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This work was aimed at a comparative analysis of the degree of multifractality of
electroencephalographic time series obtained from a group of healthy subjects and
from patients with mental disorders. We analyzed long-term records of patients with
paranoid schizophrenia and patients with depression. To evaluate the properties of
multifractal scaling of various electroencephalographic time series, the method of
maximum modulus of the wavelet transform and multifractal analysis of fluctuations
without a trend were used. The stability of the width and position of the singularity
spectrum for each of the test groups was revealed, and a relationship was established
between the correlation and anticorrelation dynamics of successive values of the
electroencephalographic time series and the type of mental disorders. It was shown
that the main differences between the multifractal properties of brain activity in normal and
pathological conditions lie in the different width of the multifractality spectrum and its
location associated with the correlated or anticorrelated dynamics of the values of
successive time series. It was found that the schizophrenia group is characterized by a
greater degree of multifractality compared to the depression group. Thus, the degree of
multifractality can be included in a set of tests for differential diagnosis and research of
mental disorders.
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1 INTRODUCTION

Despite the huge number of works devoted to the study of the nonlinear dynamics of the bioelectrical
activity of the brain in various pathologies (Slezin et al., 2007; Suckling et al., 2008; Mukli et al., 2018;
Racz et al., 2020; Lee et al., 2021; Racz et al., 2021; Alamian et al., 2022), the identification of
neurophysiological markers of these pathologies remains an extremely urgent task. This is especially
true for diseases associated with cognitive impairment such as Alzheimer’s disease, schizophrenia,
epilepsy, and the goal of such work is not only to obtain new theoretical data and understanding of
pathophysiology, but also to use these data to improve clinical diagnosis, assess the severity or
progression of the disease.

At the same time, changes in the bioelectrical activity of the brain can be associated with both
oscillatory and fractal brain functions. Changes in oscillatory activity imply changes in the frequency
range of the electroencephalographic (EEG) time series in the pathological brain compared to the
healthy brain. For example, a number of studies report an increase in the amplitude of the EEG delta
range in patients with schizophrenia compared with the control group (Knott et al., 2001; Harris
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et al., 2006). Other studies (Begić et al., 2000; Harris et al., 2001;
John et al., 2009) have shown that different phenotypes of
schizophrenia can be characterized by both a decrease and an
increase in the amplitude of the delta range, depending on the
positive or negative forms of schizophrenia. In addition,
treatment with neuroleptics (Harris et al., 2006; John et al.,
2009) or an increase in the duration of the disease (Harris
et al., 2001; Tislerova et al., 2008; John et al., 2009; Ranlund
et al., 2014) can lead to a decrease in delta activity.

However, oscillatory processes with characteristic frequencies
(delta, theta, alpha, and beta oscillations) in the EEG also exhibit
fractal (scale-free) behavior. In this case, the EEG oscillatory
power spectrum containing these characteristic frequencies is
superimposed with a fractal spectrum in which the power is
inversely proportional to frequency, and the relationship is
established through a power function with the scaling factor β
(Eke et al., 2002).

Using irregular-resampling auto-spectral analysis (IRASA)
(Wen and Liu, 2016), it is possible to separate the power
spectrum into its two components, i.e., extract the spectrum of
oscillatory activity without the confounding effects of broadband
activity, and the spectrum of the fractal component of the signal
with subsequent estimation its spectral scaling exponent β, which
will not be evaluated by the presence of oscillatory peaks.

In (Racz et al., 2021), this method was used to answer the
question of whether the differences in power spectra found
between healthy subjects and patients with schizophrenia are
associated with changes in the fractal or oscillatory components
of the EEG. The authors of (Racz et al., 2021) showed that the
amplitude of the delta range in the initial power spectrum is reduced
for patients with schizophrenia compared with the control group,
mainly in the central regions of the brain; however, this difference
could be attributed almost exclusively to a shift of power towards
higher frequencies in the fractal component.

The differences found in the initial spectra were present
only in the fractal component of the spectrum, but not in the
oscillatory one. Thus, the authors of (Racz et al., 2021) came to
the conclusion that the differences in EEG patterns between
healthy and diseased brains are not necessarily associated
exclusively with changes in the rhythmic component of
neuronal activity, but necessarily with the broadband
fractal component of this activity. This is another
confirmation of the importance of fractal analysis for
neurophysiological rhythms.

It is important to note that a number of studies have shown
that many physiological rhythms associated with movement, the
work of the heart and brain have multifractal properties (Ivanov
et al., 1999; Watters and Martin, 2004; Acharya et al., 2005;
Nurujjaman et al., 2009; Sassi et al., 2009; Scafetta et al., 2007;
Scafetta et al., 2009; Dick, 2017). This is explained by a
paradoxical combination of short-term decorrelation caused by
noise and long-range correlation caused by the fractal structure of
these rhythms (Ivanov et al., 1999; Scafetta et al., 2007). It means
that their patterns on small scales are not identical to the whole
time series but the self-similarity remains after averaging by
statistically independent samples of the time series (Pavlov
and Anishenko, 2007).

Multifractality of the healthy brain is revealed in
electroencephalographic (EEG) time series during complex
imaginary and real visual-motor task performance (Popivanov
et al., 2006; Wink et al., 2008), during awake and various sleep
stages (Qianli et al., 2006). Multifractality of the EEG time series is
found also during epileptic discharges (Song and Lee, 2005; Dick
andMochovikova, 2011; Dick and Svyatogor, 2012) and in neural
disorders connected with anxious phobia combined with
headache, tachycardia or disturbance of the breathing rhythm
(Dick and Svyatogor, 2012).

