Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Poly[[tris(μ_{3}-2-oxidopyridinium-3carboxylato)manganese(II)sodium(I)] monohydrate]

Bing-Yu Zhang, Jing-Jing Nie and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's
Republic of China
Correspondence e-mail: xudj@mail.hz.zj.cn

Received 21 January 2010; accepted 24 January 2010
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; disorder in solvent or counterion; R factor $=0.033 ; w R$ factor $=0.099$; data-toparameter ratio $=12.8$.

In the crystal structure of the title compound, $\left\{\left[\mathrm{MnNa}\left(\mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}\right.\right.\right.$ $\left.\left.\left.\mathrm{NO}_{3}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Mn}^{\mathrm{II}}$ cation is located on a threefold rotation axis and is chelated by three 2-oxidopyridinium-3carboxylate (opc) anions in an octahedal coordination. The Na^{I} cation is located on a threefold rotation axis and is surrounded by six O atoms from three opc anions. The opc anions link the Mn and Na cations, forming a threedimensional polymeric structure. The uncoordinated water molecule, located on a threefold rotation axis, is equally disordered over two sites. The three-dimensional network is consolidated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For related $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{II}}$ complexes, see: Zhang et al. (2009a,b). For comparison $\mathrm{C}-\mathrm{O}$ bond distances in 2-oxido-pyridinium-3-carboxylate and 2-hydroxypyridinecarboxylate complexes, see: Yao et al. (2004); Yan \& Hu (2007a,b); Wen \& Liu (2007); Quintal et al. (2002). For comparison C-O bond distances in 2-hydroxybenzoic acid and 2-hydroxybenzoate complexes, see: Munshi \& Guru Row (2006); Su \& Xu (2005); Li et al. (2005).

Experimental

Crystal data
$\left[\mathrm{MnNa}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=510.25$
Trigonal, R3c
$a=10.1478$ (18) \AA
$c=37.420$ (13) A
$V=3337.1(15) \AA^{3}$
Data collection
Rigaku R-AXIS RAPID IP diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.822, T_{\text {max }}=0.840$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033 \quad$ H-atom parameters constrained
$w R\left(F^{2}\right)=0.099$
$\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
$S=1.16$
1315 reflections
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e}^{-3}$
103 parameters
1 restraint
$Z=6$
Mo $K \alpha$ radiation
$\mu=0.67 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$0.33 \times 0.28 \times 0.26 \mathrm{~mm}$

6825 measured reflections
1315 independent reflections 1236 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Table 1
Selected bond lengths (\AA).

$\mathrm{Mn}-\mathrm{O} 2$	$2.123(3)$	$\mathrm{Na} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.331(2)$
$\mathrm{Mn}-\mathrm{O} 3$	$2.168(2)$	$\mathrm{Na} 1-\mathrm{O} 3$	$2.459(3)$

Symmetry code: (i) $-x+y+\frac{4}{3}, y+\frac{2}{3}, z+\frac{1}{6}$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.90	2.12	$2.983(4)$	161
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.90	2.37	$3.113(4)$	140

Symmetry code: (ii) $x+\frac{1}{3}, x-y-\frac{1}{3}, z+\frac{1}{6}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the ZIJIN project of Zhejiang University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2724).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Munshi, P. \& Guru Row, T. N. (2006). Acta Cryst. B62, 612-626.

metal-organic compounds

Quintal, S. M. O., Nogueira, H. I. S., Felix, V. \& Drew, M. G. B. (2002). Polyhedron, 21, 2783-2791.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Su, J.-R. \& Xu, D.-J. (2005). Acta Cryst. C61, m256-m258.

