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ABSTRACT: Surfactant flooding is one of the most promising chemical
enhanced oil recovery (CEOR) methods to produce residual oil in reservoirs.
Recently, nanoparticles (NPs) have attracted extensive attention because of their
significant characteristics and capabilities to improve oil recovery. The aim of this
study is to scrutinize the synergistic effect of sodium dodecyl sulfate (SDS) as an
anionic surfactant and aluminum oxide (Al2O3) on the efficiency of surfactant
flooding. Extensive series of interfacial tension and surfactant adsorption
measurements were conducted at different concentrations of SDS and Al2O3
NPs. Furthermore, different surfactant adsorption isotherm models were fitted to
the experimental data, and constants for each model were calculated. Additionally,
oil displacement tests were performed at 25 °C and atmospheric pressure to
indicate the suitability of SDS−Al2O3 for CEOR. Analysis of this study shows that
the interfacial tension (IFT) reduction between aqueous phase and crude oil is
enhanced considerably by 76%, and the adsorption density of SDS onto sandstone rock is decreased remarkably from 1.76 to 0.49
mg/g in the presence of these NPs. Although the effectiveness of NPs gradually increases with the increase of their concentration,
there is an optimal value of Al2O3 NP concentration. Moreover, oil recovery was increased from 48.96 to 64.14% by adding 0.3 wt %
NPs to the surfactant solution, which demonstrates the competency of SDS−Al2O3 nanofluids for CEOR.

1. INTRODUCTION

Oil production mechanisms are generally divided into three
phases: primary, secondary, and tertiary. Primary and secondary
recovery techniques can produce only 30% of the original oil in
place (OOIP).1,2 Therefore, tertiary recovery or enhanced oil
recovery (EOR) approaches are applied to recover the
remaining oil in reservoirs, which cannot be performed by
conventional methods. In this regard, chemical EOR (CEOR)
has been considered one of the most promising EOR methods
because of its higher performance and technical feasibility
compared to other EOR techniques such as thermal and gas
flooding.3 Among the used chemicals in CEOR, surfactants,
polymers, alkalis, and/or their synergy were found to be
advantageous to produce residual oil in reservoir rocks.2,4 The
mechanism of each chemical type to enhance oil recovery is
different; for example, polymers on increasing the viscosity of
the displacing fluid reduce the mobility ratio,5 and surfactant by
reducing interfacial tension (IFT) and alteration wettability
toward the water-wet state6 enhance macroscopic sweep and
microscopic displacement efficiency of crude oil.7

Surfactant flooding is reviewed as the most efficient method
due to its great ability to decrease the oil/water IFT from the
high initial value (20−30 mN/m) to an ultralow value (10−3

mN/m) and to alter the wettability of the reservoir rock toward

the water-wet medium, which leads to a significant increase in oil
recovery.8 Moreover, the presence of surfactant can boost the
formation of oil/water emulsion and improve interfacial
rheological properties.9 However, the fundamental issue during
surfactant flooding is the loss of surfactant in the reservoir rock,
which diminishes the surfactant flooding performance and its
economic viability.10 Reducing surfactant adsorption onto
porous media is one of the most critical factors to evaluate the
performance of surfactant flooding.11

To mitigate the surfactant adsorption density on reservoir
rock, several studies have been conducted employing various
additives such as alkalis and polymers in the last few years.12,13

Generally, alkalis by creating negatively charged surfaces on the
reservoir rock (mainly sandstone reservoirs), which causes a
strong repulsive force between the anionic surfactant and porous
media, and increasing the pH of the solution reduce surfactant
adsorption.14 However, the reaction of alkalis with reservoir rock
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results in the formation of scaling ions, which leads to pore
plugging and reduction in reservoir permeability. Furthermore,
although polymers have been reported as sacrificial agents to
decrease the surfactant adsorption,12 high costs of polymers and
their instability at high temperature and high salinity15 impair
their effectiveness in this matter. Therefore, the significant loss
of surfactant in reservoir rock is still a principal problem that
needs to be well addressed.
In recent years, nanoparticles (NPs) have been extensively

employed in different EOR methods, such as CEOR, to
investigate their potential for enhancing oil recovery.16,17 In
this regard, Rezaei et al.18 observed that the IFT of SDS
solution−oil was decreased by 77% (from 32.5 to 7.5 mN/m) in
the presence of 0.05 wt % ZnO NPs. Similarly, Mohajeri et al.
pointed out19 that 100 ppm of ZrO2 NPs can reduce a cationic
surfactant−oil IFT from 18.4 to 5.4 mN/m. In another study,
Wu et al.20 demonstrated that the adsorption of an anionic
surfactant on sand grains was greatly restrained by adding 5000
ppm SiO2 NPs. In addition, Zargartalebi et al.21 showed that
hydrophobic silica NPs are more effective than hydrophilic silica
NPs in reducing surfactant adsorption. Zhong et al.22