Note that the method of estimating multifractal scaling
properties of EEG time series combined with searching the
rate of the change of the modulus of the wavelet coefficients
of the EEG, so called wavelet transformmodulus maxima method
(WTTM) (Muzy et al., 1993), allows one to establish structural
adjustments leading to a change in multifractal properties, i.e.
reveal the mechanisms of dynamic changes in the structure of
EEG patterns in the event of a particular pathological condition
(Dick and Svyatogor, 2012; Dick and Nozdrachev, 2019).

Another method for assessing the multifractality of a signal is
multifractal detrended fluctuation analysis (MFDFA)
(Kantelhardt et al., 2002). This method was generalized from
detrended fluctuation analysis applied for monofractals (Peng et
al., 1994). Currently, multifractal analyses are promising
prognostic and diagnostic tools in biomedical signal processing
(Eke et al., 2000; Eke et al., 2002; Ihlen, 2012).

The multifractal spectrum of endogenous brain dynamics and
response times is more sensitive to the influence of age and
cognitive performance compared to a single power law exponent
alone (Dick and Mochovikova, 2011; Dick and Svyatogor, 2012).
In (Suckling et al., 2008; Ihlen and Vereijken, 2010) it was shown
that in the absence of epileptic discharges, the EEG dynamics of a
patient with focal epilepsy is practically indistinguishable from
the EEG dynamics of a healthy brain. But already in the period
preceding the epileptiform activity, the EEG dynamics changes
and rearrangements occur, leading to the emergence of a
correlation of successive EEG values, which is the reason for
the increase in the EEG amplitude during an epileptic discharge.

Multifractal analysis also makes it possible to evaluate the
effectiveness of the treatment of patients with neural disorders
associated with psychogenic pain syndromes. Thus, it was shown
in (Dick and Svyatogor, 2012) that variations in multifractal
properties explain the changes that occur during
psychorelaxation, reflecting the persistence or removal of
psychogenic pain in patients with anxious phobic disorders.

The fact is that the width of the multifractal spectrum serves as
a measure determining the degree of multifractality of the
analyzed time series, since the smaller the width of the
spectrum, the closer the tendency to monofractality of the
time series (Muzy et al., 1993; Popivanov et al., 2006). The
position of the multifractal spectrum is related to the
correlation or anticorrelation dynamics of successive values of
the time series. The presence or absence of correlations and
anticorrelations of successive values of the analyzed time series is
determined by the values of Hölder exponents obtained by the
WTMM or MFDFA methods (Muzy et al., 1993; Kantelhardt et
al., 2002). So if the values of these exponents are in the range from
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0 to 0.5, then the dynamics of consecutive values of the time series
is anticorrelated, but if the values of these exponents are in the
range of 0.5 and higher, then the dynamics of consecutive values
is correlated (Pavlov and Anishenko, 2007; Eke et al., 2002). In the
first case, there is an alternation of large and small values of the
analyzed series (a large value is more likely to be followed by a
small one and vice versa). In the second case, a large value is often
followed by a large one, and a small value is often followed by a
small one, hence the time series is more “smooth”. Therefore,
differences in the degree of multifractality and correlation or
anticorrelation dynamics can be included in a set of tests for the
differential diagnosis of mental disorders.

The purpose of this work is the comparative analysis of the
multifractality in EEG patterns of normal and pathological brain
activities like schizophrenia and depression and the identification
of relationships between the width of the multifractal spectrum,
as well as the correlation or anticorrelation dynamics of
consecutive EEG values and the type of mental disorders.

2 MATERIALS AND METHODS

2.1 Experimental Procedure
The study involved 10 patients with a paranoid form of
schizophrenia (F20 according to the ICD 10) with a disease
duration from one to 10 years, including 5 men and 5 women
aged 24–35 years) and 10 patients with depression (F32;
F33 according to the ICD 10), including 5 men and 5 women
aged 21–34 years. The control group consisted of 10 healthy
subjects (5 men and 5 women aged 18–30 years). All subjects had
visual acuity of at least 0.9, and refraction was normal.

Among the symptoms observed in the majority of patients
with schizophrenia who participated in the study, it should be
noted the predominance of positive symptoms of schizophrenia
(auditory hallucinations (voices) and delusions of persecution).
Also, these patients were characterized by such symptoms as
tension, alertness, anxiety and ambivalence (a dual, contradictory
attitude of the subject toward the object, characterized by the
simultaneous direction of opposite impulses to the same object,
occurring suddenly and regardless of the circumstances).

In the group of the overwhelming majority of depressive
patients who participated in the study, signs of vital
depression were detected with varying degrees of melancholy
manifestation with unreasonable pessimism, despondency and
depression. This group was characterized by a circadian rhythm
of affect in the form of a distinct deterioration in the morning
hours with an improvement in the evening. Many patients
complained of a violation of the ability to think logically and
to establish consistent connections between events.

Among the common symptoms of patients in the two groups,
one can note anxiety and disturbances in the structuring of
thinking, as well as a decrease in the ability to concentrate
attention.

