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Quantitative nature of overexpression 
experiments
Hisao Moriya
Research Core for Interdisciplinary Sciences, Okayama University, Okayama 700-8530, Japan

ABSTRACT Overexpression experiments are sometimes considered as qualitative experi-
ments designed to identify novel proteins and study their function. However, in order to draw 
conclusions regarding protein overexpression through association analyses using large-scale 
biological data sets, we need to recognize the quantitative nature of overexpression experi-
ments. Here I discuss the quantitative features of two different types of overexpression ex-
periment: absolute and relative. I also introduce the four primary mechanisms involved in 
growth defects caused by protein overexpression: resource overload, stoichiometric imbal-
ance, promiscuous interactions, and pathway modulation associated with the degree of over-
expression.

INTRODUCTION
Cellular functions are performed through cooperative actions of 
thousands of proteins. Intracellular levels of these proteins vary sub-
stantially (Kulak et al., 2014; Liebermeister et al., 2014; Figure 1), 
and the level of each protein has to be highly optimized to maximize 
cellular functionality (Zaslaver et al., 2004; Dekel and Alon, 2005; 
Wagner, 2005; Li et al., 2014). The abnormal expression of a protein 
can have a detrimental effect on cellular functions. Overexpression 
of some proteins is associated with human conditions, such as Down 
syndrome and cancer (Tang and Amon, 2013). Researchers have 
used artificial overexpression of proteins to identify novel proteins 
involved in biological processes of interest and examine the func-
tions of their target proteins (Rine, 1991; Prelich, 2012). 
Detailed molecular mechanisms found in individual overexpression 
experiments are summarized by Prelich (2012). Here I focus on the 
results of large-scale overexpression experiments using the budding 
yeast Saccharomyces cerevisiae. I emphasize the often-overlooked 
quantitative nature of overexpression experiments, as shown by 
considering normal protein levels. I also discuss some primary 
mechanistic consequences of protein overexpression as demon-
strated in large-scale experiments.

OVEREXPRESSION EXPERIMENTS ARE INHERENTLY 
QUANTITATIVE
Many large-scale overexpression experiments have been per-
formed using transcriptional induction of strong promoters in 
yeast to identify the proteins causing growth defects when overex-
pressed (hereafter called dosage-sensitive proteins; Liu et al., 
1992; Espinet et al., 1995; Akada et al., 1997; Stevenson et al., 
2001; Boyer et al., 2004; Gelperin et al., 2005; Sopko et al., 2006; 
Niu et al., 2008; Yoshikawa et al., 2011; Douglas et al., 2012). 
In most cases, overexpression experiments are considered as qual-
itative screening methods to identify novel proteins involved in 
cell morphology and cellular processes, such as the cell cycle 
(Stevenson et al., 2001; Sopko et al., 2006; Niu et al., 2008). 
Recently the characteristics of proteins that are strongly associated 
with dosage-sensitive proteins have been surveyed in an attempt 
to uncover primary mechanistic consequences of protein overex-
pression (Gelperin et al., 2005; Sopko et al., 2006; Vavouri et al., 
2009; Ma et al., 2010; Yoshikawa et al., 2011; Makanae et al., 2013; 
Tomala and Korona, 2013).

In gene deletion experiments, the expression of a target protein 
is stopped by removing the protein-coding regions from the ge-
nome. On the other hand, in overexpression experiments, the de-
gree of overexpression of a target protein is quite diverse and varies 
with the methods and target proteins used. Therefore, to use data 
on dosage-sensitive proteins obtained by large-scale overexpres-
sion experiments for association studies, we need to recognize that 
the overexpression experiments are inherently quantitative. In the 
next sections, I discuss the quantitative nature of overexpression 
experiments, distinguishing them into two different types: absolute 
and relative.
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RELATIVE OVEREXPRESSION USING 
GENE COPY NUMBER INCREASE
Increasing the gene copy number for the 
target protein should induce overexpression 
of the target protein. Multicopy plasmids 
derived from the 2-μm plasmid are usually 
used for this purpose in budding yeast 
(Rine, 1991; Jones et al., 2008). If the ex-
pression of the protein is controlled by its 
native regulatory elements (i.e., promoter 
and terminator), the expression relative to 
its native level should increase as the copy 
number increases. If a multicopy plasmid 
with a copy number of 10 is used in the ex-
periment, the expression of the proteins 
coded on the plasmid is expected to in-
crease 10-fold (Figure 2, blue line). This type 
of experiment is considered a relative over-
expression experiment. The genetic tug-of-
war (gTOW) experiment (Moriya et al., 2006, 
2011, 2012; Kaizu et al., 2010; Makanae 