investigated nonionic surfactant losses on Bakken and Berea
rocks with and without SiO2 NPs and observed a significant
relationship between NP efficacy and the nature of adsorbents.
Asl et al.1 reported a 12.7% increase in oil recovery due to the
synergistic effect between the amino acid surfactant and SiO2
NPs. According to an investigation by Gbadamosi et al.,23

aluminum oxide (Al2O3) polymeric nanofluid showed a better
performance in viscosity increment, wettability alteration, and
consequently oil recovery as compared to SiO2 polymeric
nanofluid. This is due to the stronger adsorption between Al3+ of
Al2O3 and COO− of polymer. This is supported by Bashir
Abdullahi et al.24 who analyzed the potential of SiO2, TiO2, and
Al2O3 NPs for EOR and obtained the highest oil displacement
efficiency in the presence of Al2O3 NPs. To the best of our
knowledge, no report has been found to date regarding the
efficiency of surfactant−Al2O3 NPs as a chemical agent for
CEOR.
This study therefore aims to experimentally investigate the

capability of Al2O3 NPs to improve surfactant flooding
performance for CEOR. For this purpose, Al2O3 NPs were
dispersed within SDS surfactant at various concentrations of
surfactant and NPs. The effect of Al2O3 NPs on surfactant
properties including IFT and adsorption behavior onto
sandstone rock was evaluated, and, in this regard, the main
mechanisms of better efficiency were discussed. Furthermore, oil
displacement experiments were conducted to determine the
capability and suitability of SDS−Al2O3 nanofluid for CEOR.

2. EXPERIMENTAL SECTION
2.1. Materials. An anionic surfactant sodium dodecyl sulfate

(SDS, purity 90%, mol wt 288.38 g/mol) bought from Merck
was used in this work. Aluminum oxide nanoparticles (Al2O3,
with 99% purity, size of 20−30 nm, specific surface area of 80
m2/g) purchased from Skyspring Nanomaterials, Inc., Houston,
TX., were used in this study to fabricate the nanofluid. Sodium
chloride (NaCl) bought from Merk Group was used as an
electrolyte to prepare synthetic reservoir brine. Crude oil from
one of the Iranian oil fields was used as the hydrocarbon phase of
the porous medium. The properties of the used oil in the
experiment are shown in Table 1.
2.2. Preparation of Surfactant Solution. Initially, differ-

ent amounts of SDS surfactant (e.g., 0.1, 0.15, 0.2, 0.25, 0.3, 0.4

wt %) were added to 100 mL of deionized water to obtain
various concentrations of surfactant solution. Following this, a
magnetic stirrer was applied to stir the solution, and stirring was
stopped once a homogenous solution was obtained. The
surfactant solutions were used in IFT, adsorption experiments,
and the oil displacement efficiency test. The IFT method was
employed to determine the CMC value of SDS. As presented in
Figure 1, IFT is reduced by increasing the concentration of SDS
until the inflection point of the curve; thus, 0.24 wt % SDS was
determined as the CMC point, which is approximately
consistent with the literature.25 The interface of two fluids at
the CMC point is fully covered by surfactant molecules, and
there is no extra space for molecules; therefore, the addition of
surfactant does not cause any remarkable reduction in IFT.

2.3. Preparation of the SDS−Al2O3 Nanofluid. To
construct various nanofluids, Al2O3 NPs were first added to
100 mL of deionized water with different concentrations of NPs
(e.g., 0.1, 0.2, 0.3, 0.4 wt %). The fluids were then shaken with an
ultrasonic bath for 1 h to obtain a homogenized and stable
suspension. Next, SDS powder at desired concentrations (e.g.,
0.1, 0.15, 0.2, 0.24 wt %) were added to Al2O3 dispersion. The
nanofluids were placed in a container and sealed to avoid contact
with chemicals during the preparation process.

2.4. IFT Measurement. IFT between the oil phase and
aqueous solutions was measured using an Easy Dyne Kruss
Tensiometer K-20. All measurements were conducted at
ambient temperature (25 °C) and atmospheric pressure
employing the Du Nouy Ring method and the Harkins and
Jordan ring correction method.