Both groups of patients (with schizophrenia and depression)
were on antipsychotic therapy and took the antipsychotic
aripiprazole (Abilify). It is known that this substance has the
least effect on EEG power spectra, unlike other known

antipsychotic drugs (clozapine, olanzapine and
chlorpromazine) (Takashi Ozaki et al., 2021). In connection
with the search for differences in the fractal properties of the
EEG time series of different groups of patients, it can be
considered reasonable to analyze the data when taking the
same antipsychotic drug.

To record EEG time series, an encephalograph (Mitsar EEG
-202, Russia) with a sampling frequency of 250 Hz and the
WinEEG software were used. Recordings were performed
using an electroencephalographic cap (ElectroCap,
International Inc, United States) with 19 electrodes located on
the surface of the head in accordance with the
10–20 International System in the leads Fp1; Fp2; F7; F3; Fz;
F4; F8; T3; C3; Cz; C4, T4; T5; P3; Pz; P4; T6; O1; O2. Reference
electrodes were placed on the earlobes, and a ground electrode
was placed in the frontal region. We analyzed recordings from all
sites.

The EEG recordings were obtained under resting condition
with eyes closed. Then the data were digitally filtered using
0.5–50 Hz band pass filter. After repeated recordings the
segments of equal duration (120 seconds) were tested.

The segments with rough artifacts were eliminated after visual
inspection, artifacts due to blinking were eliminated using a
procedure for independent component analysis using EEGLAB
software (http://www.sccn.ucsd.edu/eeglab/). Artifact-free EEG
segments used for analysis consisted of 23,300 samples.

2.2 Estimation of EEG Segment
Multifractality
To estimate multifractal scaling properties of EEG time series the
wavelet transform modulus maxima (WTMM) method (Muzy
et al., 1993) and the multifractal detrended fluctuation analysis
(MFDFA) (Kantelhardt et al., 2002) were applied.

The continuous wavelet transform of a time series describing
the examined signal x(t) was determined as:

W(a, t0) � 1
a
∫
+∞

−∞
x(t)ψp(t − t0

a
)dt,

where a is the scale parameter, t0 is the space parameter, ψ((t-t0)/
a) is the wavelet function obtained from the basic wavelet ψ(t) by
scaling (stretching or compressing) and shifting along the time,
symbol * means the complex conjugate. So, the wavelet transform
of the signal consists in decomposing it into elementary space-
scale contributions associated to wavelets which are constructed
from one function by means of scaling and shifting.

The complex Morlet wavelet

ψ(t) � π−1/4eiω0te−t
2/2

was used as the basic wavelet, where the value ω0 = 2π gives the
simple relation f = 1/a between the scale a and the frequency f:

Information about possible multifractality of the analyzed
time series and its localization t0 reflects in the asymptotic
behavior of coefficients |W (a, t0)| at small a values and large f
values, respectively (Bacry et al., 1993). The faster the wavelet
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coefficients decrease at f→∞, the more regular the signal is
around the point t0. The small decrease of the wavelet
coefficients at a→0 in a neighborhood of the point t0 testifies
about non-regularity or singularity of the signal at the point.
Thus, the rate of the change of the modulus of the wavelet
coefficients enables to determine the presence or absence of
singularities of the signal.

The degree of singularity of the signal x(t) at the point t0 is
described by the Hölder exponent, h (t0), the largest exponent
such that the analyzed signal in a neighborhood of the point t0 can
be represented as the sum of the regular component (a
polynomial Pn(t) of order n < h (t0)) and the non-regular
component:

x(t) � Pn(t) + c|t − t0|h(t0),
where s is a positive constant (Bacry et al., 1993).

The value h (t0) is the measure of singularity of the signal at the
point t0 since the smaller h (t0) value, the more non-regular (more
singular) the signal.

In view of the fact that under the condition

∫
+∞

−∞
tmψ(t)dt � 0

wavelets are orthogonal to polynomials up the degree m and for
m ≥ n the expression

∫
+∞

−∞
Pn(t)ψ(t)dt � 0

is true, then the simple power dependence

W(a, t0) ~ ah(t0)

is observed at a→0 (Arneodo et al., 1995).
Hence, the Hölder exponent can be calculated by the rate of

the decrease of the wavelet coefficients by decreasing the scale a:

h(t0) ~ log10W(a, t0)
log10a

.

However, by increasing the scale a, the influence of
neighboring nonregularities can lead to inaccuracy and in
practice the Hölder exponents are found on the basis of
statistical description of local singularities by partition
functions (Muzy et al., 1993; Arneodo et al., 1995) constructed
with the WTMM method.

These partition functions are calculated by the sum of q
powers of the modulus maxima of the wavelet coefficients
along the each line at the scales smaller the given value a:

Z(q, a) � ∑
l ∈ L(a)

(supap ≤ a

∣∣∣W(ap, tl(ap))∣∣∣)q,
where tl (a*) determines the position of the maximum
corresponding to the line l at this scale.

By the fact that at a→0 the partition function shows the power
(Arneodo et al., 1995):

Z(q, a) ~ aτ(q),
the scaling exponent τ(q) can be extracted as the slope of a log-log
plot of the partition function versus the scale a:

τ(q) ~ log10Z(q, a)
log10a

.

Choosing different values of the power q one can obtain a
linear dependence τ(q) with a constant value of the Hölder
exponent

h(q) � dτ(q)
dq

� const

for monofractal signals or nonlinear dependence

τ(q) � qh(q) −D(h)
with large number of the Hölder exponents

h(q) � dτ(q)
dq

≠ const

describing local scaling of the wavelet coefficients for multifractal
signals.