et al., 2013) is an example. In the gTOW experiment, the relative 
overexpression levels (fold increases) causing cellular defects are es-
timated by measuring the copy number limits of the genes encod-
ing the target proteins. For further discussion, I use the dosage-
sensitive protein data set obtained by Makanae et al. (2013) as a 
representative data set for the relative overexpression experiments; 
their analysis is the most extensive available.

In relative overexpression experiments, levels of target proteins 
after overexpression vary, depending on the native expression lev-
els. If a target protein is already highly expressed natively, the after 
overexpression, a much larger amount of the protein should be 
present in the cell. As shown in Figure 3A, proteins with high native 
expression are preferentially isolated as the dosage-sensitive pro-
teins in the relative overexpression experiment. High-level protein 

ABSOLUTE OVEREXPRESSION USING PROMOTER 
SWAPPING
The GAL promoter is commonly used for strong induction of protein 
expression in the budding yeast. The promoter-swapped gene cas-
settes are sometimes cloned into multicopy 2-μm plasmids to fur-
ther increase expression levels (Liu et al., 1992; Espinet et al., 1995; 
Akada et al., 1997; Stevenson et al., 2001; Boyer et al., 2004; 
Gelperin et al., 2005; Sopko et al., 2006; Niu et al., 2008; Yoshikawa 
et al., 2011; Douglas et al., 2012). In these experiments, target pro-
teins are induced at similar high levels. This type of experiment is 
considered an absolute overexpression experiment. For further dis-
cussion, I use the dosage-sensitive protein data set obtained by 
Sopko et al. (2006) as a representative data set for absolute overex-
pression experiments. That study is the most extensive, widely cited 
analysis.

Because expression levels of proteins can vary by more than 
10,000-fold (Kulak et al., 2014; Figures 1 and 2), the degree of the 
overexpression in absolute overexpression experiments should dif-
fer by some orders of magnitude. The average expression level of 
target proteins expressed by genes under the control of the GAL1 
promoter on a 2-μm plasmid has been estimated as ∼1% of the 
proteins expressed in the yeast (Tomala and Korona, 2013). Accord-
ing to recent proteome data (Kulak et al., 2014; Figure 1), 
∼50,000,000 protein molecules are expressed in a budding yeast 
cell. Only eight glycolytic enzymes are expressed more than 1% of 
the total proteins (500,000 molecules/cell). Almost all proteins are 
thus “overexpressed” in the foregoing experiment. However, the 
degree of overexpression relative to the native level should vary 
strongly among the analyzed proteins (Figure 2). If the native level 
of a target protein is 100 molecules/cell, the degree of overexpres-
sion will be estimated as 50,000-fold. If the native level of a target 
protein is 100,000 molecules/cell, the overexpression degree will be 
50-fold. Thus the absolute overexpression experiments analyze the 
consequences of comparably strong production of target proteins 
independently of their native expression levels. As shown in 
Figure 3A, proteins with natively low expression are preferentially 
isolated as the dosage-sensitive proteins in absolute overexpression 
experiments. If the native expression levels are strongly optimized 
(see later discussion), the huge degree of overexpression of low-
expression proteins can become a bias leading to preferential isola-
tion of those proteins.

FIGURE 1: Expression levels of yeast proteins and their allocations in the yeast proteome. 
Proteome data (Kulak et al., 2014; Supplemental Table S1) visualized using a proteomap 
(Liebermeister et al., 2014; www.proteomaps.net/). The area occupied by each process (left) or 
protein (right) is proportional to its relative protein amount in a cycling yeast population.

FIGURE 2: Conceptual representation of the quantitative nature of 
protein overexpression experiments. Native expression levels of yeast 
proteins (Kulak et al., 2014; Supplemental Table S1) are shown in 
black. Estimated levels of the overexpressed proteins in an absolute 
overexpression experiment (orange line) and a relative overexpression 
experiment (blue line). Estimated degrees of overexpression (fold 
increases) are shown. Highly expressed glycolytic enzymes analyzed in 
Table 1 are shown in green circles. The estimated maximal protein 
expression level (Table 1) is shown in purple.
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Overexpression experiments have also been 
performed in other organisms, such as 
Schizosaccharomyces pombe, Drosophila 
melanogaster, Arabidopsis thaliana, and 
Homo sapiens (Prelich, 2012), all using pro-
moter swapping, meaning that they are all 
absolute overexpression experiments.