2.5. Static Adsorption Test. In this study, a batch
technique was used to measure surfactant and surfactant
nanofluid adsorption on sand grains.21,26 To do so, first and
foremost, the conductivity of the solutions was measured to
assess appropriate calibration curves for each series of aqueous
solutions.27 Subsequently, surfactant and the surfactant nano-
fluid were placed in contact with the prepared sand particles with
a ratio of 1:15 of sand grains and surfactant solution or
nanofluid22 (2 g of sand grains was mixed with 30mL of fluid) in
a horizontal vessel for 20 h (determined by an aging time
optimization test) to ensure full interaction. Then, the surfactant
solution and nanofluid are separated from sand samples by
centrifugation at 2500 rpm for 15 min. After centrifugation, the
concentration of fluids in the supernatant was measured
employing appropriate calibration curves. The reason for using
the conductivity method is that the concentration of solutions is
independent of NP concentration.21 By knowing the initial
surfactant concentration and the equilibrium concentration, the
adsorption density of surfactant can be calculated using eq 122

q
V C

m

( C )
e

i eq=
−

(1)

where qe represents the adsorption density of surfactant (mg/g),
V is the volume of the surfactant solution (L), Ci is the initial
concentration of the solution (mg/L), Ceq is the surfactant
concentration after being equilibrated with sand grains (mg/L),
and m is the total mass of sandstone.

2.6. Oil Displacement Test.The influence of Al2O3 NPs on
the efficiency of surfactant flooding for CEOR was studied by

Table 1. Properties of Used Crude Oil in the Experiment

viscosity (cp) density (g/cc) °API at 25 °C

26 0.885 29
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conducting sandpack flooding experiments. Sandpacks were
loaded with sand grains in the range of 50−100 μm to represent
a homogeneous porousmedium. Table 2 shows the properties of

sandpacks for each flooding test. To prepare the sandpacks for
the oil displacement test, sandpacks were vacuumed to remove

air trapped in porous media. Following this, sandpacks were
saturated with prepared synthetic brine (3 wt %), and the crude
oil was then injected to replace formation water until there was
no water from the sandpack (Swc). Formation water (3 wt %
brine) was flooded at a constant flow rate of 0.25 cc/min until no
more oil was observed in the effluent to evaluate the efficiency of
water flooding. Moreover, SDS solution and SDS−Al2O3
nanofluid flooding were injected into sandpacks, which was
continued until 2 pore volume (PV) was injected. All tests were
conducted at ambient temperature (25 °C) and atmospheric
pressure (Figure 2).

3. RESULTS AND DISCUSSION

3.1. Effect of Al2O3 NPs on IFT. As mentioned earlier, one
of the CEOR functions is to decrease IFT between aqueous

Figure 1. IFT value versus SDS concentration to determine the CMC point.

Table 2. Characteristics of Sandpacks

case

dimension
(cm)

porosity
(%)

permeability
(mD)length diameter

water flooding 32.5 2.54 25.7 323
SDS solution flooding 31 2.51 24.2 301
SDS−Al2O3 nanofluid
flooding

32 2.56 23.4 292

Figure 2. Schematic of the apparatus for the oil displacement test.
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phase and oil phase. The capillary number is a dimensionless
quantity that represents the ratio between viscous forces and
capillary forces (commonly around 10−7 for water flooding). A

higher value of capillary number (10−4−10−2) means a lesser
amount of residual oil saturation in the reservoir.2 To achieve
such a high number, the IFT needs to be decreased to an

Figure 3. IFT between the SDS solution and crude oil at different concentrations of Al2O3 NPs.

Figure 4. Calibration curve for SDS concentration using the conductivity method.

Figure 5. Effect of aging time on surfactant adsorption.
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ultralow value (10−3 mN/m).28 Hence, IFT between SDS and
crude oil in the absence and presence of Al2O3 NPs was
measured to study the influence of NPs for further reduction in
IFT. IFT reduction generally occurs when SDS and NPs are
adsorbed at the fluid−fluid interface.29

Figure 3 illustrates IFT between the SDS solution and oil
phase in the presence of Al2O3 NPs at different concentrations.
As can be seen, the IFT decreased sharply on augmenting the
concentration of NPs dispersed in SDS solutions, in which 0.3
wt % NPs reduced IFT by 76% when used with 0.1 wt % SDS.
This significant reduction of IFT in the presence of NPs is
mainly attributed to the ability of NPs to carry surfactant
molecules by Brownian motion to the interfacial area.30,31 As a
matter of fact, the existence of extra surfactant molecules at the
liquid−liquid interface diminishes the IFT value. According to
the presented result in Figure 3, no IFT improvement was
observed beyond 0.3 wt % Al2O3 NPs; a similar trend at all
concentrations of SDS was observed. This can be explained by

the formation of NP aggregates at concentrations higher than
0.3 wt %, which disturbs the functioning of NPs as the carrier of
surfactant molecules. Additionally, the negligible influence of
NPs on IFT reduction was experienced at the CMC point. This
is due to the saturation of the oil/water interface with surfactant
molecules, and the existence of extra molecules is impossible at
this point.16 In general, the interaction of NPs and surfactants
can lessen the IFT in the favor of CEOR.