The distribution of the local Hölder exponents (singularity
spectrum) is calculated from the Legendre transform (Bacry et al.,
1993):

D(h) � qh(q) − τ(q).
The algorithm for estimating signal multifractality using the

MFDFA method consists of the following sequence of
procedures.

First, for the original series of values {x(ti)}Ni�1 an integrated
sequence is calculated, consisting of the accumulated deviations
from the mean x

�
:

y(i) � ∑i
k�1

(xk − x̂), i � 1, ..., N.

This sequence is divided into a number m = N/n of non-
overlapping intervals of length n, the partition is repeated,
starting from the opposite end, resulting in 2m intervals.

For each of the intervals, the resulting sequence is
approximated by a straight line using the least squares
method, as a result of which the local trend vs(i) is determined
within the selected interval.

Next, the deviations of the calculated sequences relative to the
local trend are determined for each interval s = 1,. . ., m j s =
m+1,. . ., 2m:

F2(n, s) � 1
n
∑n
i�1
[y((s − 1)n + i) − vs(i)]2,

F2(n, s) � 1
n
∑n
i�1
[y(N − (s −m)n + i) − vs(i)]2,

and the fluctuation function Fq(n) q order is calculated:
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Fq(n) �
⎧⎨⎩ 1
2m

∑2m
s�1

[F2(n, s)]q/2⎫⎬⎭
1/q

.

The calculations are repeated for other values of the interval
length n from 5 to 100.

Due to the fact that with an increase in the length of the
interval n, the value of Fq(n), as a rule, increases according to a
power law:

Fq(n)~nh(q),
the Hölder exponent h(q) can be calculated as the slope of the
straight line that defines the dependence of log Fq(n) pt log n.

Using the WWTM and MFDFA algorithms one obtain the
width of the singularity spectrum

Δh � hmax − hmin;

where hmax � h |q=q min and hmin � h |q=q max are the maximal and
minimal values of the Holder exponent corresponding to
minimal and maximal fluctuation of the signal, respectively.

The width of the singularity spectrum, Δh, is a measure
determining the degree of multifractality of the signal since
the small Δh value indicates that the time series tends to be
monofractal and the large Δh value testifies the enhancement of
multifractality.

We note that when using the WWTM algorithm, the
appearance of a distorted singularity spectrum is possible due
to the distortion of the shape of the h(q) curve, as a rule, in the
vicinity of values of the moment q close to zero.

The work (Mukli et al., 2015) proposes the fan-like convergent
geometry of scaling functions yielding a limit value (termed
focus) for all moments at the largest scale. Building on this
behavior of scaling, the authors of (Mukli et al., 2015)
introduced the novel concept of focus-based multifractal
formalism. It relies on enforcing this universal behavior when
the moment-wise scaling exponents are assessed for the scaling
functions. Due to the fact that in the analysis of our data, in 99%
of cases, no distortion of the shape of the h(q) curve was observed,
this method was not used.

To examine the differences between the mean values of the
width of the singularity spectra obtained for different sites of one
subject, the non-parametric Kruskal–Wallis test was used. To
compare the mean widths of the singularity spectra obtained for
different subjects and to estimate statistical difference for both
groups of patients and for the control group, one-way ANOVA
followed by multiple comparison and pairwise hypothesis testing
using Tukey’s test (Hochberg and Tamhane, 1987) was applied. If
the statistics obtained by the Fisher F-criterion exceeded the
critical value Fcrit = F2,28 = 3.3, then the null hypothesis about the
equality of the means was rejected. Values 2 and 28 were chosen
based on the fact that the number of groups is k = 3, the number
of averaged values in each group is 10, the total number of
observations is N = 10*3 = 30, therefore k-1 = 2, N - k = 28.
Statistically significant differences between groups were
determined based on p < 0.017 values due to the fact that n =
k (k-1)/2 = 3 and 1–0.951/n = 0.017.

3 RESULTS

The typical EEG recordings for the healthy subject and the patient
with schizophrenia and the patient with depression are
represented in Figure 1 (A-C) for frontal O2 site.

Figure 2 illustrates examples of power spectra obtained for
these subjects using the IRASA method. The original (mixed)
power spectra are marked in blue and the separated fractal
components are marked in red (Figure 2 A−C). The averaged
mixed and fractal power spectra are represented in Figures 2D–F.
Despite the presence of similar frequency peaks in the delta and
alpha ranges in the gained oscillatory spectra (Figure 2 G—K),
the fractal components of the calculated spectra differ
(Figure 3 D—F), and the values of their scaling exponents β
calculated from these spectra also differ.

By analogy with (Racz et al., 2021), we estimated two the
spectral slopes calculated in the two frequency ranges separately,
yielding estimates of βl and β2 characterizing the slope of the
fractal power spectrum in the 1–13 Hz and 13–30 Hz regimes,
respectively. The largest value of spectral scaling exponents β2 =
3.5 corresponds to the fractal spectrum of a patient with
schizophrenia, and the smallest value β2 = 2.55 corresponds to
the fractal spectrum of a patient with depression. The smallest
value of β1 = 0.71 was obtained for the fractal spectrum of a
patient with depression.

