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Abstract

Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional
(3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the
differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In
addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of
motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors
that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image
analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software
solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated
Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a
multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined
with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12
prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion,
challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in
spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation,
apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive
processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects
cellular cAMP/cGMP accumulation. Our approach supports the growing needs for user-friendly, straightforward solutions
that facilitate large-scale, cell-based 3D assays in basic research, drug discovery, and target validation.
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Introduction

Using a combination of cell culture, microscopic and live-cell

imaging techniques, cell lines or primary cells from patients, grown

in 3D matrices, can be used to investigate key mechanisms

inherent to cancer biology. 3D models are increasingly considered

more biologically relevant than 2D monolayer cultures on plastic.

However, only recently, the first steps towards systematic

characterization and standardization efforts have been undertak-

en, e.g. by correlating 2D and 3D growth conditions with

multicellular morphology, phenotype and molecular signalling [1].

A series of recent reviews demonstrate the growing interest in the

technicalities [2,3] and cell biology [4,5] of standardized 3D

cultures. 3D models are further suitable to address complex

aspects of normal and malignant tissues, such as the extracellular

matrix (ECM), basement membrane (BM), cell-cell and cell-matrix

adhesion, tumour-stroma interactions, cell motility and the

formation of relevant tumor-like histology. Mimicking the tumour

microenvironment (TME) is further deemed important for

modelling long-term drug responses, therapy failure, local invasion

and metastasis, and resistance formation.

We and others have demonstrated that biologically relevant,

miniaturised 3D models can be cost-effective, robust, reproducible,

and fully standardised [6,7]. Integrated 3D platforms are

beginning to enable sufficient throughput for high-content

screening (HCS) in both academia and pharmaceutical industry.

The increasing availability of primary, patient-derived cell culture

materials [8,9] will further increase their relevance in future.

However, a broad biological consensus and general acceptance for

experimental 3D platforms is still missing. In particular, it remains

unclear which models may be most representative and faithfully

recapitulate which aspect(s) of tumour biology. The broad

spectrum of 3D models includes spheroid culture in non-adherent

conditions, devoid of any biologically relevant matrices, e.g. by

using hanging-drop plates [10]; magnetic levitation [11] or stirred
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bioreactors [12], or when embedded into chemically inert scaffolds

(e.g. soft-agar, alginate, or methyl-cellulose). Spheres of tumor cells

forming in these settings [13–15] are often enriched in stem- and

progenitor-like cells, display increased self-renewal potential, but

typically fail to develop epithelial characteristics such as a acinar

morphogenesis, a functional BM or a hollow lumen. Standardized

variants of these basic principles have recently gained attention as

a method for propagation of primary (tumour) cells [16,17];

further enhanced by the use of small-molecule inhibitors or ligands

and growth factors that promote stem- and progenitor cell

propagation. [18,19]. In contrast, approaches that utilize re-

aggregation of primary tissue cultures into functional 3D matrices

or scaffolds can lead to the formation of complex, functional

organoids or microtissues that naturally include stromal and ECM

components [20]. The direct embedding of cell lines, primary cells

[8,9] or primary explants [21,22] into biological relevant ECM

preparations remains the most promising and practical method to

recapitulate morphologic aspects such as tissue formation,

differentiation and homeostasis; also including tumor progression

and invasion (reviewed in [4]). In addition, it is critical to assess the

physical force, pressure and local stiffness or rigidity of the matrix,

which promotes tumor progression, cell motility and impacts on

the modes of cell invasion used by cancer cells [23,24]. The

strongest differentiation-inducing effects on cells of epithelial origin

are typically observed with laminin-rich BM extracts such as

Matrigel [25]. These promote maturation and apico-basal polarity

of multicellular epithelial structures [26], including cell-cell and

cell-matrix contacts [27].

The differentiation potential of malignant glandular cancer

cells, compared to normal, non-transformed epithelial cells is

typically compromised by oncogenic mutations, activation of

growth-promoting, and differentiation-blocking signalling path-

ways (e.g. PI3Kinase, AKT, mTOR and c-src pathways [28],

reviewed in [29,30]. Accordingly, morphologies formed in 3D

range from well-polarized acini with complete BM and a hollow

lumen, to ‘‘round’’ spheres lacking either of these properties,

eventually forming increasingly irregular ‘‘grape-like’’ or ‘‘stellate’’

cell masses by gradually losing cell-cell adhesion [31,32]. Thus, not

only tumor cells, but also multicellular tumor spheroids can display

striking morphologic plasticity [33,34]. The most advanced

progression stages are related to overt invasion into the

surrounding ECM. These various spheroid or acinus phenotypes

correlate with incremental activation of oncogenic signalling

pathways and re-arrangement of the cytoskeleton in tumor

progression [34,35]. Imaging-based analyses of 3D morphology

can therefore be highly informative for in vitro tumour biology,

based on cancer cell lines [36,37] or primary, patient-derived

tissue cultures [21,38]. This approach can be further assisted by

mathematical modelling [39–41], machine learning and Bayesian

networks [42].

Advanced morphological image analysis tools are already

widely established for 2D cultures, but only emerging in the 3D

field. ImageJ represents the most widely used open-source image

analysis software. Both CellC [43,44] and CellProfiler [45,46] are

open-source software programs, specifically tailored for high-

content analyses of microscopic images of (mainly) single cells.

None of these applications have been specifically developed, nor

optimized for organotypic 3D cultures, and do not support analysis

of image sets on a large-scale. Morphologies formed in 3D vary in

shape, size, geometry, density, surface features, and internal

textures. In addition, quantitating the characteristic dynamic

changes observed in 3D cultures (invasion, differentiation and de-

differentiation) requires specific and accurate measurement of the

most informative and biologically relevant morphometric features.

Existing image analysis programs currently do not handle large

numbers of 3D objects that need to be segmented, and further

processing of the resulting numerical data for subsequent,

statistically relevant mathematical analyses. This approach

requires the balance between high content, typically on the

expense of experimental throughput. Ideally, a suitable strategy to

speed up experimental throughput should focus primarily on

multicellular and tissue-related features, instead of detailed single-

cell analyses. In small-scale (i.e. most basic research) studies, it is

possible to perform image segmentation in semi-automated

fashion (such as in [47]), and programs such as CellProfiler or

Volocity may be ideally suited for this purpose. However, in

miniaturized 3D tissue platforms with larger numbers of

compounds or other perturbants, the analysis of complexity and

heterogeneity develops rapidly beyond human sensorial capacity.

Even visual inspection of large 3D image series, e.g. for quality

control purposes, becomes laborious, time consuming, and subject

to human error. Fully automated morphometric or phenotypic

image analysis solutions are required to measure multiple levels of

structural information in a reproducible, accurate, unbiased and

quantitative way. Since structures formed in 3D are complex and

heterogeneous, any representative quantitation of multicellular

structures will benefit from applying a large panel of geometrical

image processing criteria, in parallel or subsequently. Ideally, these

are based on mathematic algorithms that match the complex

nature of the structures analysed. With this open approach,

quantitative image analysis is capable to detect multiple levels of

overt (visible) as well as hidden phenotypic changes, undetectable

to the naked eye [48]. To warrant significant throughput, reduced

cost and a high level of miniaturization and standardization,

suitable 3D platforms and matching 3D image analysis tools must

be fully compatible with each other and existing laboratory

automation. They must further comply with cell culture standards,

HCS instrumentation and microscopes, robotics (liquid handling),

plate readers etc. However, no satisfactory, fully integrated and

sufficiently user-friendly solution that addresses all of these aspects

simultaneously exists to date.

This manuscript describes a combined approach, illustrating

how 3D cultures can be generated in miniaturized and standard-

ized fashion, and subsequently analysed by a dedicated software

package that specifically and quantitatively addresses the complex

phenotypes formed under these conditions.

Materials and Methods

Cell lines and culture conditions
All cell lines were obtained from American Type Culture

Collection (Manassas, VA, USA) or originator laboratories. Table

S1 lists all cell lines used in this manuscript. MDA-MB-231 SA

cells were a kind gift from Therese Guise, Indiana University,

Indianapolis, IN, USA. PrCa lines were propagated in RPMI-

1640 (Sigma-Aldrich, St. Louis, MO, USA), BrCa lines in DMEM

(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10%

FBS, 1% penicillin/streptomycin and 1% L-glutamine. Immor-

talized, non-transformed epithelial cell lines EP156T and RWPE-1

cells were cultured in Keratinocyte Serum-Free Medium (KSFM;

Invitrogen, Carlsbad, CA, USA), supplemented with 50 mg/l

bovine pituitary extract, 5 mg/l EGF and 2% FBS for 3D

conditions. 1 nM R1881 was added to LAPC-4 medium for

growth support.