3.2. Effect of Al2O3 NPs on Surfactant Adsorption. As
mentioned earlier, the adsorption of surfactant onto reservoir
rock is one of the most important parameters to evaluate the
efficiency of surfactant flooding. Surfactant loss means a
remarkable reduction of its concentration in chemical solutions
and therefore an increase in oil/water IFT. As a result, the
flooding process fails to meet its technical and economic
objectives.31,32 Generally, electrostatic interactions and van der
Waals interactions between rock surfaces and surfactants are
considered the main mechanisms of adsorption.28,33

Figure 6. SDS adsorption on sandstone versus SDS concentration.

Table 3. Constants and Error Parameter of Two-Parameter and Three-Parameter Adsorption Isotherm Modelsa

isotherm model nonlinear form linear form parameters

Langmuir q
q K C

K Ce 1
o L e

L e
= +

C
q K q

C
q

1e

e L o

e

o
= + qo = 6.578

KL = 0.0004
R2 = 0.9576

Freundlich qe = bCe
1/n ln qe = ln b + 1/n ln Ce n = 1.617

b = 0.026
R2 = 0.9772

Temkin q K Cln( )RT
be m e= q C Kln lnRT

b
RT
be e m= + b = 1603.16

Km = 0.0034
R2 = 0.9782

Elovich K C e
q

q
q q

e e
( / )e

o
e o= − K qln ln

q

C

q

qe o
e

e

e

o
= − qo = 4.273

Ke = 0.0006
R2 = 0.8659

Redlich−Peterson q K C

Ce 1
r e

e
=

α+ β ( ) C Kln ln lnC
Q e r

e

e
β= − β = 0.3816

Kr = 3.626
α = 137.48
R2 = 0.9423

aqe, qo, and Ce are the equilibrium adsorption (mg/g), the maximum amount of surfactant adsorption (mg/g), and the adsorbate’s equilibrium
concentration (mg/L), respectively.
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To measure the surfactant concentration after interaction
with reservoir rock, the conductivity technique was used since
solution conductivity is independent of NP concentration.21

The conductance values were plotted against various surfactant
solutions from 500 to 5000 ppm. Figure 4 shows the calibration
curve of SDS concentration, which was used to analyze the
adsorption behavior of surfactant onto sandstone rock in this
study.
Prior to the static adsorption test, the effect of adsorption time

on adsorption density was investigated to ensure that
equilibrium was reached during experiments. The adsorption
density of different concentrations of SDS was plotted against
adsorption time in the range from 5 to 25 h. Figure 5
demonstrates the result of SDS adsorption against time. As can

be seen, in the early stage, SDS adsorption increased gradually
until 15 h of aging time. Following this, there was a consistent
change for 10 h, which means the adsorption of SDS onto sand
grains reached equilibrium after 15 h. Accordingly, the
experimented fluids (SDS solution and nanofluid) were placed
in contact with sand grains for 20 h to ensure that equilibrium
was reached during static adsorption tests. Figure 6 shows SDS
adsorption density on sandstone against SDS concentration.
Table 3 and Figure 7 present the analysis of experimental

adsorption data and calculated parameters and R2 values for
various two-parameter and three-parameter isotherm models,
respectively. It is clear that the Temkin isotherm, which assumes
a multilayer adsorption process, is a more appropriate model to
fit experimental adsorption data compared to other models as

Figure 7. Langmuir, Freundlich, Temkin, Elovich (two-parameter), and Redlich−Peterson (three-parameter) adsorption isotherm fitting curves.
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the R2 value is higher than those of other isotherms. Although
the Temkin isotherm is the best-fitted model, according to R2

values, Langmuir and Freundlich models are desirable as well. A
practical parameter associated with the Langmuir model is the
separation factor (RL), which determines the favorability of the
adsorption process. RL can be calculated using eq 2