In connection with the well-known relationship between the
spectral scaling exponent β and the Hurst exponent β = 2H + 1,
Hurst exponent values areH1 = 0.45 andH2 = 0.97 for the healthy
subject and H1 = 0.17 and H2 = 1.27 for the patient with
schizophrenia and H1 = -0.14 and H2 = 0.77 for the patient
with depression. This indicates that the correlated dynamics of
successive values of the analyzed EEG patterns is most likely
characteristic of the healthy subject; for patients with
schizophrenia and depression, the dynamics of successive
values of patterns is apparently not only correlated but also
anticorrelated. A detailed idea of correlations and
anticorrelations is provided by the results of multifractal analysis.

Figure 3 gives example of dependences h(q) of the Hölder
exponent on the power q value (Figure 3A) and the scaling
exponents τ(q) (Figure 3B) and the singularity spectra
(Figure 3C) for the subject from the control group obtained
using the WWTM method. Green curves correspond to the sites
over the frontal regions (Fp1, Fz, F3, F4) and red curves
correspond to the sites over the central (C3, C4), occipital
(O1 and O2), parietal (sites P3, P4 and Pz) and temporal
(sites T5 and T6) regions.

The shape of the represented curves indicates that for all the
analyzed sites the given EEG time series actually have multifractal
properties. Really, the curves τ(q) are nonlinear and the Hölder
exponents h(q) are not constant and they depend on the moment
q. This leads to the fact that the singularity spectra D(h), depicted
in Figure 3 C, display a single humped shape that characterizes
intermittent fluctuations corresponding to the Hölder exponent
values spanning the interval of width Δh exceeding 0.5. In other
words, these spectra are the sets of the multifractal dimensions of
the EEG time series.
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FIGURE 1 | The examples of EEG recordings for the healthy subject (A), the patient with schizophrenia (B) and the patient with depression (C) (O2 site).

FIGURE 2 | The examples of power spectra for the healthy subject (A,D,G), the patient with schizophrenia (B,E,I) and the patient with depression (C,F,K) (O2 site).
The original (mixed) power spectra are marked in blue, the fractal components - in red (A–C). The averaged mixed and fractal power spectra (D–F), the oscillatory
spectra (G–K).
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FIGURE 3 | The averaged dependences h(q) of the Hölder exponent on the power q value (A), the averaged scaling exponents τ(q) (B) and the averaged
singularity spectra (C) for the sites over the frontal regions (F3, Fz, F4) (green curves) and over the central (C3, C4), occipital (O1 and O2), parietal (P3, P4 and Pz) and
temporal (T5 and T6) regions (red curves) for the subject from the control group.

FIGURE 4 | The averaged dependences h(q) of the Hölder exponent on the power q value (A,C) and the averaged singularity spectra (B,D) for the patient with
schizophrenia (A,B) and for the patient with depression (C,D). The sites over the frontal and central regions (F3, Fz, F4, C3, C4) (green curves) and the sites over the
occipital (O1 and O2), parietal (P3, P4, Pz) and temporal (T5 and T6) regions (red curves).
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For the given EEG time series the singularity spectrum is in the
range of the Hölder exponents 0.34 < h < 1.05 for the sites over
the frontal regions and it is in the range 0.51 < h < 1.05 for the
other sites (Figure 3C). Therefore, for the healthy subject, the
oscillations in this example are characterized by long-term
correlations in most areas of the brain. The frontal network is
characterized by an expansion of the singularity spectrum and a
shift towards anticorrelated dynamics.

Figure 4 illustrates multifractal properties of the EEG time
series for the patient with schizophrenia (Figure 4A, B) and for
the patient with depression (Figure 4 C, D). This is confirmed by
the dependence of the Hölder exponents h(q) on the moment q
(Figure 4 A, C). Green color indicates the curves obtained for
sites over the frontal regions (F3, Fz, F4), the curves obtained over
the central (C3, C4), occipital (O1 and O2), parietal (P3, P4 and
Pz) and temporal (T5 and T6) regions are marked in red.

For the patient with schizophrenia the singularity spectrum is
in the range of the Hölder exponents 0.26 < h < 0.97 for the sites
over the frontal (F3, Fz, F4) and central (C3, C4) regions (green
curves, Figure 4B) and it is in the range -0.03 < h < 1.13 for the
other sites (red curves, Figure 4 B).

For the patient with depression for the sites over the frontal
and central regions the width of the singularity spectrum and its
location are similar to those obtained for the patient with
schizophrenia (green curves, Figure 4B), the spectrum is in
the range of the Hölder exponents 0.28 < h < 0.83 (green
curves, Figure 4D). For the other sites the singularity
spectrum is in the range 0.02 < h < 0.53 (red curves, Figure 4D).

Thus, differences in these spectra are not characteristic of the
frontal network (sites F3, Fz, F4) and the somatomotor network
(sites C3, C4 and Cz), but they are observed in sites associated
with the dorsal attention network (sites P3, P4 and Pz) and with
the visual network (sites T5, T6, O1. O2).

Both strong fluctuations (at q > 0) and weak fluctuations (at
q < 0) contribute to this shift to the correlated dynamics of the
time series over the frontal and somatomotor networks (green
curves Figure 4 A, C), while weak fluctuations dominate for the
singularity spectra D(h) in the sites over the dorsal attention and
visual networks because at q > 0 values of h are close to zero (red
curves Figure 4 A, C).