Miniaturized 3D cell cultures
All of the experiments shown were performed in low throughput

15-well Angiogenesis slides (Ibidi GmbH, Munich, Germany), and
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growth factor-reduced Matrigel (BD Invitrogen) as the ECM of

choice to promote differentiation. Miniaturized 3D cultures were

prepared as described previously [6,7]. Bottom wells of ibidi

Angiogenesis m-slides were filled with 10 ml of 50% Matrigel-

medium (typically 3–5 mg/ml protein, depending on the batch),

and incubated at +37uC for 30–60 min. Cells were placed on top

of the polymerised bottom gel at a density of 700–1500 cells/well

(depending on the cell line), and incubated at +37uC for 1–2 h.

Medium was discarded, and cell layers covered with 20 ml of 25%

Matrigel (1.5–2.5 mg/ml depending on the batch). The m-slides

were humidified by adding 15 ml drops of sterile water between the

wells. The upper gel was allowed to polymerize at +37uC for 3–4 h

or overnight. Wells were then filled with medium, and changed

every second day.

Compound treatments
All compounds were purchased from Tocris (Bristol, UK),

except for Ki-16425 (Cayman Chemical Company, Ann Arbor,

MI, USA) and CCG-1423, Rac inhibitor I (#553502) and Rac

inhibitor II (#553511) (Merck Millipore, Darmstadt, Germany),

and dissolved in appropriate vehicle (DMSO, EtOH or PBS). All

drug exposures were performed in triplicates, including vehicle

(DMSO) controls. Compound treatments were initiated after 4

days of 3D culture, and continued for an additional 6 days, after

which spheroids were stained and imaged. For two cell lines, PC-

3M and ALVA31, which showed a strongly invasive phenotype,

drug treatments were initiated already on day two, and emerging

structures imaged on day 8–9. More slowly growing LAPC-4 and

EP156T spheroids were incubated for 8 days prior to treatments.

3D image acquisition, pre-processing, and morphometric
analyses

Multicellular structures were double-stained with SYTO 62

fluorescent dye (Invitrogen) and NucView caspase-3 detection

reagent (Essen Bioscience). 3D confocal images were acquired with

a Zeiss Axiovert-200M microscope, equipped with Yokogawa

CSU22 spinning disc confocal unit using Zeiss Plan-Neofluar 5x

objective. Intensity projections were created with SlideBook

(Intelligent Imaging Innovations Inc, Denver, CO, USA). Back-

ground noise was removed by normalization, using either

SlideBook or ImageJ (NIH, Bethesda, MD, USA) programs. The

AMIDA program can be freely downloaded and is also available

as supplementary file (AMIDA Program S1). Also a collection of

exemplary images used for analyses performed by AMIDA, as

shown in this manuscript, is available as a supplementary data file

(Image Data S1).

2D cell migration and invasion assays (CellPlayer)
For invasion assays, 96-well ImageLock plates (Essen Biosci-

ence, Ann Arbor, MI, USA) were pre-coated overnight at +4uC
with 10% Growth factor-reduced (GFR) Matrigel. In both assays,

cells were grown to confluence on ImageLock plates, and

wounded with the WoundMaker device (Essen Bioscience).

Detached cells were removed by aspiration. For cell migration

assays, the compounds were mixed with cell culture medium. For

cell invasion assays, compounds were mixed into medium and

25% GFR-Matrigel;fresh medium was added after 48 h. Wound

closure was monitored and quantified with the IncuCyte live-cell

imager (Essen Bioscience).

2D proliferation assay
Cells were transferred into 384-well plates (Corning, New York,

NY, USA) at a density of 1500 cells/well and incubated overnight

at +37uC. The compounds were mixed into medium and pipetted

into the wells. Plates were incubated at +37uC for 72 h, and nuclei

subsequently stained with Hoechst DNA dye. The number of

nuclei was measured with Olympus ScanR microscope (Olympus,

Shinjuku, Tokyo, Japan).

2D apoptosis assay
Cells were transferred into 96-well plates (Corning) at a density

of 8000 cells/well, and incubated overnight at +37uC. The

compounds were mixed in the culture medium and pipetted into

wells together with 3.3 mM DEVD-NucView kinetic caspase-3/7

reagent (Essen Bioscience), incubated at +37uC for 72 h, and

monitored in real time with an IncuCyte FLR fluorescent imaging

device (Essen Bioscience). Confluency and number of apoptotic

cells per image were quantified by IncuCyte software (version

2011A).

Data annotation, quality control and statistical analyses
All statistical analysis and plotting tools implemented for

processing numerical data (post-image analysis) were written by

an expert statistician using R, an open source programming

language and software environment for statistical computing and

graphics (http://cran.r-project.org). All R scripts were incorpo-

rated in REX, an in-house html-software environment that

includes a browser-based user interface.

Heatmaps display the difference in medians between the

treatments and the control for the selected features. The calculated

median differences are standardized to have unit variance, in

order to account for the varying scales in features. The statistical

significance of the observed differences in medians is assessed using

the nonparametric Mann-Whitney U-test. The obtained p-values

are then Bonferroni-corrected, multiplied by the number of

treatments. When necessary, heatmaps have been clustered using

complete linkage of Euclidean distances. Time series analyses were

done as described in [60].

Results

3D cell culture platform and cell culture models
Our cell culture platform is based on two ibidi Angiogenesis

products, namely the Angiogenesis 15-well m-slides or the larger

96-well m-plates (Ibidi GmbH, Munich, Germany), both featuring

an identical well-in-a-well geometry that consists of two compart-

ments, the smaller residing within the bottom of the larger well.

This geometry reduces the curvature or meniscus caused by liquid

tension, resulting in even liquid surface. This allows cells to be

embedded in a defined and narrow focal plane embedded between

two layers of ECM (Figure 1A). As ECM, synthetic hydrogels,

alginates, soft agar and methyl-cellulose, or biologically relevant

matrices such as collagen type I and Matrigel can be used. Over 30

prostate cancer (PrCa) cell lines, derivatives and primary prostate

cells have been tested with this standardized 3D cell culture

platform [6,7]. Most tumour lines form either round, irregular

(mass), or invasive (stellate) multicellular spheroids. One of the

most interesting and heterogeneous tumor lines is PC-3, charac-

terized by extreme epithelial plasticity: PC-3 spheroids initially

form well-differentiated, polarized and hollow acinar spheroids.

After 6–8 days, these structures spontaneously revert to rapidly

invasive multicellular or string-like structures, indicating a

mesenchymal mode of cell motility. PC-3 cells represent a

particularly suitable model to demonstrate highly dynamic

epithelial-to-mesenchymal (EMT) transformation and spontane-

ous differentiation versus de-differentiation in 3D organotypic

cultures. This phenotypic transformation is concomitant with
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PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e96426

http://cran.r-project.org


dramatic re-arrangement of the actin cytoskeleton, regulating cell

shape, plasticity and motility. These spontaneous and inducible

transformations were utilised here as an experimental system to

demonstrate the functionalities of the AMIDA image analysis

programme.

Screening concept, read-out and image pre-processing
A typical compound screen based on our 3D platform is

outlined in Figure 1B. Cells are embedded between two layers of

growth factor-reduced laminin-rich extracellular matrix (lrECM).

Before compound treatments start, cells are typically cultured for

4–8 days in 3D, largely depending on the growth rate of the cell

line, to promote the initiation of spheroid formation. Compound

treatments are then initiated only when spheroids have reached a

size suitable for continuous real-time imaging (.20 mm). The

cultures are then routinely monitored for at least 6 additional days,

with 1 image taken per hour. A live-cell imager like IncuCyte is

optimally suited for continuous monitoring, based on phase-

contrast images. However, spinning disk confocal microscopy

represents the most widely used read-out for end-point analyses.

Suitable endpoints for analyses have to be decided on an

individual basis, and vary for different cell lines. This depends

mainly on growth rates, with non-transformed cells/cell lines often

growing significantly more slowly. This may require a longer

duration of the experiment and/or a delayed starting point for

treatments. In addition, for cells/cell lines that undergo prominent

morphometric transformation, endpoints are typically selected

before the end of the process ( = complete transformation into

stellate objects). For most applications, living cells are double-

stained with two or more fluorescent dyes. Ideally, one dye stains

metabolically active cells (e.g. Calcein-AM), the second dye dead

(necrotic, membrane-damaged, e.g. ethidium homodimer) or

apoptotic cells (e.g. NucView). A third dye may be included to

counterstain for DNA/nuclei (SYTO62, DAPI, Hoechst).