Wen, D.-C. \& Liu, S.-X. (2007). Chin. J. Struct. Chem. 26, 1281-1284.
Yan, H.-Y. \& Hu, T.-Q. (2007a). Acta Cryst. E63, m2325.
Yan, H.-Y. \& Hu, T.-Q. (2007b). Acta Cryst. E63, m2326.
Yao, Y., Cai, Q., Kou, H., Li, H., Wang, D., Yu, R., Chen, Y. \& Xing, X. (2004). Chem. Lett. 33, 1270-1271.
Zhang, B.-Y., Nie, J.-J. \& Xu, D.-J. (2009a). Acta Cryst. E65, m977.
Zhang, B.-Y., Nie, J.-J. \& Xu, D.-J. (2009b). Acta Cryst. E65, m987-m988.

supplementary materials

Poly[[tris(μ_{3}-2-oxidopyridinium-3-carboxylato)manganese(II)sodium(I)] monohydrate]

B.-Y. Zhang, J.-J. Nie and D.-J. Xu

Comment

As a part of ongoing investigation on $\pi-\pi$ stacking (Li et al., 2005), the title complex has been prepared in the laboratory and its crystal structure is reported here.

In the crystal structure the $\mathrm{Mn}^{\mathrm{II}}$ cation is located in a three-fold ratation axis and is chelated by three 2-oxidopyridinium-3-carboxylate (opc) anions in a distorted anti-triprism geometry (Fig. 1). The Na^{I} cation is located on the same three-fold rotation axis and is surrounded by six O atoms from three opc anions (Table 1). The opc anions link the Mn and Na cations to form the three dimensional polymeric structure.

The shorter $\mathrm{C}-\mathrm{O}$ bond distance of 1.251 (4) \AA is observed between the deprotonated hydroxy group and pyridinium ring. This is similar to those found in the related complexes of oxidopyridinium-carboxylate (Yao et al., 2004; Yan \& Hu, 2007a,b; Wen \& Liu, 2007; Zhang et al. 2009a,b), it is also consistent with that found in hydroxy-pyridinecarboxylate complex (Quintal et al. 2002). This finding suggests the electron delocalization between pyridine ring and hydroxy group. But this shorter $\mathrm{C}-\mathrm{O}$ bond is much different from the $\mathrm{C}-\mathrm{O}$ bond distance of ca. $1.35 \AA$ between benzene ring and hydroxy- O atom found in hydroxy-benzencarboxylic acid (Munshi \& Guru Row, 2006) and in hydroxy-benzenecarboxylate complexes of metals (Su \& Xu, 2005; Li et al., 2005).

The lattice water molecule located on the three-fold rotation axis is disordered over two sites with 0.5 occupancies for each component. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bondings are present in the polymeric structure. No $\pi-\pi$ stacking is observed in the crystal structure.

Experimental

2-Hydroxy-pyridine-3-carboxylic acid ($0.13 \mathrm{~g}, 1 \mathrm{mmol}$), $\mathrm{NaOH}(0.04 \mathrm{~g}, 1 \mathrm{mmol})$, imidazole $(0.14 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2}$ $(0.18 \mathrm{~g}, 1 \mathrm{mmol})$ and water $(8 \mathrm{ml})$ and ethanol $(2 \mathrm{ml})$ were sealed in a 25 ml stainless steel reactor with a Teflon liner. The reaction system was heated at 433 K for 9 h . After the mixture was cooled to room temperature the single crystals of the title complex were obtained.

Refinement

The lattice water molecule is disordered over two sites with 0.5 occupancy for each component, the water H atom was placed in a chemical sensitive position and refined in a riding mode with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{O} 1 \mathrm{~W})$. The H atom bonded to the pyridine N was located in a difference Fourier map and refined as riding in as-found relative position with $\mathrm{U}_{\text {iso }}(\mathrm{H})=$ $1.2 \mathrm{U}_{\text {eq }}(\mathrm{N})$. Other H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93$ and refined in riding mode with $\mathrm{U}_{\text {iso }}(\mathrm{H})$ $=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$.

supplementary materials

Figures

Fig. 1. The coordination environment around a Mn cation and a Na cation with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry codes: (i) $1-y, x-y, z$; (ii) $1-x+y, 1-x, z]$.

