TP53, NOTCH1
and SF3B1 [83]. In contrast with Ronchetti et al. [79], they could not identify specific
snoRNA signatures associated with mutations that impact the outcome of CLL patients
even though unsupervised analyses revealed a snoRNA profile (SNORD35B, SNORD71,
SNORD116-11 and SNORD116-25) that could robustly discriminate between healthy
B-cells and leukemic cells in CLL samples. They also identified a set of 20 snoRNAs
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overexpressed among IGHV-mutated CLL patients with shorter treatment-free survival
rates, a widely used parameter to monitor disease progression in CLL. This signature
included SNORA12, SNORA22, SNORA27, SNORA56, SNORA64, SNORA69, SNORA70,
SNORA74A, SNORA80, SNORA84, SNORD1A, SNORD1B, SNORD8, SNOR18, SNORD30,
SNORD32A, SNORD34, SNORD105B, SNORD110 and SCARNA8. However, only seven of
these snoRNAs were correlated with increased proliferation in CLL primary cells in vitro
when compared to normal B-cells and two of them (SNORA80 and SNORD1A) were down-
regulated upon induced proliferation. This suggests that the proposed snoRNA signature
does not only reflect the potential of CLL proliferation but also the associated potential for
leukemogenesis in IGHV-mutated patients.

2.4. Peripheral T-Cell Lymphoma (PTCL)

Revolutionary advances in the treatment and prognosis of human lymphomas have
occurred despite unquestionably favouring patients with B-cell lymphomas. Peripheral
T-cell lymphoma (PTCL) is a complex and heterogeneous type of non-Hodgkin lym-
phoma whose classification is divided in PTCL-not otherwise specified (PTCL-NOS),
angio-immunoblastic T-cell lymphoma (AITL) and anaplastic large cell lymphoma (ALCL)
with or without anaplastic lymphoma kinase genetic abnormalities (ALK+ ALCL and
ALK− ALCL) and other less common subtypes. The current diagnostic issue is to identify
patients with adverse and very adverse prognosis given that only 20% of patients are
eligible for standard chemotherapy treatment [84,85]. Although molecular signatures,
including coding genes, have been developed in order to refine the different PTCL sub-
types [86], others are not clearly distinguishable, such as between PTCL-NOS and ALK−
ALCL. For this reason, a study investigated if snoRNA-expression profiles were relevant
for PTCL diagnosis and prognostication [87]. Supervised analyses revealed that using
snoRNA U3 as a single marker was sufficient to discriminate between ALK+ and ALK−
ALCL tumours. This snoRNA is produced as individual transcription unit and is connected
to the p53 pathway [88,89]. Although U3 includes C/D box-like motifs, it is not involved
in 2′-O-Methylation of rRNA but rather is directing site-specific cleavage of rRNAs [90].
Moreover, the studies identified a robust snoRNA signature for both AITL and PTCL-
NOS capable of classifying these patients depending on their outcome. The signature
included overexpressed snoRNAs (SNORA12, SNORD117, HBII-142, HBII-239, ACA54,
U90 and U55) associated with prolonged overall survival. HBII-239 was suggested to be the
strongest biomarker and its overexpression had also a negative effect on T-cell lymphoma
growth [87].

2.5. Multiple Myeloma (MM)

Multiple myeloma is a fatal hematological malignancy that affects B-lineage plasma
cells. Chromosomal aberrations are frequently observed among patients with MM and
the t(4;14) (p16.3;q32.3) translocation is commonly associated with shortened overall sur-
vival [91,92]. This chromosomal rearrangement consists of the transposition of the im-
munoglobulin heavy chain region enhancer elements to the 5′ region of the nuclear receptor
binding SET domain protein 2 gene (NSD2, also known as WHSC1) leading to ectopic
overexpression in MM cells [93]. In order to improve the understanding of how the t(4;14)
alteration contributes to myelomagenesis, a novel H/ACA box snoRNA called ACA11 (also
known as SCARNA22) encoded within the introns of the WHSC1 gene was identified [94].
ACA11 was demonstrated to be robustly overexpressed among t(4;14)-positive MM cell
lines/patients as well as in subgroups of patients with bladder, colon and esophageal
cancer. The function of this snoRNA was associated with proteins implicated in RNA
processing as in vitro studies showed association with RNA splicing factors (SF3B1, SF3B2
and SFPQ), RNA helicase (DHX9), RNA-specific deaminase (ADAR) and proteins of the
heterogeneous nuclear ribonucleoprotein family (HNRNP). ACA11 was also found to medi-
ate downregulation of certain ribosomal protein transcripts, such as RPL13A, even though
exogenous overexpression of ACA11 did not affect the formation of the ribosome ma-
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chinery. Moreover, ACA11 overexpression in t(4;14)-negative MM cells reduced oxidative
stress, increased proliferation and chemoresistance. Together, this study identified ACA11
snoRNA as a key component in translocation-associated MM pathogenesis and a potential
therapeutic target for t(4;14)-positive MM patients. Later, the function of ACA11 in MM
cells was investigated in more detail [95]. This study demonstrated for the first time that
ACA11 upregulates ribosome biogenesis in a ROS-dependent manner. An increased num-
ber and size of nucleoli in human t(4;14)-positive MM samples and ACA11-overexpressing
MM cells was observed. Furthermore, it was hypothesised that ACA11 increases the
available cytosolic ribosomes with subsequent increase in protein synthesis rate to support
cell growth. Interestingly, ACA11 overexpression also led to a notable sensitivity to the
proteasome inhibitor Btz, a commonly used therapy for MM patients that has improved
the survival rate of MM patients at all stages [96].