CONSEQUENCES OF PROTEIN 
OVEREXPRESSION
The ways by which protein overexpression 
can cause cellular defects depend on the 
protein properties and functions (Prelich, 
2012). Several mechanisms of cellular de-
fects upon overexpression of proteins have 
been suggested from the analyses of dos-
age-sensitive proteins obtained in genome-
wide absolute (Vavouri et al., 2009; Ma 
et al., 2010; Tomala et al., 2014) and relative 
overexpression experiments (Makanae 
et al., 2013) and from the analyses of physi-
ologies of disomic yeast strains (Sheltzer 
and Amon, 2011; Tang and Amon, 2013). 
Here I focus on four primary mechanisms: 
resource overload, stoichiometric imbal-
ance, promiscuous interactions, and path-
way modulation (Figure 4). The growth de-
fects are largely explained by overload and 
toxicity (Tomala and Korona, 2013). Over-
load is an abnormal cellular environment 
created by enhancement of normal activity 
or turnover of a protein caused by its over-
expression. Toxicity is an effect causing cel-
lular defects due to novel and unrelated 
properties generated by the overexpression 
of a protein. Overload is expressed as either 
resource overload or pathway modulation. 

Toxicity is triggered by promiscuous interactions. Stoichiometric im-
balance can trigger both overload and toxicity.

RESOURCE OVERLOAD
Turnover of a protein includes its production (translation), folding, 
localization, degradation, and posttranslational modifications. 
These processes require their own cellular resources. Strong expres-
sion of a protein might overstretch these resources by monopolizing 
them, leading to cellular defects (Figure 4A). Strong expression of 
unnecessary proteins causes growth defects (Snoep et al., 1995; 
Stoebel et al., 2008; McIsaac et al., 2011). These defects are created 
by a protein burden effect. The effect becomes apparent when the 
cellular resources for protein turnover, especially the ribosomes pro-
ducing other proteins, are overstretched, monopolized by a strong 
expression of unnecessary proteins (Stoebel et al., 2008; Shachrai 
et al., 2010; Shah et al., 2013). Any otherwise harmless protein thus 
could cause growth defects due to the protein burden effect when 
it is ultimately highly expressed. In other words, proteins that have 
no harmful effects on cellular functions could be expressed at levels 
causing a protein burden. These levels are considered the maximum 
protein expression limit in a yeast cell and are almost the same for 
any protein (see later discussion).

What are the proteins expressed at these limits, and what is 
the maximum protein expression limit? We have presented evi-
dence that the limits of overexpression for some highly expressed 

expression can become a bias in the preferential isolation of such 
proteins in relative overexpression experiments. This is because the 
need for massive turnover of proteins causes cellular defects due to 
process overloads (discussed later).

A series of physiological analyses have been performed using 
disomic yeast strains with 1 of the 16 chromosomes duplicated in a 
haploid cell (Torres et al., 2007, 2008, 2010; Sheltzer et al., 2011, 
2012; Oromendia et al., 2012; Thorburn et al., 2013; Dephoure 
et al., 2014; Blank et al., 2015; Bonney et al., 2015). In each disomic 
cell, almost all of the genes on the duplicated chromosome are 
overexpressed twofold (Torres et al., 2007). This can be also consid-
ered relative overexpression. Analysis of this simultaneous overex-
pression of hundreds of genes has led to many important insights 
into the consequences of protein overexpression (Torres et al., 2008; 
Sheltzer and Amon, 2011; Tang and Amon, 2013; Oromendia and 
Amon, 2014).

As discussed, absolute and relative overexpression experiments 
carry different biases due to their quantitative nature. These experi-
ments contribute to the understanding of the consequences of pro-
tein overexpression. However, the biases have to be taken into con-
sideration when investigating the mechanistic consequences of 
protein overexpression using association analyses of large-scale bio-
logical data sets. In the following section, I discuss the independent 
mechanisms of cellular defects upon overexpression of proteins in 
the context of the quantitative nature of overexpression experiments. 