Our read-out represents a compromise between detailed

imaging of cellular/morphologic details, and fast throughput. An

acceptable balance can be achieved by optimizing the image

analysis program for intermediate to low magnification (5x

objective) images. To focus on multicellular structures, it is only

required to capture larger-scale morphological features with

acceptable resolution, neglecting single-cell level details. Further-

more, imaging with low magnification expands the focal plane and

fewer layers in the Z-axis are required to be imaged in order to

cover the entire area of 3D cell culture. With these settings, an

entire well can be imaged with a minimal number of stack images.

This increases the number of individual multicellular structures

captured, but conveniently reduces the number of adjacent fields

required to capture the entire well. Multiple virtual sections

through each multicellular structure are possible, without losing

informative phenotypic details. This is sufficient to recover

irregular symmetry of individual structures, or capture stellate

(invasive) morphologies. The Zeiss confocal microscope used in

our studies can scan 15 wells within a single ibidi m-slide, or 96

wells of an ibidi Angiogenesis m-plate by acquiring four image

stacks of images per well (a total of 60 images/m-slide and 240

images/m-plate). The X and Y dimensions for a single field are

approximately 4.4mm63.3 mm, with Z ranging between 300–

800 mm (at 20–40 mm intervals). The image resolution is on

purpose kept at a relatively low range (6726512 pixels) to further

promote fast image acquisition. The typical scanning time to scan

Figure 1. Our compound screening concept is based on a simple cell culture platform optimised for 3D spheroid cultures
complemented with an easy to use proprietary image analysis program and data analysis tools. (A) ibidi Angiogenesis m-slides and m-
plates have a unique well-in-a-well design that facilitates 3D cell culturing between two layers of extracellular matrix on a very narrow focal plane. (B)
Time and operation schedule for a typical compound screen including all the major steps from cell seeding to image analysis and visualisation of
morphometric responses.
doi:10.1371/journal.pone.0096426.g001
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all wells on an ibidi 15-well m-slide is 10 minutes; a 96-well m-plate

can be imaged in 30–45 min. Prior to morphometric image

analysis, nonspecific background noise is reduced by normalisation

(e.g. excluding the 5 and 95 percentiles of the image distribution),

followed by further background reduction, if necessary. These pre-

processing procedures are performed with commercial or open

source programs such as SlideBook (Intelligent Imaging Innova-

tions) or ImageJ (NIH). As many of the subsequent operations rely

on minimal background to noise ratio in the images, additional

features for noise reduction were added. Background noise is

caused by many factors, and can be observed as the variation of

either brightness or colour inside a given structure or segment in

the image. AMIDA offers several optional pre-processing features

to balance, enhance or remove noise from images prior to

segmentation. This variation can be countered by using Gaussian,

edge enhancements, or median filtering are implemented in

AMIDA.

AMIDA basic operations
AMIDA is a light multi-parametric image analysis program

designed for high-content analysis of complex and heterogeneous

3D spheroid cultures (overview of functions summarized in

Figure 2B and Tables 1 and 2). The program itself can be

downloaded freely (AMIDA Program S1; in ZIP container

format). In addition, a collection of exemplary images is available

for testing its functionality can be downloaded as Image Data S1;

also as a ZIP container. The AMIDA program first identifies

individual multicellular structures by image segmentation, and

assigns numerical values for selected cancer-relevant parameters to

the objects; these are then exported as an Excel file. AMIDA was

primarily designed to retrieve information from 3D confocal image

stacks. However, due to the special meniscus-free 3D cell culture

design, there is little spatial overlap of multicellular structures in

the Z-axis, and we decided to restrict the quantitative analysis to

2D ‘‘maximum’’ projections of 3D images. In practice, AMIDA

automatically applies an intensity projection algorithm in order to

generate simple 2D raster graphics. As this may increase the

overall time required for image analysis, the user can also convert

3D images into intensity projections using any other image

processing program of choice (such as ImageJ, Fiji, CellProfiler,

BioImageXD). The program’s complete workflow can be divided

into four distinct phases, as illustrated in figure 2A.

After pre-processing, the input image is first projected as 2D

images with AIP (Average Intensity Projection) IAvg~
1
l

Pl
k~1

Sk

where Sk is the 3D image stack with channel stack size of l. This is

applied to each channel R,G,Bf g separately, resulting in a colour

image Ir,g,b. This image is then converted to grayscale by using

weighed intensities from each individual channel

IGr~0:2989Irz0:5870Igz0:1140Ib. Initial image thresholding

(statistiucal values reported in table S2A) applies a technique

similar to the Tsai method [49], in which the valley between

peaking areas is searched by a gaussian smoothed histogram

function. This thresholding technique relies on the notion that the

shape of the histogram remains similar throughout all of the

analysed images. This phase results in a binary representation IB

of the original grayscale image IGr where fIBi,j
[ jIBi,j

5 0,1f gg, in

whichpixels marked as ones (1) are considered as foreground (e.g.

the cell structures) and zeros (0) as background objects. Low

intensity areas inside foreground objects thus form gaps that are

marked as background by thresholding. Gaps ,1000 pixels are

automatically filled in to construct uniform foreground segments.

In the preliminary segmentation phase, singular morphological

opening IO~IB0K is first applied to IB(kernel Ki,j size i|j~3|3)

to separate structures, followed by an Eucledian distance

transformation [50]. The Watershed transformation [50,51] is

then applied to the image, in order to label the main structures

S5IOand fSi,j[ j0ƒSi,jƒSmaxg. Smax a positive integer, denot-

ing the maximum amount of structures found. Each connected set

of pixels found is labeled with an unique integer. In addition to

finding the main stuctures, AMIDA uses 3D grayscale data

extracted from the image stacks for each separate channel to

define the actual focus plane for all individual structures S. In this

case, the focus information is used to further adjust the image

thresholding value.

In the beginning of the substructural phase, ccell counts are

computed for each structure identified, by applying the watershed

transform for each S in IB. The Otsu thresholding method is used

beforehand, to extract individual sets of cells Sc, where Sc5S.

Adaptive morphological opening I2
O~IO0K is then applied for IO

where the opening kernel size depends on the size of the

corresponding structure in S. Distance transformation and

watershedding are applied to I2
O to extract structures with possible

invasive appendages, and the outline variance is removed. The

resulting set of structures is used to calculate several parameters

describing e.g. the roughness and general variability of the

structure surfaces in S. Other morphological parameters are then

calculated for each structure in S. Furthermore, Sccan be used to

evaluate individual cell counts and localization inside the main

structure and therefore to quantify the relation of apoptotic cells to

non-apoptotic cells (‘‘AreaRatioR’’), or to assess the hollowness

and density of structures. AMIDA applies this substructural

segmentation for both green and red channel separately. This

futher contributes to the separation of apoptotic cells from live

cells, which can be evaluated individually. The full program

pseudo-codes for AMIDA are described in table S3. As most

calculations performed for parameterisation are either constant or

of linear time, the actual highest order of complexity is defined

from the sub-structural segmentation phase. The watershed

algorithm used is a linear time transformation procedure, applied

subsequently in two distinct phases: twice for the actual structure

definition in the preliminary segmentation, and again for every

found S in the substructural segmentation phase with Otsu

thresholding. This is raising the total highest complexity class to

the quadratic scale in the worst case.

AMIDA is extremely straightforward to use. To assure proper

segmentation quality, the user needs to adjust only two basic

parameters: sensitivity and threshold. The sensitivity parameter

controls the splitting of segmented cell regions in the analysed

image. A smaller value leads to smaller segmented regions, and

vice versa. The sensitivity parameter refers to the distance in pixels

used by the watershed algorithm. In contrast, the threshold

parameter controls the cut-off value of the histogram. Choosing

higher threshold values leads to a more stringent (or too stringent)

segmentation. The impact of various parameters for sensitivity and

threshold are outlined in Figure S1.

AMIDA can also analyse sets of phase contrast (PC) images, e.g.

from the IncuCyte instrument. Since PC pictures differ signif-

icantly from confocal images, they must be pre-processed

differently prior to segmentation, and converted to fit the

customized thresholding technique described above. As many of

the subsequent operations rely on minimal background to noise

ratio in the images, additional features for noise reduction suitable

for PC images were added. Figure S2 illustrates the analysis of a set

of PC images, and shows numerical quantification of image data
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for the morphometric effects of three compounds on tumor

spheroids described later.