In order to elucidate the pathogenic role of certain snoRNAs in MM, sno/scaRNA
expression profiles were investigated in different cohorts of MM and secondary plasma cell
leukemia (sPCL) patients compared with non-neoplastic counterparts [82]. In agreement
with previous studies that showed global downregulation of snoRNAs in acute myeloid and
lymphoblastic leukemias, downregulation of SNORD32A and SNORA42 was also reported
in sPCL [51]. It was hypothesised that SNORD32A downregulation may induce resistance
to endoplasmic reticulum stress-induced response as it was demonstrated in vitro in mouse
models [97]. In the case of SNORD42, correlations were only found that pointed towards
(1) the region where this snoRNA is located (chr1q22), commonly amplified in plasma cell
dyscrasias and (2) that SNORA42 activation had an oncogenic role in lung tumourigenesis
in non-small cell lung cancer cell lines [98]. A specific upregulation of a snoRNA signature
in MM patients with hyperploid karyotype was also reported, commonly associated with
trisomies and showing favourable clinical outcome [99]. This molecular group is charac-
terised also by a global upregulation of the translational machinery including components
of the ribosome biogenesis pathway and proteins regulating processing and modification of
rRNAs [100]. In this regard, SNORD36C, SNORD63, SNORD95 and SNORA40 were shown
to be downregulated in this molecular subgroup of MM patients in correlation with reduced
expression of their host genes RPL7A, HSPA9B, TACK1 and TAF1D, respectively [101,102].
Furthermore, the study reported another signature consisting of 14 snoRNAs (SNORA74A,
SNORD101, SNORD115-24, 25, 31, 32, 7, SNORD116-22, 23, 25, 29, SNORD24, SNORD36C,
SNORD8, SCARNA22) specific for the TC2 subgroup of MM patients [82]. The TC2 group
is characterised by the overexpression of genes involved in protein biosynthesis [103]. In
this study, SNORD115 and SNORD116 variants were correlated with DNA copy number
of the MM patients [82]. Interestingly, a shorter processed form of orphan SNORD115 was
found to regulate alternative splicing of the serotonin receptor mRNA HTR2C [104].

3. Conclusions and Future Perspective

It has become increasingly evident that snoRNAs show a strong connection to hema-
tological diseases (summarised in Table 1). Especially due to analysis of global ncRNA
expression patterns, snoRNAs were found to be deregulated in a variety of these clinical
contexts. Accordingly, expression of snoRNAs seems to be regulated at different levels.
Hence, snoRNA expression can be indirectly influenced by enhanced transcription of
their host genes facilitated by oncogenic transcription factors, such as c-Myc in AML (see
Figure 2). On the other hand, snoRNA expression can directly be influenced by tumour-
specific genomic alterations as it is evident for snoRNA downregulation in, for example,
B-cell lymphoma, by destruction of the U50 locus or chromosomal gains e.g., SNORD42 in
multiple myeloma. However, in a variety of clinical contexts, the underlying mechanism
causing snoRNA deregulation is not well understood. Future studies should emphasise
identifying molecular pathways, transcription programs and genomic setups that lead to
altered snoRNA expression in hematological diseases.
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Table 1. Summary of snoRNAs with pathological relevance in hematological diseases. ND—not determined.