FIGURE 3: Trends in native expression levels of dosage-sensitive proteins and of proteins within 
various categories. (A) Proteins isolated in absolute and relative overexpression experiments show 
opposite trends in their native expression levels. Absolute overexpression tends to isolate lowly 
expressed proteins, whereas relative overexpression tends to isolate highly expressed proteins. 
Proteins isolated as dosage-sensitive proteins in overexpression experiments are separated by 
their expression levels, and their proportions are shown. Absolute overexpression, 603 proteins 
(Sopko et al., 2006); relative overexpression, 682 proteins (Makanae et al., 2013). (B) Proteins 
within different categories show different trends in their native expression levels, which could be 
biases to isolate dosage-sensitive proteins in overexpression experiments. Proteins within 
indicated categories are separated by their expression levels, and their proportions are shown. 
Transcription factors, 125 proteins (Teixeira et al., 2014; www.yeastract.com/); intrinsic disorder, 
439 proteins with GlobPlot score >200 (Linding et al., 2003; http://globplot.embl.de/); protein 
kinases, 114 proteins (Breitkreutz et al., 2010; www.yeastkinome.com/); membrane proteins; 255 
proteins with TMHMM score >100 (www.cbs.dtu.dk/services/TMHMM/); and protein complex 
members, 1485 proteins (Pu et al., 2009). The original data are given in Supplemental Table S1.
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Because the overexpression of glycolytic enzymes might perturb 
the glycolytic flux, these estimates do not necessarily reflect the 
maximum expression limits for other proteins. However, if a protein 
causes a cellular defect at an expression level substantially below 
this limit, we can assume that mechanisms other than the protein 
burden effect are involved. Ribosomal proteins are generally highly 
expressed (Figure 1). Among them, RPL9A and RPS12 have been 
isolated as dosage-sensitive proteins because they have low copy 
number limits (Table 1). The estimated protein levels in the overex-
pression experiments are 1.4–1.9% of the total proteome in terms of 
amino acids (Table 1), substantially lower than the limit levels calcu-
lated using the glycolytic enzymes. We can assume that there is an 
unknown mechanism other than the protein burden causing the cel-
lular defects upon the overexpression of ribosomal proteins.

Intracellular proteins are folded with the help of molecular chap-
erones, localized to specific cellular compartments by the transloca-
tion and transport machinery, and degraded by the proteasome. 
Overexpression of proteins with strong demands for those resources 
might cause resource overloads, leading to cellular defects 
(Figure 4A). Growth defects in disomic strains have been explained 

glycolytic enzymes (Tdh3, Pgk1, Cdc19, and Tpi1; Figure 2, green 
circles) are determined by the protein burden (Makanae et al., 
2013). In gTOW overexpression experiments, these proteins 
should be expressed up to the levels causing cellular defects due 
to the protein burden. As shown in Table 1, we can estimate the 
expression levels by multiplying the native expression levels by the 
copy number limits of the glycolytic enzymes (the average level is 
shown as the purple line in Figure 2). The total proteome consists 
of ∼50,000,000 molecules/cell (Kulak et al., 2014). We can esti-
mate the number of amino acids in the total proteome by multiply-
ing the number of protein molecules by their amino acid lengths 
and adding the results. This estimate gives ∼16,000,000,000 amino 
acids/cell (Supplemental Table S1). Thus we estimate the expres-
sion levels of the aforementioned glycolytic enzymes as 14.2–56.5% 
of the total proteome in terms of the number of protein molecules 
and as 14.0–41.6% of the total proteome in terms of amino acid 
molecules (Table 1). Although these are very rough estimates, the 
residual protein production capacity of a yeast cell and the maxi-
mum expression limit for any protein can be inferred from these 
results.