The location of the singularity spectrum in the range of Hölder
exponents 0. < h < 1.2 for the sites over all regions for the patient
with schizophrenia (Figure 4B) corresponds to both
anticorrelated (for h < 0.5) and correlated (for h > 0.5)
dynamics of consecutive values of the EEG time series (Eke
et al., 2002; Pavlov and Anishenko, 2007). The correlation of
successive signal values means that a larger signal value is more
likely to be followed by a larger one, and vice versa. Thus, for the
long–range correlations the oscillatory process is persistent, i.e.
maintaining the tendency, and with the low level of random
factors (Arneodo et al., 1995).

Figure 4D shows that the degree of long-term correlations
decreases and the spectrum of the singularity turns out to be in
the range of Hölder exponents 0. <h < 0.5 (red curves Figure 4D)
for the patient with depression at the transition from the frontal
and somatomotor networks to the dorsal attention and the visual
networks. It means that long-term correlations of successive

values of the EEG time series almost disappear and the
singularity spectra shift to the region of anticorrelated values.

Thus, presented in Figure 3 and Figure 4 data show
differences in the spectra of singularities of the EEG time
series for subjects from the various analyzed groups.

We note that the power spectra of the control group
contained mainly the alpha range in all areas of the brain
except for the frontal zone, in which delta range fluctuations
were also present. Alpha and delta rhythms were typical for all
areas of the brain for the group with schizophrenia, while for
the somatomotor and frontal networks the amplitude of the
delta rhythm was higher than the alpha rhythm and
fluctuations were observed in the beta range. For the
depressed group, alpha and delta rhythms were also present
in the all sites, while for the visual network the alpha rhythm
dominated.

Figure 5 illustrates the similarity of the results of multifractal
analysis obtained by the WTMM and MFDFA methods. Despite
the differences in the width of the multifractality spectrum for
each subject (the healthy subject, Figure 5A−Figure 5C and the
patient with schizophrenia, Figure 5D—Figure 5F), the region of
the spectrum is preserved.

FIGURE 5 | Results of one-way analysis of variance for comparing the
average values of the width of the singularity spectrum, Δh, in three groups of
subjects for the site C4 (A) and the site O2 (B).
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Table 1 illustrates the variability of the averaged (over
subjects) maximal and minimal values of the Holder exponent
(hmin and hmax) and the width of the singularity spectrum, Δh,
gained by the WTMM and MFDFA methods for O1 site for
different groups, and the values of the Fisher test (F) and the
significance level of the test (p), calculated on the basis of one-way
analysis of variance. The data obtained by the different methods
for the same groups differ slightly.

The main feature of the data obtained is that the group of
patients with schizophrenia is characterized by a high degree of
multifractality of EEG time series (Δh = 0.91 ± 0.07, MFDFA and
Δh = 0.86 ± 0.08, WTMM, respectively) and the presence of both
anticorrelated and correlated dynamics of consecutive values of
EEG ([hmin; hmax ] = [0.04–0.95] by the MFDFA method and
[hmin; hmax ] = [-0.05-0.81] by the WTMM method).

For the group of patients with depression, the degree of
multifractality is lower (Δh = 0.58 ± 0.06, MFDFA and Δh =
0.48 ± 0.05, WTMM, respectively) than for the group of patients
with schizophrenia, and there is a tendency for the singularity
spectrum to shift towards anticorrelated values ([hmin; hmax ] =
[0.11–0.69] and [hmin; hmax ] = [0.11–0.59], by MFDFA and
WTMM, respectively).

For the control group, degree of multifractality (Δh = 0.47 ±
0.05 and Δh = 0.43 ± 0.04, by MFDFA and WTMM, respectively)

differs from the degree of multifractality of the EEG time series in
individuals with the considered pathologies.

Thus for the site O1 over the frontal network the main
differences between the multifractal properties of the healthy
and pathology brain are that the EEG time series is characterized
by exclusively long-term correlations for the control group,
correlated and anticorrelated dynamics for the group with
schizophrenia, and almost anticorrelated dynamics for the
group with depression.

One-way analysis of variance revealed statistically significant
differences in the averaged maximal and minimal values of the
Holder exponent (hmin and hmax) and the width of the singularity
spectrum, Δh, in the three groups examined. The statistics
obtained by the Fisher F-criterion exceeded the critical value
Fcrit = F2,28 = 3.3 (Table 1). Significance level of the Fisher test (p),
i.e. the maximum probability of falsely rejecting the null
hypothesis of equal means, when it is true, is close to zero
(Table 1).

Table 2 gives information about the averaged (over subjects)
maximal and minimal values of the Holder exponent (hmin and
hmax) in various sites for different groups.

The minimum values of the Holder exponent hmin are close to
each other for the group with schizophrenia and the group with
depression for the sites Fz, F3, C3, C4, but the maximal values of
the Holder exponent hmax differ by an upward shift for the group
with schizophrenia. At the same time, group differences in the
[hmin, hmax] intervals are most typical for P3, P4, T5, T6, and
O2 sites. Thus, sites over the dorsal attention and visual networks
are characterized exclusively by long-term correlations of
consecutive EEG values for the control group, predominantly
anticorrelated dynamics for the depression group, and both
correlated and anticorrelated dynamics for the schizophrenia
group.

One-way analysis of variance proved statistically significant
differences in the width of the singularity spectrum, Δh, in all sites
of the three groups examined. The values of the Fisher test (F) and
the significance level of the test (p), calculated on the basis of one-
way analysis of variance are given for the multiple comparison for
the width of the singularity spectra. The statistics obtained by the
Fisher F-criterion exceeded the critical value Fcrit = F2,28 = 3.3 for
the all sites. (Table 2).