snoRNA Type Genomic
Location Expression Putative

Targets/Pathways
Relevance in

Disease Context Reference

SNORD112,113,114 C/D 14q32 Overexpression ND Acute Promyelocytic
Leukemia [51]

SNORD114-1 C/D 14q32 Overexpression
Inhibition of cell

cycle via Rb
pathway

Acute Promyelocytic
Leukemia [51]

SNORD113-3,-4;
SNORD114-2,-3 C/D 14q32 Overexpression ND Acute Promyelocytic

Leukemia
[51]

SNORD115,
SNORD116 C/D 14q32 Overexpression

SNORD115 shorter
isoform regulates

the alternative
splicing of the

5HT-2C serotonin
receptor

pre-mRNA

Higher expression in
CD34+ progenitor

cells
[27,104]

SCARNA15 scaRNA 15q25 Downregulation Ψ in U2
spliceosomal RNA

Decreased in AML
samples compared to
normal CD34+ cells

[51]

SNORA21 H/ACA 17q12 Downregulation Modification of
PTC of ribosome

Decreased in AML
samples compared to
normal CD34+ cells

[27]

SNORA36 H/ACA Xq28 Downregulation Modification of ISB
of ribosome

Decreased in AML
samples compared to
normal CD34+ cells

[27]

SNORD42A C/D 17q11 Overexpression
Bound to NPM1.
2′-O-Me of 18S

rRNA

Highly expressed in
primary AML blasts.

SNORD42
downregulation in

sPCL patients.

[59,82]

SNORD15
SNORD47
SNORD52
SNORD58
SNORD104

C/D

11q13
1q25
6p21

14q21
17q23

Enriched in
AML samples
with NPMc+

mutations

Bound to NPM1
2′-O-Me of rRNAs

Regulation cellular
growth,

differentiation and
HSCs maintenance.
SNORD104 highly

expressed in
AML1-ETO+ samples

with high LSC
content.

[48,61]

SNORD14D
SNORD35A C/D 11q23

19q13
AML1-ETO

induced
expression

2′-O-Me of 18S and
28S rRNA

Knockout reduced
colony formation in

AML cells and
delayed

leukemogenesis
in vivo

High expression in
AML1-ETO+ samples

with high LSC
content

[48]

SNORD34
SNORD43 C/D 19q13

22q13
AML1-ETO

induced
expression

2′-O-Me of 18S and
28S rRNA

Reduced expression
impairs clonogenic

growth of AML cells.
High expression in

AML1-ETO+ samples
with high LSC

content

[48]
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Table 1. Cont.

snoRNA Type Genomic
Location Expression Putative

Targets/Pathways
Relevance in

Disease Context Reference

SNORD14E
SNORD20

SNORD32A
SNORD53
SNORD74

C/D

11q23
2q37

19q13
2p23
1q25

AML1-ETO
induced

expression
-

High expression in
AML1-ETO+ samples

with high LSC
content. SNORD32A

downregulated in
sPCL patients

[48]

SNORD50A, B C/D 6q14 Deletion 2′-O-Me of 28S pre-
rRNAs

Haploinsufficiency
plays a role in

late-stage T-cell
leukemia and B-cell

lymphoma

[69,70]

SNORD116-11, -14,
-15, -16, -17, -18, -20,
-21, -22, -23, -24, -27,

SNORD64
SNORD107

SNORD109A

C/D 15q11 Overexpression ND

Distinguish BCP-ALL
patients with and

without ERG
intragenic deletions

[72]

SNORD35B
SNORD46 C/D 19q13

1p34 Overexpression ND

Identification of
BCP-ALL patients at
early diagnosis who

fail to therapy.
SNORD35B is
differentially

regulated in CLL
cells.

[77,83]

SNORA6
SNORA31
SNORA62

SNORA70F
SNORA71C

H/ACA

3p22
13q14
3p22
2q24
20q11

Downregulation ND

Lower expression in
CLL cells compared

to their B-cell
counterparts

[79]

SNORA74A
SNORD116-18

H/ACA
C/D

5q31
15q11 Overexpression ND

Identification of
high-risk CLL

patients.
SNORA74A included

in a signature for
identifying a

subgroup of MM
patients

[79,82]

SNORD71
SNORD116-11, -25 C/D 16q22

15q11
Overexpression
Downregulation ND

Discriminates
between normal

B-cells and CLL cells.
SNORD71

overexpression is
correlated with

prolonged OS in
subgroups of PTCL

patients

[83,87]