Poly[[tris(μ_{3}-2-oxidopyridinium-3-carboxylato)manganese(II)sodium(I)] monohydrate]

Crystal data

$\left[\mathrm{MnNa}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=510.25$
Trigonal, R3c
Hall symbol: R 3-2"c
$a=10.1478$ (18) \AA
$c=37.420(13) \AA$
$V=3337.1(15) \AA^{3}$
$Z=6$
$F(000)=1554$
$D_{\mathrm{x}}=1.523 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1286 reflections
$\theta=2.6-25.0^{\circ}$
$\mu=0.67 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Prism, brown
$0.33 \times 0.28 \times 0.26 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID IP
diffractometer
Radiation source: fine-focus sealed tube
graphite
Detector resolution: 10.00 pixels mm^{-1}
ω scan
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.822, T_{\text {max }}=0.840$
1315 independent reflections
1236 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25.2^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-44 \rightarrow 44$
6825 measured reflections

Refinement

Refinement on $F^{2} \quad$ Secondary atom site location: difference Fourier map
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.099$
$S=1.16$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0683 P)^{2}+0.0175 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$

1315 reflections

103 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
$\Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.49 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983), 649 Friedel pairs
Flack parameter: -0.01 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Mn	0.6667	0.3333	$0.87519(2)$	$0.0258(2)$	
$\mathrm{Na1}$	0.6667	0.3333	$0.96375(5)$	$0.0283(5)$	
N 1	$0.7336(3)$	$0.0138(3)$	$0.93953(7)$	$0.0401(6)$	
H 1 N	0.7655	0.0750	0.9589	0.048^{*}	
O1	$0.4925(3)$	$-0.1044(3)$	$0.82611(6)$	$0.0464(6)$	
O2	$0.5735(3)$	$0.1281(3)$	$0.84538(6)$	$0.0377(6)$	
O3	$0.6999(3)$	$0.1941(3)$	$0.91404(6)$	$0.0425(6)$	
C1	$0.5566(3)$	$-0.0028(3)$	$0.84910(7)$	$0.0292(6)$	
C2	$0.6173(3)$	$-0.0412(3)$	$0.88206(8)$	$0.0321(6)$	
C3	$0.6828(3)$	$0.0635(3)$	$0.91133(8)$	$0.0293(6)$	
C4	$0.7283(6)$	$-0.1207(4)$	$0.94099(12)$	$0.0596(12)$	
H4	0.7664	-0.1454	0.9609	0.072^{*}	
C5	$0.6677(6)$	$-0.2210(4)$	$0.91359(12)$	$0.0689(13)$	
H5	0.6651	-0.3139	0.9141	0.083^{*}	
C6	$0.6092(6)$	$-0.1799(4)$	$0.88440(12)$	$0.0581(12)$	
H6	0.5631	-0.2494	0.8659	0.070^{*}	
O1W	0.6667	0.3333	$0.6735(14)$	$0.26(3)$	0.50
H1W	0.5895	0.3288	0.6601	0.310^{*}	0.6667
O2W	0.6667	0.3333	$0.6459(14)$	$0.30(3)$	0.50

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn	$0.0289(3)$	$0.0289(3)$	$0.0195(4)$	$0.01446(13)$	0.000	0.000
Na 1	$0.0312(7)$	$0.0312(7)$	$0.0225(11)$	$0.0156(4)$	0.000	0.000
N 1	$0.0555(16)$	$0.0401(14)$	$0.0283(13)$	$0.0266(13)$	$-0.0171(12)$	$-0.0075(10)$
O 1	$0.0624(15)$	$0.0393(12)$	$0.0297(12)$	$0.0195(12)$	$-0.0221(12)$	$-0.0113(10)$