TABLE 1 | Comparison of the averaged (over subjects) maximal and minimal values of the Holder exponent (hmin and hmax) and the width of the singularity spectrum, Δh, for
different groups, the values of the Fisher test (F) and the significance level of the test (p), calculated on the basis of one-way analysis of variance (O1 site).

Parameters control group group with
schizophrenia

group with
depression

F p

the MFDFA method

Δh 0.47 ± 0.05 0.91 ± 0.07 0.58 ± 0.06 276 7*10−19

hmin 0.56 ± 0.02 0.04 ± 0.01 0.11 ± 0.03 332 8*10−21

hmax 1.03 ± 0.05 0.95 ± 0.07 0.69 ± 0.06 319 3*10−20

the WTMM method

Δh 0.43 ± 0.04 0.86 ± 0.08 0.48 ± 0.05 346 5*10−21

hmin 0.52 ± 0.05 -0.05 ± 0.02 0.11 ± 0.02 312 7*10−20

hmax 0.95 ± 0.05 0.81 ± 0.08 0.59 ± 0.06 375 4*10−22

TABLE 2 | Comparison of the averaged (over subjects) maximal and minimal
values of the Holder exponent (hmin and hmax) in various sites for different
groups. The values of the Fisher test (F) and the significance level of the test (p),
calculated on the basis of one-way analysis of variance are given for the multiple
comparison for the width of the singularity spectra.

Sites control group group with
schizophrenia

group with
depression

F p

Fz 0.35–1.15 0.21–0.91 0.31–0.71 19 7*10−6

F3 0.41–0.98 0.25–0.95 0.29–0.78 25 2*10−7

C3 0.44–1.15 0.31–1.17 0.25–0.61 21 5*10−6

C4 0.47–0.99 0.35–1.09 0.21–0.70 18 3*10−6

P3 0.53–1.08 0.03–1.12 0.07–0.55 356 6*10−23

P4 0.57–1.15 0.09–1.25 0.15–0.62 343 9*10−22

T5 0.59–1.11 0.01–1.05 0.21–0.73 327 2*10−22

T6 0.56–0.91 0.06–0.98 0.12–0.69 314 7*10−22

O2 0.51–0.95 0.04–0.95 0.13–0.75 308 2*10−22
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Graphical results of one-way analysis of variance for
comparing the average values of the width of the singularity
spectrum, Δh, in three groups of subjects are shown in Figure 5
(for the site C4 (Figure 5A) and the site O2 (Figure 5B). Large
differences in the central lines (medians of sample values of the
coefficient Δh), corresponding to large values of the Fisher
statistics F, indicate significant differences in group means.

Pairwise comparisons of the mean values of the coefficient Δh
obtained on the basis of multiple comparison followed by testing
of paired hypotheses using the Tukey test show that for the site
O2 the mean Δh values for the group with schizophrenia and
control group (Δh = 0.91 ± 0.08 and Δh = 0.44 ± 0.04,
respectively) differ at a significance level of p < 0.0007, for the
group with depression and control group differ at the p <
0.0009 significance level, for the group with schizophrenia and
the group with depression they differ at the p < 0.008 significance
level.

For the site C4 these differences also exist. The smallest
differences are observed for this site between the mean Δh
values for the group with schizophrenia and control group
differ at the p < 0.011 significance level.

Thus, sites over the dorsal attention and visual networks are
characterized exclusively by long-term correlations of consecutive
EEG values for the control group, predominantly anticorrelated
dynamics for the depression group, and both correlated and
anticorrelated dynamics for the schizophrenia group.

Thus, the results obtained in this work, indicate, firstly, a high
degree of stability of the multifractality of various EEG time series
for a certain test group, and, secondly, they indicate the correlated
dynamics in the analyzed sites over the dorsal attention and visual
networks of the control group and predominantly anticorrelated
dynamics, i.e. a significant decrease or even complete
disappearance of the long–range correlations in the EEG time
series for the group with depression. The EEG time series of the
patients with schizophrenia are characterized by both correlated
and anticorrelated dynamics of consecutive EEG values with
increasing degree of multifractality in the analyzed sites over
the dorsal attention and visual networks.

4 DISCUSSION AND CONCLUSSIONS

The obtained results confirm the stability of the multifractal
properties of various EEG time series, demonstrating the
absence of significant differences in the spectra of the
singularity coutrj lahepk [ruVV9 for different electrode
sites over the dorsal attention and visual networks.

Our results agree with the work (Popivanov et al., 2006), which
shows that under different conditions for performing the visual-
motor tracking task by healthy subjects (both imaginary and real
visual-motor tracking), multifractal properties of the filtered EEG
components are very stable for the brain activity of large brain
areas, i.e. for different electrode sites. In this case, external events
(task conditions) have a little effect on the results of the analysis of
multifractal properties. In other words, multifractality of the
healthy brain is statistically stable as well as stable its
neurodynamics (Dik and Nozdrachev, 2019) and the

multifractal dynamics is predominantly an endogenous
property of such a self-organizing system as the human brain,
which ensures its purposeful behavior (Popivanov et al., 2006).

A comparative analysis of the multifractality degree in EEG
time series registered in the group of healthy subjects and the two
groups of patients with mental disorders showed statistically
significant differences in the singularity spectra based on the
evaluation of the multifractal scaling properties of these
components.