SNORD1A
SNORA80

C/D
H/ACA

17q25
21q22 ND

In IGHV-mutated
CLL patients,

correlates with
shorter

treatment-free
survival

[83]

snoRNA U3 C/D 8p21 Overexpression Interaction with
p53 pathway

Upregulated in ALK+
PTCL tumours [87]
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Table 1. Cont.

snoRNA Type Genomic
Location Expression Putative

Targets/Pathways
Relevance in

Disease Context Reference

SNORA12
SNORD117

HBII-
142/SNORD66

ACA54/SNORA54
snoRNA

U55/SNORD55
snoRNA

U90/SCARNA7

H/ACA
C/D
C/D

H/ACA
C/D

scaRNA

10q24
6p21
3q27

11p15
1p34
3q25

Overexpression ND

Overexpression of
the signature

correlates with
prolonged OS in
non-ALCL PTCL

patients

[87]

ACA11/SCARNA22 scaRNA 4p16
Overexpression

in
t(4;14)-positive
MM patients

RNA processing
and

downregulation of
RPL13A

Linked to
pathogenesis in MM
through regulation of
oxidative stress and

chemosensitivity

[94,95]

SNORD36C
SNORD63
SNORD95
SNORA40

C/D
C/D
C/D

H/ACA

9q34
5q31
5q35

11q21
Downregulation

Downregulation
correlates with

molecular signature
in a subgroup of MM

patients

[82]

SNORD24
SNORD36
SNORD101

SNORD115-7,-24,-
25,-31,-32

SNORD116-22,-23,
-25, -29,

C/D
C/D
C/D
C/D
C/D

9q34
9q34
6q23
15q11
15q11

Overexpression

SNORD115 shorter
isoform regulates

the alternative
splicing of the

5HT-2C serotonin
receptor

pre-mRNA

Signature for
identification in a
subgroup of MM

patients (TC2)

[82,104]
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guiding snoRNA-mediated control of gene expression (see Figure 2). It can be assumed
that most of the snoRNA-directed cellular functions involve scaffolding roles that include
association with RNA-binding proteins, as it was described for other small ncRNAs [105].
Some studies could correlate changed snoRNA abundance with the rRNA modification
status, generally being the most prevalent mechanism associated with snoRNA function
(e.g., [48]). In cases where orphan snoRNAs are deregulated in the clinical context, it
can be hypothesised which physiological targets might trigger cellular responses. For
SNORD116, a function in alternative splicing was proposed, which clearly differs from the
canonical role of snoRNAs. It remains to be elucidated on a global scale which molecular
targets snoRNAs might have especially in the hema-oncological context. Genome wide
experimental procedures, such as RiboMeth sequencing and CLASH, could provide novel
insights into the global snoRNA-mediated control of gene expression. Specific targets for
either rRNAs or mRNAs could then be further validated and shed light on the plethora of
snoRNA targets especially in hematological diseases.

The investigation of snoRNA biology in the context of diseases is still a new topic,
where the majority of manuscripts have been published within the last ten years, although
snoRNAs themselves have been known for decades. Nevertheless, we still do not fully
understand how snoRNAs contribute to disease progression in the hematological context
(see Figure 2). Over a long period of time, these analyses were hampered by an insufficient
number of methods to directly modulate snoRNA expression. Novel technologies have
now been established (ASOs/GapmeRs and CRISPR/Cas9) that also allow the specific
modulation of snoRNA expression. We expect that these technologies will be used more
frequently in the future to investigate the cellular phenotypes (e.g., proliferation and self-
renewal capacity) associated with snoRNA depletion. Additionally, ASOs for instance,
can be applied in vivo [36]. Hence, this opens the possibility to analyse the targeting of
oncogenic snoRNAs as a novel therapeutic approach especially in hematological diseases.
Like for other ncRNAs, conservation of snoRNAs across species is not always consistent.
This makes the investigation of snoRNA function in vivo, e.g., by the use of genetic mouse
models, much harder. There are cases where snoRNAs are conserved among species and
functions in mice could be connected to phenotypes seen in humans (e.g., U50 [71]). In
cases where snoRNAs are not conserved, xenotransplantation of modified cells (e.g., with
CRISPR/Cas9) into appropriate mouse strains could be used to determine the in vivo and
clinical role of snoRNAs. We envision that future studies will provide more evidence
about the multifaceted role of snoRNAs beyond hematological diseases, since researchers
have just begun to shed light on this powerful ncRNA regulator connected to disease
development and progression.
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