O2	$0.0536(14)$	$0.0337(13)$	$0.0250(11)$	$0.0213(9)$	$-0.0148(10)$	$-0.0030(10)$
O3	$0.0703(17)$	$0.0398(13)$	$0.0283(12)$	$0.0358(13)$	$-0.0199(12)$	$-0.0107(11)$
C1	$0.0288(14)$	$0.0302(16)$	$0.0235(13)$	$0.0110(12)$	$-0.0031(12)$	$-0.0034(12)$
C2	$0.0360(14)$	$0.0296(14)$	$0.0269(15)$	$0.0135(13)$	$-0.0089(12)$	$-0.0046(12)$
C3	$0.0348(15)$	$0.0314(15)$	$0.0238(13)$	$0.0180(13)$	$-0.0069(11)$	$-0.0005(11)$
C4	$0.094(3)$	$0.050(2)$	$0.044(2)$	$0.043(2)$	$-0.031(2)$	$-0.0023(17)$
C5	$0.113(4)$	$0.042(2)$	$0.063(2)$	$0.047(3)$	$-0.041(2)$	$-0.011(2)$
C6	$0.091(3)$	$0.0422(19)$	$0.048(2)$	$0.038(2)$	$-0.034(2)$	$-0.0189(17)$
O1W	$0.31(4)$	$0.31(4)$	$0.16(4)$	$0.15(2)$	0.000	0.000
O2W	$0.34(5)$	$0.34(5)$	$0.23(6)$	$0.17(2)$	0.000	0.000

Geometric parameters $\left({ }_{A},^{\circ}\right)$

$\mathrm{Mn}-\mathrm{O} 2$	2.123 (3)
$\mathrm{Mn}-\mathrm{O} 2{ }^{\text {i }}$	2.123 (3)
$\mathrm{Mn}-\mathrm{O} 2^{\text {ii }}$	2.123 (3)
$\mathrm{Mn}-\mathrm{O} 3$	2.168 (2)
$\mathrm{Mn}-\mathrm{O} 3^{\text {i }}$	2.168 (2)
$\mathrm{Mn}-\mathrm{O} 3^{\text {ii }}$	2.168 (2)
$\mathrm{Mn}-\mathrm{Na} 1$	3.314 (2)
$\mathrm{Na}-\mathrm{O} 1^{\text {iii }}$	2.331 (2)
$\mathrm{Na}-\mathrm{O} 1^{\text {iv }}$	2.331 (3)
$\mathrm{Na}-\mathrm{O} 1^{\mathrm{v}}$	2.331 (2)
$\mathrm{Na} 1-\mathrm{O} 3$	2.459 (3)
$\mathrm{Na}-\mathrm{O} 3{ }^{\text {i }}$	2.459 (3)
$\mathrm{Na}-\mathrm{O} 3^{\text {ii }}$	2.459 (3)
N1-C4	1.339 (5)
N1-C3	1.376 (4)
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{O} 2^{\mathrm{i}}$	94.91 (9)
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{O} 22^{\text {ii }}$	94.91 (9)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Mn}-\mathrm{O} 2^{\mathrm{ii}}$	94.91 (9)
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{O} 3$	81.45 (8)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Mn}-\mathrm{O} 3$	105.70 (10)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Mn}-\mathrm{O} 3$	159.28 (9)
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{O} 3{ }^{\text {i }}$	159.28 (9)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mn}-\mathrm{O} 3^{\mathrm{i}}$	81.45 (8)
$\mathrm{O} 2{ }^{\mathrm{ii}}-\mathrm{Mn}-\mathrm{O} 3^{\mathrm{i}}$	105.70 (10)
$\mathrm{O} 3-\mathrm{Mn}-\mathrm{O} 3^{\text {i }}$	79.96 (10)
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{O} 3^{\text {ii }}$	105.70 (11)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mn}-\mathrm{O} 3^{\mathrm{ii}}$	159.28 (9)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Mn}-\mathrm{O} 3{ }^{\text {ii }}$	81.45 (8)
$\mathrm{O} 3-\mathrm{Mn}-\mathrm{O} 3^{\text {ii }}$	79.96 (10)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Mn}-\mathrm{O} 3^{\text {ii }}$	79.96 (10)
$\mathrm{O} 2-\mathrm{Mn}-\mathrm{Na} 1$	121.71 (7)

$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	0.9033
$\mathrm{O} 1-\mathrm{C} 1$	$1.247(4)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.260(4)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.251(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.514(4)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.370(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.437(4)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.356(6)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.403(6)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W}$	0.9106
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 1 \mathrm{~W}$	0.9294