The main feature of the analyzed EEG time series of the
control group is the presence of exclusively long-term
correlations of consecutive values of these series. A slight shift
of the singularity spectrum towards anticorrelation values is
observed only in the sites over the frontal and somatomotor
networks.

In contrast, the EEG time series of patients with paranoid
schizophrenia have not only the long-term correlations but also
the anticorrelated dynamics of consecutive values of the EEG. At
the same time, a large degree of anticorrelated dynamics
associated with a decrease in the minimum value of the
Hölder exponent is characteristic of the sites over the dorsal
attention and visual networks.

The EEG time series of patients with depression have
practically the anticorrelated dynamics of consecutive values.
The degree of anticorrelations increases with the transition
from the frontal and somatomotor networks to the dorsal
attention and the visual networks.

Thus, it can be concluded that mental disorders are correlated
with impaired correlated dynamics. At the same time, the severity
of brain disorders correlates with an increase in the degree of EEG
multifractality.

The presence of anticorrelations of consecutive EEG values in
patients with depression found in our work is consistent with the
work (Bachmann et al., 2014), in which, using the method of
detrended fluctuation analysis, a shift of the Hurst exponent was
shown in the direction corresponding to a decrease in long-range
correlations and the emergence of anti-correlation EEG dynamics
in group of depressive subjects compared with the control group.

A number of studies have investigated the multifractal
characteristics of filtered EEG components for a healthy brain
(Popivanov et al., 2006) and fractal characteristics in the case of
mental disorders (Wang et al., 2004; Raghavendra et al., 2009).
The work (Wang et al., 2004) showed a decrease in the degree of
correlation of successive values of the alpha and beta components
of the EEG in patients with schizophrenia. However, firstly, the
authors of (Wang et al., 2004) applied the method of estimating
the fractality associated with the unique Hölder exponent and not
with the singularity spectrum, i.e. set of the Holder exponents.
Second, narrow-band data filtering can break correlations
between consecutive values of time series. For this reason,
such filtering was not carried out in the present work.
Although the predominance of a certain rhythm in the EEG
(for example, alpha or theta) may affect the fractal characteristics
due to the greatest contribution of these components (Popivanov
et al., 2006).

It was shown in (Raghavendra et al., 2009) that the fractal
dimension of the EEG of neuroleptic-naïve, recent-onset
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schizophrenia subjects with positive symptoms of schizophrenia
(delusions and hallucinations) was similar or higher than the
fractal dimension of the EEG of the control group; this increase in
fractal dimension value was absent in patients with negative
symptoms of schizophrenia (apathy, lack of will). These data
are consistent with the results of our work (greater degree of
multifractality in patients with positive symptoms of
schizophrenia compared with the control group). This
agreement is also with the work (Wang et al., 2004), which
also shows a significant increase of the multifractal singularity
spectra in the EEG of the schizophrenic patients.

In (Alamian et al., 2022), using the wavelet leaders-based
multifractal analysis (Wendt and Abry, 2007), an increase in
the multifractality of the neuromagnetic (MEG) signal was shown
in patients with schizophrenia in the temporal, parietal, and
occipital areas compared to healthy controls. In (Racz et al.,
2021), a greater degree of multifractality was found in patients
with schizophrenia compared to the control group values in delta
band (0.5–4 Hz) neural activity.

Due to the fact that scale-free fluctuations are considered the
result of an underlying self-organized critical state of the brain
that gives rise for its ability to perform large-scale reorganizations
quickly in response to external/internal stimuli (Mukli et al.,
2018), an increased degree multifractality in patients with
schizophrenia may be associated with distorted and
disorganized EEG patterns (Racz et al., 2020).

It should be noted that the results of the study of fractal
dimension in patients with schizophrenia may show differences
depending on the time of illness, symptoms and medication. The
diversity of schizophrenia symptoms and drug treatment options,
and the fact that sometimes certain combinations of drugs that
help manage positive symptoms can exacerbate negative
symptoms (Goff et al., 1996), make it difficult to compare
results from different studies and affect the complexity of
brain signals (Lee et al., 2021). In addition, differences may be
due to differences in the age of patients. Indeed, it has been often
reported that the properties of scale-free dynamics change with
age (Churchill et al., 2016).

From a practical standpoint, multifractal dynamics often
emerge from intermittent periods of larger variance due to
large scale reorganizations of functional networks (Ihlen and
Vereijken, 2010). An increase in the width of the spectrum and,
accordingly, the degree of multifractality may be associated with
increased variability in neuronal activity, which underlies
excessive switching between neuronal states in patients with
mental disorders (Slezin et al., 2007). This increase may reflect
more random connections between neuronal activations, which
may lead to cognitive impairment (Nikulin et al., 2012). The use

of antipsychotics appears to reduce abnormally high EEG
disorganization in patients with mental disorders (Takahashi
et al., 2009).

The decrease in the degree of multifractality and finding the
spectrum of multifractality in the region of anticorrelated values,
which is observed in the group of patients with depression, can be
interpreted as a decrease in the variability of neuronal activity
associated with a decrease in the severity of mental disorders.

To sum up, further research of multifractal nature of
psychiatric diseases promises to reveal new exact methods of
diagnosing while it also helps to bridge the gap in the
understanding of the phenomenal and neuronal nature of
mental deficits.
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