FIGURE 4: Primary mechanisms of cellular defects after protein overexpression. (A) Resource overload. When a protein 
requires large amounts of cellular resources for translation, folding, localization, or degradation, the overexpression of 
the protein overloads those cellular resources. The protein burden effect is believed to be one of the overload of 
translation resources (i.e., ribosomes). (B) Stoichiometric imbalance. When a protein is a subunit of a protein complex, 
the overexpression of the protein disrupts the stoichiometry. The excess of subunits causes pathway modulation, 
abnormal complex formation, or overload of the cellular protein quality control resources. (C) Promiscuous interaction. 
Enhancement of protein–protein interaction upon the overexpression of ID region–containing proteins and aggregative 
proteins causes pathway modulation or sequestration of essential proteins. Under normal conditions, complex A–C is 
either scarce or nonexistent. (D) Pathway modulation. Overexpression of a regulatory protein causes pathway 
modulation. Pathway modulation can be triggered by stoichiometric imbalance and promiscuous interactions. Most 
regulators might have very large buffering ranges to avoid an untimely pathway modulation (see text). Diagrams are 
based on process description language level 1 of the systems biology graphical notation (www.sbgn.org/). An arrow 
with an open square refers to a process. A line that ends with a circle signifies catalysis for the process to which it 
attaches. A merging arrow with a filled circle signifies association, and a branching arrow with a double circle indicates 
dissociation. The thickness of each arrow reflects the rate of each process. Processes shown with black lines happen in 
normal growth conditions. Processes shown with red lines are triggered upon overexpression of A.



3936 | H. Moriya Molecular Biology of the Cell

imbalances of protein complexes are the primary mechanisms of cel-
lular defects after protein overexpression, protein-complex mem-
bers should be preferentially isolated as the dosage-sensitive 
proteins. Although initial results supported this hypothesis (Papp 
et al., 2003), the dosage-sensitive proteins isolated in the absolute 
overexpression experiment were not preferentially the members of 
protein complexes (Sopko et al., 2006; Vavouri et al., 2009). How-
ever, the dosage-sensitive genes isolated in the relative overexpres-
sion experiment preferentially include the complex members 
(Makanae et al., 2013). In that report, the balance hypothesis was 
further validated in rescue experiments with simultaneously overex-
pressed stoichiometric partner subunits. These contradictory results 
could be explained by differences in the quantitative nature of the 
experiments. To change the balance, the proteins should be overex-
pressed in comparison with the native levels. In absolute overex-
pression experiments, the large variation in the degrees of balance 
disruptions caused by the overexpressed proteins could hide the 
cellular defects triggered by stoichiometric imbalance. Protein-com-
plex members tend to be natively highly expressed (Figure 3B). This 
might also create a bias against the isolation of complex members 
because the absolute overexpression experiment preferentially iso-
lated proteins with natively low expression, as discussed earlier 
(Figure 3A).

Note that stoichiometric imbalance in a protein complex does 
not necessarily cause immediate cellular defects. As described ear-
lier and shown in Figure 4B, cellular defects caused by stoichiomet-
ric imbalances in protein complexes depend on the functions and 
characteristics of the overexpressed proteins. For example, to over-
load cellular resources, proteins should be highly expressed. It is 
thus possible that stoichiometric imbalance in a protein with a na-
tively low expression will not cause resource overload.

PROMISCUOUS INTERACTIONS
Proteins containing regions without stable structures are called in-
trinsically disordered proteins (IDPs; Habchi et al., 2014). The ID re-
gions enable flexible protein–protein interactions (Liu and Huang, 
2014; Supplemental Table S1). Although the flexible interactions are 
advantageous to the function of these proteins, there might be 
some unwanted interactions with nonphysiological partner proteins. 
The association analysis of absolute overexpression experiments 
has shown that these promiscuous interactions might be one of the 
primary mechanisms of cellular defects (Vavouri et al., 2009; Ma 
et al., 2010; Figure 4C). Despite the tendency of IDPs to have low 

by the overload of the protein quality control machinery involved in 
protein folding and degradation (Torres et al., 2010; Oromendia 
et al., 2012). The protein degradation overload has been also tested 
by overexpression experiments using the model protein green 
fluorescent protein (GFP). The addition of a degradation signal 
to GFP increased its potential to cause cellular defects upon its 
overexpression (Makanae et al., 2013). As noted earlier, gTOW rela-
tive overexpression experiments preferentially isolate natively highly 
expressed proteins as dosage-sensitive proteins (Figure 3A). Be-
cause levels after overexpression of those proteins should be very 
high (Figure 2), they might include many proteins causing overloads 
of different cellular resources.