$\mathrm{O} 3-\mathrm{Na}-\mathrm{O}^{\text {ii }}$	69.00 (10)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Na}-\mathrm{O} 3^{\text {ii }}$	69.00 (10)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Na} 1-\mathrm{Mn}$	117.77 (8)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Na} 1-\mathrm{Mn}$	117.77 (8)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Na} 1-\mathrm{Mn}$	117.77 (8)
$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{Mn}$	40.85 (6)
$\mathrm{O} 3{ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{Mn}$	40.85 (6)
O3ii ${ }^{\text {ii }}$ - $\mathrm{Na} 1-\mathrm{Mn}$	40.85 (6)
C4-N1-C3	125.0 (3)
C4-N1-H1N	119.0
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	115.8
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Na} 1^{\mathrm{vi}}$	163.8 (2)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Mn}$	137.3 (2)
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{Mn}$	130.64 (19)
C3-O3-Na1	133.1 (2)
$\mathrm{Mn}-\mathrm{O} 3-\mathrm{Na} 1$	91.26 (9)

sup-4

supplementary materials

$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Mn}-\mathrm{Na} 1$	121.71 (7)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	122.4 (3)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Mn}-\mathrm{Na} 1$	121.71 (7)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.4 (3)
$\mathrm{O} 3-\mathrm{Mn}-\mathrm{Na} 1$	47.89 (6)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	120.3 (3)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Mn}-\mathrm{Na} 1$	47.89 (7)	C6-C2-C3	118.6 (3)
$\mathrm{O} 3{ }^{\mathrm{ii}}-\mathrm{Mn}-\mathrm{Na} 1$	47.89 (6)	C6-C2-C1	119.5 (3)
$\mathrm{O} 1^{\text {iiii }}-\mathrm{Na}-\mathrm{O} 1^{\text {iv }}$	100.04 (10)	C3-C2-C1	121.8 (2)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Na}-\mathrm{Ol}^{\text {v }}$	100.04 (10)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{N} 1$	116.6 (3)
$\mathrm{O1}{ }^{\text {iv }}-\mathrm{Na} 1-\mathrm{Ol}^{\text {v }}$	100.04 (10)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	127.8 (3)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 3$	149.83 (11)	N1-C3-C2	115.6 (2)
$\mathrm{O} 1{ }^{\text {iv }}-\mathrm{Na} 1-\mathrm{O} 3$	109.27 (10)	N1-C4-C5	120.4 (4)
$\mathrm{O} 1{ }^{\text {v }}-\mathrm{Na} 1-\mathrm{O} 3$	82.12 (8)	N1-C4-H4	119.8
$\mathrm{O} 1^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {i }}$	82.12 (8)	C5-C4-H4	119.8
$\mathrm{O} 1^{\text {iv }}-\mathrm{Na} 1-\mathrm{O} 3^{\text {i }}$	149.83 (11)	C4-C5-C6	117.8 (3)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Na}-\mathrm{O} 3^{\text {i }}$	109.27 (10)	C4-C5-H5	121.1
$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O} 3^{\text {i }}$	69.00 (10)	C6-C5-H5	121.1
$\mathrm{O} 1^{\text {iiii }}-\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {ii }}$	109.27 (10)	C2-C6-C5	122.5 (4)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {ii }}$	82.12 (8)	C2-C6-H6	118.7
$\mathrm{O} 1^{\mathrm{v}}$ - $\mathrm{Na} 1-\mathrm{O} 3{ }^{\text {ii }}$	149.83 (11)	C5-C6-H6	118.7

Symmetry codes: (i) $-y+1, x-y, z$; (ii) $-x+y+1,-x+1, z$; (iii) $-x+y+4 / 3, y+2 / 3, z+1 / 6$; (iv) $-y+1 / 3,-x+2 / 3, z+1 / 6$; (v) $x+1 / 3, x-y-1 / 3$, $z+1 / 6$; (vi) $-x+y+2 / 3, y-2 / 3, z-1 / 6$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{V}}$	0.90	2.12	$2.983(4)$	161
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 2^{\mathrm{V}}$	0.90	2.37	$3.113(4)$	140

Symmetry codes: (v) $x+1 / 3, x-y-1 / 3, z+1 / 6$.

supplementary materials

Fig. 1