AMIDA parameters
By inspecting the morphologies of spheroids formed by a panel

of 25 prostate-derived cell lines [7], we devised 19 phenotypic

parameters that were considered most informative and most

directly linked to cancer biology. The morphometric parameters

implemented in AMIDA can be divided into three classes: 1)

general, 2) morphological, and 3) functional (summarized in

Tables 1 and 2). Values for general and morphological parameters

are derived from the same RGB channel used for structural

segmentation. General parameters include information related

to the size (area) of an object, its relation to neighbours (number of

neighbours, shared boundaries with neighbours, closest neighbours), and

the amount of cellular matter in relation to the local background

(cell ratio, average ratio).

Morphological parameters include measures for features

typically associated with the phenotype (habitus) of multicellular

spheroids such as symmetry (roundness), contour roughness (measur-

ing small surface features), and measures that indicate invasive

processes (appendages). Functional operations are measured

separately for each RGB channel. For each of the 3 channels,

functional parameters can assess signal density, the number of cells

per structure (cell number), polarisation of cells within the spheroid

(‘‘hollowness’’), average size of cells, and the ratio of cells relative to

the size of the entire spheroid.

Figure 3A (left panel) shows representative confocal microscope

images of PC-3 spheroids, cultured on our miniaturised 3D

Matrigel culture platform and stained with Calcein AM. The

images were analysed with AMIDA (Figure 3A: right panel), and

numerical data extracted for morphological and functional

features. The table in Figure 3A represents the output for eight

selected features. The power and accuracy of RGB channel

operations is demonstrated in Figure 3B. The numerical values for

five RGB channel-dependent parameters are shown on the table

below.

Data annotation and quality control
Prior to numerical data analyses, proper annotation quality

controls are required. Here, data annotation refers to providing

necessary experimental information, e.g. cell line names, exper-

imental conditions, time-points, compounds and concentrations.

In contrast, the main purpose of data quality control (QC) is to

remove erroneously segmented structures, cell debris, staining/

imaging irregularities, noise and other artefacts. QC can be

performed either manually or semi-automatically, using R-based

data visualisation tools. However, image quality control by visual

inspection and manual intervention is extremely tedious. Our

automatic QC approach is based on numerical threshold values,

manually defining limits e.g. for the minimum size of objects. This

implies that only objects within a certain size range will be

analysed, ignoring smaller structures and debris. Nevertheless,

manual visual inspection of selected images is possible and

advisable. For this purpose, another specialized R script automat-

ically discards erroneous data points according to a manually

generated ‘‘excluded features’’ list.

Bioinformatic tools for statistical analysis
Using our 3D cell culture platform, combined with automated

microscopy and image analysis methods as described, the resulting

number of individual multicellular structures captured per m-slide

can range between 1 000 and up to 5 000. This strongly depends

on the cell lines utilized. Even a small scale compound study with a

small number of compounds (5), experimental replicates (3) and

different compound concentrations (4–5) and controls typically

comprises 8–16 Ibidi m-slides, or 2–4 96-well plates; and up to 30

different morphometric measurements are made from each

spheroid imaged. Thus, the number of individual data points

can easily reach into hundreds of thousands. The interpretation of

complex biological responses on this scale requires robust tools for

the statistical analysis and subsequent data visualization. The

statistical toolset, implemented into our in-house REX interface,

includes multiple scripts for heatmap and boxplot generation

typically required for endpoint analyses. Additional heatmap and

line graph scripts can be generated for dynamic time-lapse

experiments. Heatmap visualization proved to be a particularly

effective way for visualizing and comparing longitudinal drug

effects and experimental conditions that result in similar morpho-

logical responses.

Case example
For this manuscript, we performed a focused compound screen

with a panel of compounds targeting the turnover and stability of

the actin cytoskeleton (summarized in Table 3). As a biologically

dynamic and relevant model, we used the spontaneous invasive

Figure 2. Flow diagram illustrating key functionalities of the AMIDA image analysis program. (A) Flowchart presenting four main steps in
image analysis. After parameterisation all numerical data is written into an Excel file. (B) An overview of AMIDA’s simple user-friendly interface and its
basic operations.
doi:10.1371/journal.pone.0096426.g002

Table 1. List of mathematical preliminaries utilized in AMIDA.

Slab Labeled set of pixels labeled as lab where lab[ , 1ƒlabƒlabmax . max is the amount of found segmented structures where pixel x,yf g[Slab and
f x,yð Þ~ 0,255½ �.

A0Bð Þ Morphological opening operation where A is a binary image matrix and B the kernel used to convolve the image. Opening can also be written as:
A0B~ A7Bð Þ+B where 7 denotes erosion operation and + the dilation.

Kadj Slabð Þ Is the adjusted kernel depending on the input set size.

D Slabð Þ Is the set of distances from C Slabð Þ to all Slab edge pixels.

Slabi
,Slabj

The sets of coordinates i~x1 . . . xmax, j~y1 . . . ymaxð Þ of a given labeled set of pixels.

k Maximum label of segmented substructures Sc for given structure.

M|N Total image size with width M and height N .

doi:10.1371/journal.pone.0096426.t001
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conversion of PC-3 spheroids, which results in altered cell motility

and invasiveness, and fundamental changes of cellular and

multicellular morphologies. This panel of compounds includes

small molecules interfering with adenylate cyclase (AC) and

intracellular cyclic AMP levels, the activity of small GTPases

Rac1–3, RhoA, the Rho Kinases (ROCK), PAK1 (p21 protein

Cdc42/Rac-activated kinase 1), actin-regulatory proteins N-

WASP, Arp2/3, myosin II, G protein signalling (via lysopho-

sphatidic acid or LPA receptors), and the G-protein interacting

protein RGS4. All of these signalling molecules act as upstream

regulators of actin cytoskeletal organization. In addition, a control

drug affecting primarily mitosis via tubulin polymerization

(paclitaxel) was included. In addition to PC-3, another 11 cell

lines (8 prostate, 3 breast derived) were included to further validate

the morphological effects observed in the PC-3 model. Of the 19

drugs, 10 inhibited growth and/or invasiveness at the tested

concentration, to a variable degree, with cytotoxicity measured

primarily by the number of dead and dying cells inside the

spheroids (red gradient symbol, Figure 4A). This illustrates that

specific anti-invasive and cytotoxic effects in reality represent a

continuum, with many compounds combining aspects of both.

The most specific invasion-inhibitory drugs with negligible

cytotoxicity at the concentrations tested were IPA3, blebbistatin,

BPIPP, gallein, and latrunculin A. In contrast, ETH-1864, KH7,

narciclasine and CCG-1425 showed increasing cytotoxicity (in this

order). Surprisingly, paclitaxel showed remarkably low cytotoxicity

at 5 nM, and clustered together with anti-invasive compounds.

Next, we compared the correlation (similarity) or anti-correlation

Table 2. List of morphological parameters implemented in AMIDA.

Parameter Explanation Formula

Area Area of the segmented structure (in pixels) A Slabð Þ~ Slabj j
Roundness Roundness of the segmented structure (in percentages)

R Slabð Þ~ 4pA(Slab)

2p|max D Slabð Þð Þ½ �2

FiltRound Filtered roundness of the segmented structure (in percentages) RF Slabð Þ~R Slab0Kadj Slabð Þ
� �

RoundDiff Difference of the Roundness and Filtered Roundness (in percentages).

RD Slabð Þ~
1{R Slabð Þ
RF Slabð Þ , RF Slabð Þw0

100 , else

8<
:

AppIndex Index for severity of appendages of the segmented structure (no unit)
Ai Slabð Þ~ 1{

R Slabð Þ
100

� �
| 1zRo Slabð Þf g

MaxApp Estimate for the maximum length of appendages of the segmented
structure (in pixels)

Amax Slabð Þ~max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fD Slabð Þ{D(Slab0Kadj Slabð Þg2

q� �

MedApp Estimate for the median length of appendages of the segmented
structure (in pixels)

Amed Slabð Þ~med

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fD Slabð Þ{D(Slab0Kadj Slabð Þg2

q� �

Roughness Roughness of the surface of the segmented structure (in percentages)
Ro Slabð Þ~

A Slabð Þ{A Slab0Kadj Slabð Þ
� ��� ��

A Slabð Þ|100

Density Density of the segmented structure for the given colour channel
(gray levels per pixel) � �Dr Slabð Þ~ fDs Slabð Þg2

A Slabð Þ
AppNumber Estimate for the number of appendages in the segmented structure

(in pieces)
----

Deviation Standard deviation of the segmented structure (no unit)
� �Ds Slabð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Slab{mð Þ2
h ir

Closest The distance of the closest neighbour of the segmented structure
from the center point to the center point (in pixels)