STOICHIOMETRIC IMBALANCE
The expression level of each protein (as shown in Figure 1) should 
be ultimately determined by various types of equilibrium: the bal-
anced numbers of subunits within a protein complex and of protein 
complexes within a cellular module and balance among cellular 
modules. Appropriate resource allocation in cellular modules should 
maximize cellular performance (Liebermeister et al., 2014). For ex-
ample, the production rate of each subunit of a complex is highly 
related to the molecular ratio (stoichiometry) of the subunit within 
the complex (Li et al., 2014). This indicates that cellular systems are 
optimized to keep protein expression in balance. Because overex-
pression of a protein complex member perturbs the equilibrium, 
stoichiometric imbalance is believed to be a primary mechanism of 
cellular defects upon protein overexpression (balance hypothesis; 
Papp et al., 2003; Veitia et al., 2008; Figure 4B). Examples of cellular 
defects caused by overexpression-triggered disruption of the stoi-
chiometric balance in complexes have been reported. Overexpres-
sion of a catalytic subunit relative to a regulatory subunit causes 
constitutive activation/inactivation of the catalytic subunit (de Nadal 
et al., 1998; Kaizu et al., 2010; Moriya et al., 2011). Overexpression 
of a subunit in comparison with the expression of other subunits 
causes an abnormal toxic complex formation (Abruzzi et al., 2002). 
The disomic yeast can suffer from overloads of the protein quality 
control resources (most probably caused by unnecessary subunit 
production) due to stoichiometric imbalances (Torres et al., 2010; 
Oromendia et al., 2012).

Although stoichiometric imbalance explains the results of indi-
vidual overexpression experiments, contradictory results have been 
obtained from large-scale experiments. About 30% of yeast proteins 
are protein-complex members (Pu et al., 2009). If stoichiometric 

Gene 
name

ORF 
name

Protein molecules 
per cell (% of total 

proteome) (#1)

Gene copy 
number limit 

(#2)

Protein length 
(amino acids) 

(#3)

Product of  
#1 × #2 molecules  

(% of total proteome)

Product of  
#1 × #2 × #3 amino acids 

(% of total proteome)

TDH3 YGR192C 1,575,311 (3.3) 4.3 332 6,801,949 (14.2) 2,258,246,952 (14.0)

PGK1 YCR012W 561,265 (1.2) 22.0 416 1,2358,595 (25.8) 5,141,175,549 (31.9)

CDC19 YAL038W 404,162 (0.8) 31.8 500 12,864,113 (26.9) 6,432,056,484 (39.9)

TPI1 YDR050C 395,237 (0.8) 68.5 248 27,054,398 (56.5) 6,709,490,697 (41.6)

RPL9A YGL147C 265,169 (0.6) 6.2 191 1,642,828 (3.4) 313,780,172 (1.9)

RPS12 YOR369C 258,298 (0.5) 6.2 143 1,611,136 (3.4) 230,392,526 (1.4)

Total  
proteome

47,900,214 16,130,396,439

The original data are given in Supplemental Table S1.

TABLE 1: Estimation of absolute overexpression levels of proteins in relative overexpression experiments.
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these proteins above the threshold might cause untimely activation/
inactivation of their target pathways. If this causes cellular defects, 
these proteins could be dosage sensitive (pathway modulation; 
Figure 4D; Sheltzer and Amon, 2011). Such pathway modulations 
have been repeatedly observed in individual overexpression experi-
ments (Prelich, 2012). However, regulatory proteins are not prefer-
entially isolated as dosage-sensitive proteins in gTOW relative over-
expression experiments (Makanae et al., 2013). This suggests that 
the pathway overloads happen only when regulatory proteins are 
expressed in large excess above their native levels; the responses of 
biological systems to changes in intracellular parameters are inher-
ently robust (Alon et al., 1999; Little et al., 1999; von Dassow et al., 
2000; Kitano, 2004). Further analyses will be required to confirm the 
pathway modulation mechanisms. Such modulations could be rela-
tively easily detected using transcriptome analyses of the down-
stream genes specific for each pathway.

CONCLUSION
I have discussed the quantitative nature of overexpression experi-
ments and some primary consequences of protein overexpression 
as revealed in the large-scale studies. Figure 2 is a conceptual pre-
sentation of absolute and relative overexpression experiments. It 
allows an intuitive understanding of the quantitative nature of over-
expression and illustrates the importance of measurements of over-
expressed protein levels. Some pioneering studies have revealed 
the diversity of protein expression levels even in absolute overex-
pression experiments (Gelperin et al., 2005; Tomala and Korona, 
2013; Tomala et al., 2014). It is important to measure precisely the 
limits of protein expression to obtain a clear picture of the conse-
quences of protein overexpression leading to cellular defects.