R
K C
1

1L
L o

=
+ (2)

whereKL is the Langmuir constant andCo represents the highest
initial concentration of surfactant.
Generally, LR < 1 implies favorable, LR > 1 shows unfavorable,

and LR∼ 0 and LR = 1 indicate irreversible and linear adsorption
processes, respectively. The values of RL in this work are
between 0.454 and 0.714, which shows that the adsorption of
surfactant on sand grains is favorable. Additionally, a value of 0 <
1/n > 1 in the Freundlich model shows the adsorption process is
favorable. The value of 1/n in this study is 0.618 (consistent with
findings of the RL value in the Langmuir model).
The influence of NPs on the adsorption of varied SDS

solutions on sandstone rock at varied concentrations was
investigated. At the same concentration of the SDS solution, the

adsorption density decreases considerably in the presence of
NPs as presented in Figure 8. The adsorption of 0.1 wt % SDS
was 1.76 mg/g in the absence of NPs, which decreased to 0.49
mg/g (72%) on adding 0.3 wt % Al2O3 NPs to the solution.
Besides, the adsorption value was reduced from 3.25 to 2.2 mg/g
(32.3%) in the presence of 0.3 wt % NPs at the CMC point. It
was concluded that surfactant molecules prefer to be adsorbed
on NPs instead of sand grains; in addition, the retained NPs may
shield the sand wall, thus resulting in a significant reduction in
surfactant adsorption.28,34

It is also important to mention that the effect of Al2O3 NPs in
restraining the adsorption of SDS is negligible beyond 0.3 wt %,
which can also be attributed to the formation of aggregates at
concentrations higher than 0.3 wt %.20 According to the IFT and
adsorption test results, 0.3 wt % aluminum oxide NPs was
selected as the optimum concentration of NPs in SDS solution.
Overall, the adsorption of SDS on sandstone rock is largely
preventable by employing NPs, which can increase the
economic feasibility of surfactant flooding.

3.3. Flooding Test. Three flooding tests were conducted to
evaluate the effectiveness of SDS−Al2O3 for CEOR and to
compare it with SDS and water flooding. In this respect, the oil

Figure 8. Adsorption density of SDS versus Al2O3 concentration.

Figure 9. Oil recovery percentage versus pore volume injected for water flooding, surfactant flooding, and surfactant nanofluid flooding.
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recovery percentage versus the volume of injected fluid (water,
SDS solution, SDS−Al2O3 nanofluid) is illustrated in Figure 9.
Asmentioned in the flooding test section, parameters such as the
injected volume of fluid and the flow rate were the same during
all flooding processes, and 2 PV of fluid was injected into the
sandpacks. As presented in Figure 9, the highest oil recovery for
brine (3 wt %) flooding was obtained at 1.5 PV, and no increase
beyond 28.7% of OOIP was observed after this amount of fluid
was injected into the sandpack. As the next step, 0.24 wt % SDS
solution and SDS−Al2O3 nanofluids at an optimum concen-
tration were flooded into sandpacks, and the results of these
processes are shown in Figure 9. Greater oil recovery was
observed for Al2O3 dispersion in SDS solution in comparison to
the other flooding tests; the SDS solution in the presence of NPs
caused 64.14% oil recovery, while this figure for SDS solution
was 48.96%. The better performance of the SDS−Al2O3
nanofluid is due to the fact that NPs can greatly restrain the
adsorption of surfactant onto reservoir rock. Besides, the friction
caused by NPs on the adsorbent strips off the adsorbed
molecules from the rock surface, hence reducing the surfactant
adsorption.20 Furthermore, NPs enhance IFT reduction, leading
to a considerable improvement in the chemical flooding
efficiency.

4. CONCLUSIONS
In this study, the capability of Al2O3 NPs to enhance surfactant
efficiency was investigated. Prior to flooding experiments, the
impact of nanoparticles on surfactant properties including IFT
and adsorption behavior on sand grains was explored. The
outcomes indicate a rapid decrease of IFT between aqueous
phase and oil by adding Al2O3 NPs to the SDS solution.
Moreover, surfactant adsorption onto sandstone rock was
generally reduced in the presence of Al2O3 NPs, and this
decrease was much more significant at higher concentrations of
these NPs. Although the effectiveness of NPs gradually increases
with an increase in their concentration, there is an optimal value
of Al2O3 NP concentration. IFT and surfactant adsorption
experiments revealed that beyond 0.3 wt % Al2O3 NPs, the effect
of NPs is insignificant, and this concentration was selected for oil
displacement experiments. Consequently, flooding tests showed
that NPs can efficiently enhance the surfactant flooding
performance and greater additional oil recovery can be obtained
by adding NPs into the surfactant solution.
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