Dd Slabð Þ~min C Slabð Þ{C S\Slabð Þj jð Þ

Neighbors The number of touching neighbours of the segmented structure (in pieces) ----

SharedBound The length of the shared boundary of all Neighbors of the structure (in pixels) ----

AreaRatio Ratio of the structures inside the segmented structure (in percentages) � �Arat Slabð Þ~ A Slabð Þ
CR Slabð Þ

Hollowness Estimate of the hollowness of the segmented structure for the given
colour channel (in percentages)

H Slabð Þ~ E C Slabð Þ{C nlð Þ|A nlð Þj jð Þ
med D Slabð Þð Þ

CellNumber Estimate of the number of cells inside the segmented structure (in pieces) � �CR Slabð Þ~max nlð Þ : nl5Sc,nl5Slab,1ƒlƒk

AveArea Average area of the cells inside the segmented structure (in pixels)
Aave Slabð Þ~ A nlð Þ

CR Slabð Þ
CellRatio The ratio of the areas of the segmented structures divided by the 2D size

of the imge (in percentages) Afull~

PA
(Si)

M|N

*Center of mass The center of mass for a given segmented object (coordinate pair)
C Slabð Þ~ x,yf g~

P
Slabi

A Slabð Þ ,
P

Slabj

A Slabð Þ

� 	

*Radius The radius for a given structure (m depends on used sensitivity, default = 0.25)
dist Slabð Þ~ med D Slabð Þð Þ

max D Slabð Þð Þ

�

*not included in the result file.
**Computed for both channels {R,G} separately.
doi:10.1371/journal.pone.0096426.t002

A Platform for 3D Cell Culture and Image Analysis

PLOS ONE | www.plosone.org 8 May 2014 | Volume 9 | Issue 5 | e96426



of the 26 morphological parameters used with each other for this

data set (Figure 4B), in order to select the most informative ones

for further streamlining the image analysis. This resulted in four,

most informative key indicators (AppIndex and Roundness for

invasion, AreaRatioR for cytotoxicity, cell death and apoptosis,

and Area for spheroid growth), which were used to further highlight

the three main response groups (Figure 4C). In group I, the most

specific invasion inhibitory drug effects were clustered together,

showing negligible cytotoxicity. Group II, in contrast, contained

the 3 compounds with the highest cytotoxicity. Group III

(unmarked) contains the rest of the compounds without prominent

effects on invasion or growth. These four key indicators may

therefore be sufficient to distinguish inactive compounds from

active drugs that impact on proliferation, cytotoxicity, and

modulators of tumor cell invasion. These effects are further

documented in (Figure 4D). In group II, the RhoA-modulators

CCG-1423, narciclasine, the pan-Rac inhibitor EHT-1864 as well

as the adenylate-cyclase inhibitor KH7 mainly resulted in

cytotoxic effects, which in turn are likely to impair tumor cell

invasion. In contrast, drugs in group I including the general G-

protein inhibitor gallein, which affects Gbc-dependent cellular

activities, the specific PAK1 inhibitor IPA3, the non-competitive

guanylyl cyclase (GC) and adenylyl cyclase (AC) inhibitor BPIPP,

and latrunculin A, a reversible inhibitor of actin assembly which

also blocks actin adenine nucleotide exchange, primarily inhibited

invasion with negligible effects on growth.

Quality control and reproducibility
One strategy to monitor assay quality is based on examining the

distribution of data, in order to detect outliers which indicate

potential artefacts and incorrectly segmented images. These may

appear as off-centre peaks or tails in histograms, and can be easily

identified and discarded. Histograms are particularly useful to

visualise the extent, heterogeneity and kinetics of drug responses.

Figure 5 illustrates characteristic data distribution for three key

parameters (Area, Roundness and AppIndex) and three example

compounds, each representative for one of the response groups.

Similar to the DMSO controls, NF-023 treatment had no

detectable effect on invasive PC-3 spheroids. In contrast, the

Rac-inhibitor EHT-1864 shows combined growth and invasion-

blocking effects, indicated by shifting the peaks of the Area and

AppIndex histograms to the left, together with a shift of the Roundness

peak to the right. The relatively invasion-specific G-protein

inhibitor gallein shifts the peak(s) of the Roundness histogram even

further to the right. In addition, the possible emergence of a

population of particularly well-rounded spheroids (with a peak

around 80% Roundness) is indicated. Spheroid size (Area) is only

marginally affected by gallein.

Statistical evaluation of robustness and reproducibility
All compound treatments were done in triplicate, with four

fields or image positions imaged per well. We assessed the

reproducibility (robustness) of our analysis by measuring the

impact on variance, by switching between Wells and Positions. This

was accomplished by fitting a linear mixed model on the data,

using these variables as random effects. The model used was of the

form:

yijkl~interceptztreatmentizwelljzpositionjkzerrorijk

where wellj e N(0,s2
well), positionjk e N(0,s2

position), errorijk e
N(0,s2). The estimates for s2

well and s2
position can be compared

to the variance of the unexplained random noise s2, in order to

evaluate consistency between experiments. Table S2 shows the

estimates for three different morphological parameters, Size

(measured as logarithmic Area), Roundness, and logarithmic

AppIndex, for a total of 10 cell lines treated with the entire set of

drugs. The variance between Wells and Positions is consistently

smaller than the residual error, although not completely negligible.

Based on these results, we conclude that our 3D platform, used in

conjunction with automated image analysis, is sufficiently robust

and reproducible, with marginal well-to-well variation and noise.

Nevertheless, performing relevant replicates remains a critical

issue. We are confident that conclusions concerning altered

morphology as the result of biological and/or chemical perturba-

tions can be exclusively based on true observations, only

marginally affected by the intrinsic variation between replicates.

Experimental validation
We set out to further validate the drug response patterns

observed in PC-3 cells, by repeating the compound treatments

with 11 additional prostate and breast derived cell lines from

malignant and benign/non-transformed origin. With the excep-

tion of the pan-Rac-inhibitor EHT-1864, all drugs that showed

anti-proliferative effects in PC-3 (CCG-1423, KH-7, latrunculin A

and narciclasine; highlighted by red boxes) also inhibited spheroid

growth across the entire panel of cell lines (Figure 6A). The 3 most

effective anti-proliferative compounds in 3D were also most

effective in 2D conditions (72 h), acting in a dose-dependent

fashion (EHT-1864, KH7, narciclasine; to a lesser degree CK-666;

Figure S4A). To validate induction of programmed cell death in

3D, we also measured apoptosis after 72 h of drug treatment in 2D

(Figure S4B and S4C). The 2D results were largely in agreement

with 3D measurements: 10 mM Narciclasine promoted apoptosis

by almost 500% (p = 3.161025), while 10 mM KH7 only resulted

in a non-significant increase of only 20% (p = 0.3), and BPIPP had

marginal effects (Figure S4C). These growth-inhibitory and pro-

apoptotic effects may be primarily due to cytotoxicity and

increasingly relevant at higher concentrations (.1 to 5 mM).

The anti-invasive and differentiation-promoting effects, shown

here by increased spheroid symmetry or roundness, exerted by the

non-competitive guanylyl cyclase (GC) and adenylyl cyclase (AC)

inhibitors BPIPP and KH7, and PAK1-inhibitor IPA3 are clearly

seen on invasive (PC3, PC-3M Pro 4), and branching RWPE-1

cells, also to some degree on the breast cancer line MDA-MB-231

(Figure 6B). This is further exemplified in Figure 6C, showing the

strong invasion-blocking results of BPIPP, NSC23766 and IPA3

on the RWPE1 line that forms branching structures, and the

successively more invasive, PC3 derivative lines PC3M as well as a

metastatic variant of the MDA-MB-231 breast cancer line. In PC-

3, PC3M, RWPE1 and MDA-MB-231 cells, NSC23766 was as

effective and specific as IPA3. NSC23766 is a selective inhibitor of

Rac1-GEF interaction and prevents Rac1 activation by Rac-

specific guanine nucleotide exchange factors (GEFs). It inhibits

Rac1-mediated cell functions and was reported to reverse tumor

cell invasiveness in prostate cancer cells. In accordance with the

assumed invasion-specific effects, the compounds BPIPP, IPA3

and gallein did not have a strong effect on proliferation in 2D

(Figure S4A).

Dose-dependent and possibly specific, anti-invasive versus

cytotoxic effects of Rac and Rac-related inhibitors on PC3

spheroids were further examined, as shown in Figure S5.