Another issue is the confirmation of the hypotheses described. 
The consequences of protein overexpression are complex because 
the functions and characteristics of proteins are diverse but inter-
connected. For example, IDPs include many transcription factors 
and protein kinases. Overexpression of these regulatory factors 
could cause both promiscuous interactions and pathway modula-
tions. Overexpression of a protein-complex member could cause 
pathway activation and overloads. Further systematic analysis of cel-
lular physiology using omics technologies and suppressor mutants 
(such as in the analyses of disomic strains; Torres et al., 2010) are 
needed. Systematic genetic interaction analyses (Sopko et al., 2006; 
Douglas et al., 2012) and analyses using model proteins (Geiler-
Samerotte et al., 2011; Makanae et al., 2013; Park et al., 2013; 
Tomala et al., 2014) should help to dissect the consequences of pro-
tein overexpression. Ideally, we should find a biomarker or a reporter 
associated with each mechanism to assess it properly.

native expression levels (Figure 3B; Gsponer et al., 2008), they also 
have been preferentially isolated as dosage-sensitive proteins in 
gTOW overexpression experiments (Makanae et al., 2013). The hy-
pothetical involvement of promiscuous interactions in cellular de-
fects is thus supported by both absolute and relative overexpression 
experiments.

Promiscuous interaction–triggered cellular defects are difficult to 
validate in vivo because of the diversity of the functions and charac-
teristics of IDPs. We do not have good model proteins or model 
domains for testing such interactions. Regulatory proteins such as 
transcription factors and signaling molecules often contain ID re-
gions (Supplemental Table S1). Systematic physiological analyses, 
such as transcriptome analyses of cells overexpressing these IDPs, 
might distinguish the consequences of promiscuous interactions 
(e.g., unexpected pathway activation and stress response) from 
pathway overloads (see later discussion). The degree of false-posi-
tive (unexpected) interactions in two-hybrid analyses could be an 
index for promiscuous interactions because strong promoters are 
normally used in these experiments (Uetz et al., 2000; Ito et al., 
2001).

Strong expression of aggregative proteins, such as the disease-
related heterologous proteins misfolded yellow fluorescent protein 
mutants, causes cellular defects in yeast cells (Geiler-Samerotte 
et al., 2011; Kaiser et al., 2013; Park et al., 2013). Some protein ag-
gregates are toxic because they capture essential proteins and limit-
ing chaperones into the aggregates (Treusch and Lindquist, 2012; 
Kaiser et al., 2013; Park et al., 2013). Protein aggregates could cause 
toxicity, lead to novel and unwanted protein–protein interactions, 
and overload protein quality control resources. Although overex-
pressed endogenous proteins sometimes form aggregates in yeast 
cells, they do not necessarily lead to cellular defects; they might 
even have a positive effect on environmental adaptation (Alberti 
et al., 2009). Their toxicities might depend on the proteins with 
which they interact. Association studies suggest that aggregative 
proteins tend to be dosage sensitive (Gsponer and Babu, 2012). 
However, it has not been experimentally demonstrated that protein 
aggregates are the primary cause of cellular defects after protein 
overexpression.

PATHWAY MODULATION
The expression level of each protein seems to be optimized to maxi-
mize cellular functionality. It is possible that the more the expression 
level is changed, the more cellular functions are negatively affected. 
If this were true, proteins with low native expression would be iso-
lated as dosage-sensitive proteins in absolute overexpression experi-
ments. In these experiments, such proteins tend to be overexpressed 
substantially above their native levels (Figures 2 and 3). Transcription 
factors, protein kinases, membrane proteins, and IDPs tend to be 
lowly expressed (Figure 3B). These proteins, except for IDPs, are 
preferentially isolated as dosage-sensitive proteins in absolute over-
expression experiments (Sopko et al., 2006), but not in gTOW rela-
tive overexpression experiments (Makanae et al., 2013). One simple 
explanation is that they are isolated as dosage-sensitive proteins in 
absolute overexpression experiments because their levels of overex-
pression are far beyond their physiological concentrations.

Activities of regulatory molecules such as transcription factors 
and signaling molecules are usually modulated in response to 
changes in external and internal cellular conditions. Their biochemi-
cal characteristics, such as binding constants and enzymatic activi-
ties, should differ by some orders of magnitude to avoid unwanted 
activation/inactivation of target pathways in which they are involved. 
Due to a mass-action effect, overexpression of inactive forms of 
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