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FGF23 is a bone-derived hormone that plays an important role in the regulation of phosphate and 1,25-dihydroxy vitamin D
metabolism. FGF23 principally acts in the kidney to induce urinary phosphate excretion and suppress 1,25-dihydroxyvitamin
D synthesis in the presence of FGF receptor 1 (FGFR1) and its coreceptor Klotho. In patients with chronic kidney disease
(CKD), circulating FGF23 levels are progressively increased to compensate for persistent phosphate retention, but this results in
reduced renal production of 1,25-dihydroxyvitamin D and leads to hypersecretion of parathyroid hormone. Furthermore, FGF23
is associated with vascular dysfunction, atherosclerosis, and left ventricular hypertrophy. This paper summarizes the role of FGF23
in the pathogenesis of mineral, bone, and cadiovascular disorders in CKD.

1. Introduction

Patients with chronic kidney disease (CKD) are at increased
risk for cardiovascular events compared with individuals
with normal kidney function [1]. In addition to tradi-
tional cardiovascular risk factors, disturbances in calcium-
phosphate metabolism are regarded as strong contributing
factors of higher cardiovascular mortality in CKD patients
[2, 3]. Indeed, elevated serum phosphate, low calcitriol,
and high PTH levels represent the classical triad that
leads to secondary hyperparathyroidism, each factor being
independently associated with cardiovascular events and
mortality in patients with CKD [4, 5].

Recently, the phosphaturic hormone, fibroblast growth
factor (FGF-23), is overpoweringly entered into the tradi-
tional pathophysiological scheme of secondary hyperpara-
thyroidism.

2. Structure of FGF-23

Seven known subfamilies of human FGFs have been defined
[6, 7]. The FGF-19 subfamily is composed of three pro-
teins—FGF-19, FGF-21, and FGF-23—which exert diverse

physiological functions. FGF-23 is a central regulator
of phosphate homeostasis and calcitriol blood levels;
FGF-19 inhibits the expression of enzyme cholesterol 7-a-
hydroxylase (CYP7A1), which is the first and rate-limiting
step in bile acid synthesis [8]; FGF-21 stimulates insulin-
independent glucose uptake in adipocytes and lowers triglyc-
erides [9]. Interestingly, FGF-19, FGF-21, and FGF-23 con-
tain a disulfide bond that is absent in most other subfamilies.
This may explain why FGF-23 can be distributed in the
bloodstream to mediate its functions.

FGF-23 is a 251-amino acid protein (MW 26 kDa) syn-
thesized and secreted by bone cells, mainly osteoblast [10].
It is composed of an amino-terminal signal peptide (residues
1–24), followed by an “FGF-like sequence” (residues 25–180)
and a carboxyl-terminal extended sequence (residues 181–
251) that is unique compared with other members of the FGF
family [7]. The half-life of intact FGF-23 in the circulation
of healthy individuals has been estimated to be 58 min [11].
FGF-23 exerts its biological effects through activation of FGF
receptors (FGF-Rs); this activation is Klotho dependent as a
Klotho/FGF-R complex binds to FGF-23 with higher affinity
than does FGF-R or Klotho alone [12]. Klotho is a 130-
kDa transmembrane b-glucuronidase capable of hydrolyzing
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steroid b-glucoronides. It was named after Klotho, one of the
Moirae (the fates) in Greek mythology who spun the thread
of life from her distaff onto her spindle; indeed, Klotho-
deficient mice manifest a syndrome resembling acceler-
ated human aging and extensive atherosclerosis. Because
FGF-23/mice show similar phenotypes to Klotho/mice, a
common signaling pathway has been postulated [13, 14].
Klotho gene expression was detected in cells of the renal
tubule, parathyroid, and choroid plexus. Importantly, renal
Klotho expression is largely confined to the distal tubules,
which is also the site for initial FGF-23 binding and
signaling [15, 16]. However, renal phosphate reabsorption
mainly occurs in the proximal tubules, and it is currently
unknown how FGF-23 signaling in the distal tubule trans-
lates into decreased phosphate reabsorption in the proximal
tubules.

3. Physiological Functions of FGF-23

Renal phosphate excretion is physiologically regulated main-
ly by proximal tubular cells, which express both Na/Pi Type
II and Na/Pi IIc cotransporters at their apical membrane
[17].

FGF-23 reduces the action of both cotransporters; in
addition, it may inhibit gastrointestinal phosphate absorp-
tion by reducing intestinal Na/Pi IIb cotransporter activity
in a vitamin D-dependent manner [18].