NSC23766, EHT-1864 and IPA3 all directly or indirectly inhibit

Rac family GTPases and have strong effects on PC-3 spheroid

growth and invasion. We proceeded to further test and compare

these to two additional selective Rac1 inhibitors (Rac inhibitor I,

Merck #553502; Rac inhibitor II, Merck #553511) and one
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Figure 3. Evaluation of key parameters analysed by AMIDA. (A: left panel) Six representative PC-3 spheroids, all treated with different
compounds in order to manipulate the morphology, stained for viable cells (Calcein AM) and imaged with spinning disk confocal microscope (5x
objective). (A: right panel) The same spheroids segmented with AMIDA. The table in A shows numerical values appointed by AMIDA for selected
morphological features. (B) Representative panel of PC-3 spheroids with red dots added by image manipulation in certain number and distribution to
exemplify the power and preciseness of RGB functions (B: table).
doi:10.1371/journal.pone.0096426.g003
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indirect Rac1 inhibitor (ITX3), using three concentrations. IPA3

and EHT-1864 showed linear dose-response in PC3 cells, resulting

in increased roundness coupled with incremental loss of append-

ages ( = invasive structures) but also a significant reduction of

spheroid size and therefore cytotoxic/growth inhibitory effects.

EHT-1864 was clearly toxic already at micro-molar concentra-

tion. NSC23766, ITX3 and Rac inhibitor II blocked invasion only

in the higher micro-molar concentrations.

Furthermore, the pro-invasive effects of the ROCK inhibitor Y-

27632 and the myosin-II-inhibitor (-)-(S)-blebbistatin specifically

promoted invasion in otherwise non-invasive, transformed cancer

lines. These preferentially form round spheroids surrounded by

partially or completely intact basement membranes (22rV1,

LNCaP, DU145). This indicates that ROCK inhibitors have a

profound effect on multicellular integrity and perturb epithelial

maturation (Figure 6D) by interfering with the formation and

organization of the actomyosin cytoskeleton, specifically in tumor

Table 3. List of compounds used in exemplary screens.

Pathway Drug Mechanism of action Concentration

cAMP pathway KH 7 Adenylate cyclase inhibitor 10 mM

BPIPP Adenylate cyclase inhibitor 10 mM

Forskolin cAMP activator 10 mM

RhoA pathway CCG-1423 RhoA inhibitor 10 mg/ml

Narciclasine RhoA activator 10 mM

Y-27632 ROCK1/2 inhibitor 10 mM

Rac pathway NSC23766 Rac1 inhibitor 10 mM

EHT-1864 Rac 1, Rac2, Rac3 inhibitor 0.5 mM

IPA 3 class I PAK (PAK1–3) inhibitor 10 mM

G-protein signalling Gallein G protein bc inhibitor 10 mM

NF023 G protein a o/i inhibitor 10 mM

QS 11 GTPase activating protein of ADP-ribosylation factor 1 inhibitor 10 mM

CCG-2046 RGS4 inhibitor 10 mM

Actin/myosin (S)-(-)Blebbistatin Myosin II inhibitor 10 mM

CK 666 Arp2/3 complex inhibitor 10 mM

187-1 N-WASP inhibitor 10 mM

Latrunculin A Actin adenine nucleotide exchange inhibitor, actin monomer sequestering agent 10 mM

LPAR1/3 Ki16425 LPAR1/3 antagonist 10 mM

Mitosis Paclitaxel Spindle-assembly inhibitor 5 nM

doi:10.1371/journal.pone.0096426.t003

Table 4. Summary of drug treatments of PC-3 cells in monolayer and organotypic culture.

Proliferation EHT-1864 (0.5 mM) KH7 CCG-1423 (10 mg/ml) Narciclasine

2D proliferation 99% 70% 55% 23%

p = 0.000 p = 0.016 p = 0.010 p = 0.000

2D apoptosis ND 120% ND 483%

p = 0.325 p = 0.000

3D size (Area) 38% 52% 48% 48%

p = 0.000 p = 0.000 p = 0.000 p = 0.000

3D cell ratio (CellRatio) 33% 45% 41% 45%

p = 0.000 p = 0.000 p = 0.000 p = 0.000

3D apoptosis (AreaRatioR) 150% 118% 209% 160%

p = 0.000 p = 0.006 p = 0.000 p = 0.000

Drug Effects in 2D versus 3D conditions

Invasion NSC23766 IPA3 BPIPP

2D migration No effect Decreased No effect

2D Matrigel invasion Decreased Decreased Decreased

3D invasion (AppIndex) Decreased Decreased Decreased

doi:10.1371/journal.pone.0096426.t004
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cells. Similarly, blebbistatin is a selective inhibitor of myosin II

ATPase and blocks myosin in an actin-detached state. Both

compounds prevent functional actomyosin cross-linking.

Cell motility in 2D versus 3D invasion
In order to assess cell motility and invasion through lrECM in

2D monolayer culture, we applied two complementary migration

assays. We compared standard scratch-wound migration assays on

uncoated plastic plates (Figure S6A), with a modified invasion

assay using plates coated with GFR-Matrigel (Figure S6B). Here,

the 2D monolayer of cells grown on a homogeneous layer of ECM

is first ‘‘wounded’’, and subsequently covered with a second layer

of lrECM. In contrast to plastic plates, cells need to actively invade

through a mesh of functional lrECM to close the wound. Two of

the most significant treatments were selected: the AC inhibitor

BPIPP and the Rac-downstream PAK1 inhibitor IPA3 (Figure

S6A and S6B); both effectively blocking 3D invasion without

cytotoxicity. The results were strikingly inconsistent: BPIPP had no

measurable effect on 2D cell migration on plastic (Figure S6C top),

but markedly delayed wound closure in the Matrigel-coated

invasion assay (Figure S6D top), which is more closely related to

the 3D culture settings. In contrast, IPA3 was extremely effective

in both assays and blocked invasion in both 2D and 3D, (Figure

S6C and S6D).

Table 4 further summarizes the outcome of 2D monolayer and

3D organotypic assays. In most cases, 2D proliferation and 3D

spheroid growth (Area or CellRatio readout) matched reasonably

well, as did 3D AreaRatioR and apoptosis measured in 2D.

However, the results from three different invasion assays were

controversial, possibly indicating different modes of cell motility

employed in various ECM and microenvironment. Two com-

pounds showed no measurable effects (NSC23766, BPIPP) in

standard 2D motility assays, while IPA3 decreased cell motility. In

contrast, all three compounds significantly decreased motility in

2D invasion assays through Matrigel, in good agreement with the

findings from the 3D assays.

Figure 4. Exemplary screen based on the PC-3 spontaneous invasive transformation model. PC-3 spheroids were treated with 19
compounds mainly targeting integrity, function and organization of the actin cytoskeleton. 172–424 multicellular structures for each treatment were
analysed with AMIDA program. (A) A morphometric heatmap showing standardized differences in medians between the treatments and the control
for 15 morphological parameters and all 19 compound treatments. Morphological responses clustered into three functional groups. Increasing
cytotoxicity, measured by the AreaRatioR parameter – based on presence of dead cells stained with ethidium homodimer - is indicated by the red
gradient arrow. (B) Correlation map (nonparametric Spearman) indicating the similarity (positive correlation, red) or dissimilarity (negative correlation,
blue) for 21 of AMIDAs morphometric parameters. (C) Bonferroni-corrected and Mann-Whitney U-test filtered morphometric heatmap (threshold p.

0.05) focusing on four selected, most informative parameters (AppIndex, AreaRatioR, Roundness, Area). The graph highlights compounds causing
mainly growth-inhibition and cytotoxicity (group II), and those that enhance spheroid symmetry and reduce number of invasive protrusions (group I).
(D) The image panel shows representative, segmented PC-3 spheroids for groups I and II, compared to DMSO and paclitaxel controls, after six days of
drug treatment.
doi:10.1371/journal.pone.0096426.g004
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Discussion

Despite many technical advances, some of the most informative

aspects of 3D phenotypes, such as their complexity and

heterogeneity, remain difficult to quantitate. The lack of straight-

forward, automated, user-friendly and fast 3D platforms, assisted

by specific 3D image analysis tools, affects the practicality of

phenotypic high-content screening (HCS) assays.

To demonstrate the potential of the 3D platform combined with

automated image analyses and statistics, we utilized small-

molecule inhibitors to modulate pathways involved in re-organi-

zation of the actin cytoskeleton, in particular transformation of

differentiated ‘‘round/acinar’’ into invasive ‘‘stellate’’ spheroids

[6,7,52]. The library of 19 small-molecule inhibitors specifically

modulated upstream mechanisms of actin cytoskeleton turnover

and stability, and was further used to compare the effects of

invasion in 3D with cell motility in 2D. The mesenchymal

phenotype observed in spontaneously invading PC-3 cells may

reflect a spontaneous EMT (epithelial-to-mesenchymal transfor-

mation), executed by re-arrangement of the actin cytoskeleton

combined with promotion of adhesion-dependent processes.

Mesenchymal invasion may affect single cells or chain- or string-

like multicellular threads of cells (reviewed in [29,33]); the latter

being observed e.g. in PC-3 cells. blebbistatin, a myosin II

inhibitor, directly interfered with the cortical actin cytoskeleton

and increased invasiveness. In contrast, latrunculin A, an actin-

adenine nucleotide exchange inhibitor, and CK-666, an Arp2/3

complex inhibitor, suppressed formation of invasive mesenchymal

structures and enhanced Roundness by blocking actin polymeriza-

tion. The dual adenylyl-cyclase (AC) and guanylyl-cyclase (GC)

inhibitor BPIPP selectively blocked formation of invasion and

mesenchymal protrusions across all invasive cell lines Rho and

Rac GTPases are downstream effectors of G-protein signalling.

The non-specific G-protein Gbc inhibitor gallein, but not the

specific Gao inhibitors NF-023 nor QS-11, an inhibitor of

GTPase-activating ADP-ribosylation factor 1, blocked mesenchy-

mal processes, nor did the LPAR1-antagonist Ki-16425 which

blocks signalling upstream of G-proteins Ga12/13 and Gai. In

contrast, compounds interfering with RhoA signalling, such as

blocking downstream ROCK kinases (ROCK inhibitor Y-27632),

specifically impeded epithelial polarization in all transformed

cells/spheroids, causing enhanced motility. Even non-invasive cell

lines like LNCaP and DU145 form invasive structures after

ROCK inhibition. Direct interference with RhoA, e.g. by the

RhoA-activator narciclasine and RhoA-inhibitor CCG-1423,

caused apoptosis across almost all 12 cell lines tested. This

indicates multiple roles for RhoA besides cell motility in spheroid

differentiation, survival signalling and cell proliferation. Rac and

Cdc42 counteract RhoA signalling pathways and promote tumour

cell invasion [38,53]. Accordingly, the selective Rac1-inhibitor

NSC23766 improved round symmetry in 7 of the 12 cell lines,

without marked cytotoxicity, and was also consistently efficient in

2D cell migration assays. In contrast, the pan-Rac inhibitor EHT-

1864 prevented formation of invasive structures at nanomolar

range, but induced apoptosis at higher concentrations. Additional

evidence for the key role of Rac activation in the invasive switch

and mesenchymal invasion versus actomyosin-contractility comes

from Rac inhibitors I and II (Merck #553502 and #553511) of

which the latter one blocked invasion effectively at micromolar

range. Furthermore, the data from blocking Rac regulators attest

to these findings: IPA-3 inhibits Rac signalling by blocking all

three group-I p21-activated kinases (PAK1–3), and most consis-

tently decreased cell-invasion across all 2D and 3D invasion assays.

In our set of experiments, mesenchymal invasion appears mainly

supported by RAC small GTPases (RAC1–3) and downstream

PAKs [54,55], while epithelial integrity and epithelial motility

were promoted by RhoA and its specific downstream signalling

mechanisms (ROCK kinases, myosin-II).

The 3D platform described here is based on the potential of

single epithelial (tumour) cells, embedded between two layers of

relevant matrix, to form a broad spectrum of polarized and

differentiated spheroids – according to the individual cells’

intrinsic differentiation potential. This ‘‘clonal’’ approach is in

contrast to the re-aggregation models introduced earlier. These do

not reflect the growth properties of individual tumor cells, and

often only one spheroid is formed per well which does not support

statistical evaluation. Thus, the main benefit of our sandwich

platform is the formation and development of hundreds of

independent spheroids in parallel, which can be readily imaged

by confocal or phase contrast microscopes. In addition, spheroid

development is limited within a single optical plane, supporting

automated microscopic imaging, and reducing the number of

image layers required to capture the entire growth area. Provided

single cells can be successfully separated and seeded, the clonal

approach effectively has the potential to recapitulate intrinsic

tumor cell heterogeneity and dynamic features. The sandwich-

style setup is optimally suited to monitor different modes of cell

motility in real-time; and also suitable for tumour/stroma co-

culture settings (not shown). The phenotypic analysis of hundreds

of multicellular structures in parallel, within a single experiment or

well, from hundreds of wells in parallel allows statistically

significant conclusions about heterogeneity and tumor cell

plasticity. Ultimately, this strategy allows us to indirectly address

the genetic variability contained in cell populations, or the drift

that occurs for example in long-term drug exposures or other

functional experiments. The use of pre-fabricated cell culture

plates for automated microscopic imaging, combined with

standardized matrix deposition and cell seeding protocols favours

assay miniaturization and standardization. In combination, this

strategy allows massively parallel imaging and quantitative

measurements e.g. of time- and dose-response courses within a

large-scale experimental set-up, at reduced cost.

A useful platform for 3D assays ideally requires the combination

standardized cell culture settings with suitable software solutions,

which must be capable to analyse the massive amount of

microscopic images generated in a single compound screen. The

AMIDA software was developed to directly address these needs,

specifically focusing on the analysis of those phenotypic features

that are primarily relevant for multicellular 3D cultures. Our 3D

platform, combined with AMIDA represents a practical compro-

mise between sufficient but not overarching image resolution and

computational effort, required for numerical quantitation of

massive numbers of structures. This practical compromise allows

high-content assays with reasonable throughput, considerable

scale and acceptable cost. AMIDA addresses all of these aspects,

and represents a user-friendly, particularly lean software solution

that requires very little user-interaction and optimization of the

analytical parameters. This is in striking contrast to other image

Figure 5. Histograms showing the distribution of morphological response data in the exemplary screen. The data is shown for three
key parameters, Area (representing spheroid size), Roundness and AppIndex (representing symmetry), and for three experimental compounds each
one representing one of the response groups (DMSO: control, NF023: no response, EHT-1864: growth inhibition, gallein: anti-invasive).
doi:10.1371/journal.pone.0096426.g005
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analysis programs that may be overall more flexible, but

considerably more difficult to fine-tune and optimize for the task

of analysing 3D images. Several research groups have developed

proprietary software scripts or plug-ins for existing image-analysis

programs such as CellProfiler [46,56], however usually focused on

single-cell analyses. In addition, several commercial software

packages have been released, mainly for the pharmaceutical HCS

market, including VoxelView (SGI Vital Images; www.

vitalimages.com), Imaris (www.bitplane.com), Metamorph (Mo-

lecular Devices; www.moleculardevices.com), Definiens (www.

definiens.com), Analysis (Olympus, OSIS; www.soft-imaging.de),

and Volocity (PerkinElmer; www.perkinelmer.com) [57,58].

Invariably, these programs are specialized on the detailed analysis

of few selected 3D spheroids or histology but not specialized on the

analysis of thousands of structures. In this study, we introduce an

integrated image analysis software program AMIDA (Automated

Morphometric Image Data Analysis), which was specifically

developed for this purpose. AMIDA works with both single (and

projected) images as well as original stacks of confocal images of

different resolution and multiple colours channels but also

processes black and white phase-contrast images. AMIDA returns

the most relevant phenotypic features such as spheroid size, shape

and geometry, invasive features, surface and internal structures, or

apoptosis as quantitative measurements. The special focus of

AMIDA is on quantitation of dynamic features, such as formation

of invasive cellular protrusions. This allows us to accurately

measure the onset of invasion and distinguish different modes of

tumor cell motility. Compared to open-source or commercial

software applications, AMIDA has a limited scope (entirely

specialized on 3D image analyses), but is very user friendly with

few adjustable parameters. The morphometric measures intro-

duced here may also be utilized in industry-standard plate readers

used for high-content screening, such as Opera/Operetta

(PerkinElmer), or InCell 6000 (GE Health Care), widely used in

industry and contract-research. We have implemented novel

measures for multi- and subcellular structures, metrics based on

the shape or interior of the segmented structures; and additional

informative measures can be easily implemented – provided they

can be mathematically defined. Currently, all morphometric

calculations are based on key biological events relevant for cancer

research, such as differentiation, apoptosis and invasion, similar to

earlier reports [59]. Our simple morphometric measures are

generally intuitive, and relate to the underlying biological

processes in a more natural fashion than theoretically complex

metrics. Nevertheless, higher-order, descriptive mathematical

metrics can be implemented, thus opening the possibility to

quantitate additional structural aspects that are currently beyond

human recognition.