The principal physiological stimuli for increased FGF-23
expression both in vitro and in vivo are 1,25(OH)2D3 and
high dietary phosphate intake [19–22]. Persistent hyper-
phosphataemia is an effective trigger for FGF-23, while
rapid changes in serum phosphate concentrations may not
induce an acute increment in serum FGF-23 levels [23].
It is therefore possible that FGF-23 responds to the net
phosphate balance rather than to the serum phosphate
level, but experimental data supporting this hypothesis are
scarce.

4. FGF-23, PTH, and Calcitriol

FGF-23, PTH, and calcitriol may influence each other in
opposite manner. FGF-R and Klotho are expressed in
parathyroid glands; FGF-23 might decrease PTH mRNA
transcription [24]. FGF-23 activity is not dependent on PTH,
as the phosphaturic effects of FGF-23 are maintained in
animals after parathyroidectomy [25]. Conversely, PTH may
stimulate FGF-23 secretion by osteoblast, as FGF-23 levels
are increased in rodents with primary HPT, which may be
reversed by parathyroidectomy [26]. In rodents, injection of
recombinant FGF-23 reduces calcitriol levels within hours
by decreasing renal expression of 1a-hydroxylase (CYP27B1)
and increasing the expression of 24-hydroxylase (CYP24A1),
which controls calcitriol degradation [25]. Conversely, cal-
citriol itself stimulates FGF-23 generation by binding to a
vitamin D response region in the FGF-23 gene promoter
[27].

5. FGF-23 in Subjects with
Intact Renal Function

The main physiological role of FGF-23 in healthy subjects is
to regulate urinary phosphate excretion to maintain stable
serum phosphate levels. However, no correlation between
FGF-23 and serum phosphate levels has been found in
individuals without overt renal disease [28, 29]. Possible
explanation for this finding is that most studies which found
no significant change in FGF-23 levels were smaller, and
phosphate loading was restricted to a maximum of 3 days
[21].

6. FGF-23 23 in Subjects with CKD

In CKD, circulating FGF-23 levels gradually increase with
declining renal function such that by the time patients reach
end-stage renal disease, FGF23 levels can be up to 1000-fold
above the normal range [30]. The increase in FGF-23 begins
at a very early stage of CKD as a physiological compensation
to stabilize serum phosphate levels as the number of
intact nephrons declines [28, 30–32]. In contrast, it was
hypothesized that increased FGF-23 levels in CKD result
primarily from decreased renal clearance [31]. However,
there is no increase in the accumulation of degraded FGF-23
in advanced CKD. It is also likely that FGF-23 levels depend
on an increased secretion due to an end-organ resistance to
the phosphaturic stimulus of FGF-23 because of a deficiency
of the necessary Klotho cofactor [33, 34]. Other potential
explanations for the early rise in FGF-23 could be the
release of unidentified FGF-23 stimulatory factors or loss of
a negative feedback factor(s) that normally suppress FGF-23,
by the failing kidney.

7. FGF-23, Mortality,
and Cardiovascular End Points

Since alterations in mineral metabolism are associated with
increased cardiovascular risk in CKD, it is plausible that
FGF-23 is directly involved in it. Indeed, in patients starting
hemodialysis, higher FGF-23 levels were strongly associated
with increased risk of 1-year mortality both in crude- and
multivariate-adjusted models, with the highest FGF-23 quar-
tile reaching a nearly 6-fold higher risk than the lowest [35].
In addition, in this population, FGF-23 was stronger predic-
tor of mortality than the serum phosphate level. Importantly,
FGF23 did not associate to mortality in patients within
the highest quartile of serum phosphate (>1.77 mmol/L),
suggesting that the prognostic value of FGF23 is blunted in
the presence of severe hyperphosphatemia.

The role of FGF-23 on cardiovascular or renal end points
but not on mortality has been evaluated in patients with
CKD not on dialysis. In 227 diabetic patients with CKD
stages 1–4, the progression of renal disease was assessed [32].
It was found that FGF-23 but not serum phosphate levels
was significant independent predictor of CKD progression,
defined as doubling of serum creatinine and/or terminal
renal failure. In a cross-sectional study, a large cohort of
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men and women in CKD stage 2 with a mean eGFR
of 73 mL/min/1.73 m2 was evaluated. In this cohort, that
represented a valuable model of healthy individuals and early
CKD, it was observed that higher FGF-23 was linked to
several dynamic measurements of vascular function, includ-
ing arterial stiffness measured by pulse wave velocity and
endothelial dysfunction measured by an invasive forearm
technique [36] in both crude- and multivariate-adjusted
models. A subgroup of this population underwent a novel
technique named whole-body magnetic resonance imaging
angiography, which provides information about the degree
of arterial stenosis as a surrogate marker of atherosclerosis in
all major vascular territories. Higher FGF-23 level was asso-
ciated with higher atherosclerosis score [37]. It is important
to underline that FGF-23 in some studies has been linked
to peripheral vascular calcification and/or coronary artery
calcification score, whereas other reports have failed to show
such an association [29, 38–41]. On this regard, it has been
speculated that FGF-23 could function as a local inhibitor
of vascular calcification; FGF-23 inhibits calcification in
vascular smooth muscle cells in vitro; this inhibitory effect
is strengthened in an inflamed setting, which is often present
in CKD patients [42]. Given the osteogenic transformation
of vascular smooth muscle cells that occurs in atherosclerotic
plaques, it is possible that FGF-23 may be locally expressed
in the cardiovascular system. But the presence of FGF-23 in
the heart or aorta has not been demonstrated yet [43]. It is
currently thought that, at least in early CKD, FGF-23 indi-
rectly contributes to decreased vascular calcification through
maintaining a normal serum phosphate level. Finally, the
relation between FGF-23 and left ventricular hypertrophy
has been evaluated, that is another strong cardiovascular
risk factor in CKD. This issue is clinically relevant because
other members of the FGF family have been implicated in
the pathogenesis of myocardial hypertrophy. Serum FGF-
23 was positively associated with left ventricular mass index
and increased risk of having left ventricular hypertrophy.
In particular, these associations were found in the highest
FGF-23 tertile (>48 pg/mL) and were strengthened when
restricted to subjects with eGFR <60 mL/min/1.73 m2 [35].
It is worth noticing that the associations between FGF-
23, vascular dysfunction, atherosclerosis, and left ventricular
hypertrophy were all progressively strengthened in patients
with a lower eGFR despite normal phosphate levels. This
finding supports the hypothesis that FGF-23 may reveal
information about phosphate-related toxicity that cannot be
obtained by measurements of serum phosphate.

8. Open Questions

The mechanism by which FGF-23 increases cardiovascular
events and mortality is still unclear. Thus, it is debated
whether FGF-23 is merely a marker of disturbed calcium-
phosphate metabolism, or it exerts its undesirable effects by
lowering vitamin D levels. Indeed, the correlation of FGF-
23 levels with serum phosphate in CKD patients [31, 32, 44,
45] and the association of hyperphosphatemia with adverse
outcome in these patients [4, 5, 46–52] may suggest that

negative effects of FGF-23 on survival are the mirror of the
negative effects of serum phosphorus. Alternatively, FGF-
23 may influence outcomes by inducing hypovitaminosis
D suppressing 1a-hydroxylase with subsequent reduction
in calcitriol secretion. Vitamin D deficiency is a nontradi-
tional cardiovascular risk factor in CKD [53–55]. However,
available data seem to exclude an ancillary role for FGF-
23 as mirror of serum phosphorus because adverse effects
associated with high FGF-23 levels remained statistically
significant after adjustment for phosphate, calcium, and PTH
levels [32]. On the same way, adverse effects associated with
high FGF-23 levels remained statistically significant after
adjustment for vitamin D levels [35, 36]. In addition, FGF-
23 has recently been shown to antagonize some effects of
vitamin D in vitro; in a cell culture model, vitamin D
induced cell apoptosis, whereas FGF-23 and Klotho induced
cell proliferation [56]. Therefore, some hypotheses have been
proposed. It has been hypothesized that FGF-23 at very
high serum concentrations (as observed in CKD patients)
may exert certain nonspecific and presumably adverse effects
through low-affinity, Klotho-independent binding to FGF-R,
for example, on endothelial cells [57].

9. Conclusion

FGF-23 is a regulator of calcium-phosphate metabolism. In
clinical trials, elevated FGF-23 levels were independently
associated with faster progression of CKD, therapy-resistant
secondary hyperparathyroidism, left ventricular hypertro-
phy, and increased cardiovascular mortality in dialysis
patients. However, FGF-23 is not just a marker of the
derangements of calcium-phosphate metabolism in CKD,
but rather a relevant factor responsible for the inception
of secondary hyperparathyroidism and for cardiovascular
morbidity and mortality. Thus, FGF-23 could represent a
promising therapeutic target that might improve the fatal
prognosis of patients with CKD.
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