Supporting Information

Figure S1 Impact of modifying the AMIDA program
parameters ‘‘sensitivity’’ and ‘‘threshold’’ on segmen-
tation. (A) An image of PC-3 cells cultured 10 days in 3D was

used as an example (A: left image). Modifying ‘‘sensitivity’’ from

values of 5 to 40 (with constant threshold 1) results in reduced

fragmentation of adjacent spheroid structures (A: upper right

panel). The ‘‘threshold’’ parameter has opposite effect: increasing

the value from 1 to 5 (with constant sensitivity at 20) has a notable

effect on fragmentation (A: lower right panel). (B) The effect of

modifying ‘‘sensitivity’’ and ‘‘threshold’’ parameters was statisti-

cally evaluated by Kruskal-Willis rank sum test. As expected,

increasing the ‘‘sensitivity’’ value yields larger (p = 0) and fewer

cellular structures (sensitivity 5: N = 152, sensitivity 40: N = 37).

However, symmetry (Roundness) is not significantly affected. A

higher threshold value tends to identify more structures (threshold

1: N = 56, threshold 5: N = 65) but has no significant effect on

structure size or symmetry measures in this case.

(TIF)

Figure S2 Impact of modifying the AMIDA ‘‘sensitivity’’
parameter on a whole experiment level. Non-invasive

DU145 cells/spheroids were cultured 4 days in 3D Matrigel

matrix and exposed to 19 different compounds for 6 days. The 3D

cell cultures were imaged with spinning disk confocal microscope

and the maximum intensity projection images were analysed using

three different sensitivity settings at (A) = 10, (B) = 20 and (C) = 40

(threshold: constant setting at t = 1, size .100 pixels). The

heatmaps show the standardized, p-value filtered (Bonferroni-

corrected Mann-Whitney U-test p,0.05) differences in medians

between treatments and DMSO controls for the selected features.

Both the treatments and the morphological parameters are

hierarchically clustered based on complete linkage of Euclidean

distances, enabling unbiased evaluation. The total number of

observations ( = spheroids) for each treatment is indicated in

parentheses. ‘‘Sensitivity’’ values of 20 and 40 yield almost

identical clusters, whereas the value 10 stands out as clearly

different, most probably because of heavier fragmentation.

(TIF)

Figure S3 Exemplary evaluation of segmentation and
image analysis of phase contrast images, using AMIDA.
(A) Original phase contrast images as derived from IncuCyte (left),

and after background subtraction and segmentation (right). (B)

Time course of spheroid growth (left graph) for control (DMSO)

compared to two compound treatments (BPIPP and IPA3) known

to primarily affect tumor cell invasiveness. With DMSO, most

spheroids undergo invasive transformation after 100 h of treat-

ment, which is partly inhibited by BPIPP and IPA3 (right graph).

(TIF)

Figure S4 Validation of dynamic responses observed in
3D culture, using standard 2D monolayer assays. (A)

Proliferation: PC-3 cells were treated for 72 h with 4 concentra-

tions of each compound. Cell numbers were assessed by nuclear

staining with Hoechst (results shown as percentage of the DMSO

control, 204–1841 nuclei counted per treatment). (B) Apoptosis:

PC3 cells were treated in 2D monolayer with three compounds

that induce apoptosis in 3D settings, namely adenylate-cyclase

Figure 6. Validation of morphological responses with 9 additional prostate and 3 breast cancer cell lines. The heatmaps illustrate
changes in spheroid growth (A: Area) and general symmetry (B: Roundness) in response to the 19 compound treatments (5031–16415 multicellular
structures analysed for each cell line). (A) CCG-1423, KH7, latrunculin A and narciclasine are preferentially cytotoxic and/or antiproliferative
compounds across all cell lines, as highlighted by red boxes. Paclitaxel, at a concentration of 5 nM, shows partial cytotoxic/antiproliferative effects
only in some of the cell lines. (B) Effects of mainly anti-invasive compounds IPA3 or NSC23766 were reproducible in many of the spontaneously
invasive (or branching) cell lines PC-3, PC-3M Pro4, and RWPE-1. (C) Images segmented and analysed with AMIDA. Effective anti-invasive functions of
the compounds IPA3, BPIPP and NSC23766 against the most aggressive, motile and invasive cell lines PC-3M, ALVA31, MDA-MB-231 (both SA and
parental ATCC), and RWPE1. The extremely invasive PC3-derivative ALVA31 was not affected, however. (D) Blebbistatin and Y-27632 show invasion-
inducing function in spheroids formed by the LNCaP and DU145 lines which typically form round spheroids and lack invasive properties.
doi:10.1371/journal.pone.0096426.g006
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inhibitors BPIPP and KH7, and RhoA activator narciclasine, and

stained with NucView 488 caspase-3 substrate to detect apoptotic

nuclei. (C) Apoptosis was quantified from 2D image data using

IncuCyte (2011A Rev2) object counting tool (v2.0). The

quantification indicates that narciclasine massively induces

programmed cell death, while all other drugs only result in small

increases of apoptosis at the highest (10 mM) concentrations.

(TIF)

Figure S5 Evaluation of anti-invasive effects of several
Rac-related inhibitors on PC-3 cells cultured in 3D
Matrigel matrix for 10 days. (A) Spinning disk confocal

microscope (5x objective) image projections of PC-3 spheroids

exposed to six inhibitors – namely IPA3 (Group I p21-activated

kinase or PAK inhibitor), EHT-184 (non-selective Rac family

GTPase inhibitor), NSC23766 (selective Rac1-GEF inhibitor),

ITX3 (selective TrioN RhoGEF inhibitor), Rac inhibitor I (Merck

#553502) and Rac inhibitor II (Merck #553511) – all in three

concentrations (0.5, 1 and 10 mM) for six days (days 4-10), stained

at day 10 with calcein AM live cell colour. (B) A heatmap of

AMIDA generated morphometric data displaying p-value filtered

(Mann-Whitney U-test, Bonferroni-corrected cut-off p,0.05)

standardized median differences across 10 selected morphological

features. (C) Boxplots highlighting clear dose-responses for

spheroid size and invasiveness in response to several Rac-related

inhibitors, most notably IPA3, EHT-1864, NSC23766, ITX3 and

Rac inhibitor II.

(TIF)

Figure S6 Validation of altered cell migration and
motility measured in 2D and 3D, using PC3 cells. (A)

2D Scratch wound migration and (B) 3D invasion assays in

Matrigel, treated with the IPA3 compound. (C and D) Quanti-

fication of cell motility in 2D cultures using IncuCyte (2010A

Rev2), treated with compounds that were most specifically active

invasion suppressors in 3D: adenylate-cyclase inhibitor BPIPP and

PAK-class I inhibitor IPA3. Compounds were administered in two

different concentrations. (C) In the 2D migration assays, a

confluent PC-3 monolayer cultured on Essen ImageLock plates

was wounded with Essen CellPlayer, wound closure monitored for

24 h, and quantified by IncuCyte imaging. The wound closure

was measured as wound cell density in relation to the original

wound area. (D) In 3D invasion assays, confluent cell layers were

scratched on Matrigel-coated ImageLock plates and covered by an

additional layer of Matrigel, containing the compounds. Wound

closure was monitored for 112 h, and quantified with IncuCyte.

Time series illustrating delayed wound closure in response to

IPA3, a PAK1 inhibitor, both in 2D migration and invasion

assays.

(TIF)

Table S1 List of all cell lines used in the validation
screens.
(DOCX)

Table S2 Estimated standard deviation parameter
values for random effects. The values are shown for three

morphological parameters, logarithmic Area, Roundness and

logarithmic.

(DOCX)

Table S3 A summary of pseudo codes used in AMIDA.
(DOCX)

AMIDA Program S1 Compressed ZIP file that contains
the AMIDA program (as. exe file format) for computers
with both 16-bit (Subfolder x86) and 8-bit based
microprocessors (subfolder x64). In addition, a supplemen-

tal. dll file (is included in both subfolders. This file may be required

by some computers to run AMIDA properly. AMIDA is started by

double clicking the amida.exe file. The correct folder correspond-

ing to the users’ version of windows has to be chosen. (Newer

computers have a 64-bit (x64) instruction set while older often still

have a 32-bit (x86) set. A single image file (e.g. own data, or

exemplary 3D images from Supplemental Image Data file S5) can

be chosen for analysis by clicking the ‘Select Image Data’ button

from the AMIDA user interface. Clicking the ‘Analyze Data’

button start the analysis.

(ZIP)

Image Data S1 Compressed ZIP file contains a set of
exemplary test images derived from 3D cultures of HeLa
and PC3 cells, in different formats and resolutions.
These images can be analysed with the AMIDA software.

(ZIP)
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