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Abstract

Background: Mesenchymal stem cells (MSC) are currently strong candidates for cell-based therapies. They are well known
for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the
treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that
provides consistent long-term benefits for patients with multiple system atrophy (MSA), a fatal late onset a-
synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful
approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural
improvement, neuroprotection and modulation of neuroinflammation in the (PLP)-asynuclein (aSYN) MSA model.

Methodology/Principal Findings: MSCs were intravenously applied in aged (PLP)-aSYN transgenic mice. Behavioural
analyses, defining fine motor coordination and balance capabilities as well as stride length analysis, were performed to
measure behavioural outcome. Neuroprotection was assessed by quantifying TH neurons in the substantia nigra pars
compacta (SNc). MSC treatment on neuroinflammation was analysed by cytokine measurements (IL-1a, IL-2, IL-4, IL-5, IL-6,
IL-10, IL-17, GM-CSF, INFc, MCP-1, TGF-b1, TNF-a) in brain lysates together with immunohistochemistry for T-cells and
microglia. Four weeks post MSC treatment we observed neuroprotection in the SNc, as well as downregulation of
cytokines involved in neuroinflammation. However, there was no behavioural improvement after MSC application.

Conclusions/Significance: To our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse
model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our
data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models.
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Introduction

Multiple system atrophy (MSA) denotes an adult-onset neurode-

generative disorder of relentless progression and unknown aetiology

that is clinically characterized by the variable combination of

autonomic failure, levodopa-unresponsive parkinsonism, cerebellar

ataxia, and pyramidal signs. MSA affects men and woman equally,

usually starting in the sixth decade and progresses rapidly with death

occurring after an average of nine years [1]. Pathological features

cover selective neuronal cell loss and gliosis in the basal ganglia,

cerebellum, pontine and inferior olivary nuclei, pyramidal tract,

intermediolateral cell column and Onuf’s nucleus [2].

Morphologically, MSA is considered a primary oligodendro-

gliopathy based on the cellular hallmark, the glial cytoplasmic

inclusions (GCIs) [3]. GCIs contain primarily a-synuclein (aSYN)

and hence link MSA with other a-synucleinopathies, such as

Parkinson’s disease (PD) and dementia with Lewy Bodies (DLB)

[4,5]. Still the underlying mechanism of aSYN aggregates, which

appear to play a fundamental role in disease pathogenesis, remains

to be determined. However, several molecular and cellular

changes, including oxidative stress, mitochondrial dysfunction

and apoptotic processes might be involved in neuronal degener-

ation [1,6,7].

Microglial activation has been reported to parallel the neuronal

multisystem degeneration in MSA [8], suggesting neuroinflamma-

tion as a key pathogenic mechanism comparable to findings in PD

[9]. During the last years, studies analysing polymorphism of genes

involved in inflammatory processes, such as interleukin-1alpha

(IL-a), interleukin-1beta (IL-1b), interleukin-8, intercellular adhe-

sion molecule-1 and tumor necrosis factor showed elevated MSA

risk [10]. These studies point towards a possible role of

neuroinflammation in MSA pathogenesis.

At present, MSA therapy is only symptomatic and mainly

targets parkinsonism and autonomic failure [2] as there is no drug
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treatment that provides MSA patients with consistent long-term

benefits. Neuroprotective or regenerative strategies, including

neurotransplantation, appear to be an alternative therapeutic

approach for managing MSA patients. Experimentally, different

cell types for neural restoration in MSA have been tried. E13

whole ganglionic eminence grafts survive and exert functional

benefit in toxin-based MSA models [11–13]. Moreover, survival,

integration and functional benefit of E13 ventral mesencephalic

(VM) grafts in toxin-based MSA models has been demonstrated

[14] .

A particular type of stem cells which is considered clinically

more attractive, ethically less problematic and exhibiting immu-

nological properties that make them superior over other cell types

are mesenchymal stem cells (MSCs). First described by Frieden-

stein and colleagues [15], as a population of bone marrow (BM)

cells, also known as fibroblast-colony-forming cells, which adhere

to cell culture plastic surfaces, these cells were shown to

differentiate into many mesodermal derivatives, such as adipo-

cytes, osteocytes and chondrocytes, in vitro and in vivo when

exposed to appropriate stimuli [16,17].

The MSCs’ ability to differentiate into neural-like and glial-like

cells could be shown, albeit in vitro only [18,19]. Based on this and

similar results, subsequent studies have been initiated and designed

in order to prove these cells’ potential to support neuroregenera-

tion and also to provoke their immunomodulatory properties in

regions, which are actually void of MSC (reviewed in [20]). This

particular body of literature is vastly growing, yet lacking strong in

vivo evidence which demonstrates that MSCs, unless they are

ectopically placed there or infused in large numbers, are indeed

capable of bringing forth neuro-ectodermal derivatives. In light of

this, many findings and interpretations remain elusive [21].

Long-term clinical and radiological effects of MSCs in patients

with MSA have been described by Lee and co-workers in 2008

[22]. In an open-label study design, the neurological deficits in 11

patients with the cerebellar type of MSA (MSA-C), who received

consecutively intra-arterial and three repeated intravenous injec-

tions for three months, were compared with non-treated MSA

patients, demonstrating a delay in progression of neurological

deficits after MSC therapy [22]. A recent study by the same group

investigated successful neuroprotective and immunomodulatory

effects of human MSCs in a double-toxin induced animal model of

MSA-P [23]. However this double-toxin induced model solely

represents striatonigral-like pathology, without reproducing oligo-

dendroglial inclusion pathology, mediating secondary neuronal

multisystem degeneration [3].

At present to our knowledge, there is no experimental evidence

for the neuroregenerative potential of MSCs in transgenic mice,

overexpressing oligodendroglial aSYN, mimicking important

aspects of MSA, such as neuronal loss linked to MSA-like

progressive autonomic failure, cerebellar ataxia and parkinsonism,

GCI pathology, astrogliosis and microglial activation. For this

reason we applied murine MSCs intravenously in aged (PLP)-

aSYN transgenic mice and analysed possible neuroprotective

effects and the capacity of modulating neuroinflammation.

Methods

Animals
In the present study homozygous (PLP)-a-SYN mice [24] at the

age of 18 months were used. The animal study was designed

compliant with the Austrian guidelines for the care and use of

laboratory animals and all experiments were approved by the

Federal Ministry for Education, Science and Research of Austria

with the reference number do. ZI. 5004. Animals were housed at

the Animal Facility of the Innsbruck Medical University under a

12-hour light/dark cycle with food and water available ad libitum.

Isolation of GFP MSCs
MSCs were obtained from C57BL/6-Tg(UBC-GFP)30Scha/J

mice (Charles River, Germany), 6–8 weeks old, expressing the

enhanced green fluorescent protein (GFP) gene under the human

ubiquitin C promoter [25]. Primary GFP mMSC cultures were

isolated according to established protocols [26].

Briefly, tibia and femur were treated with collagenase (Sigma,

St. Louis, MO, USA) for 2 h, 37uC, 20% O2, 5% CO2.

Thereafter, fragmented bones were centrifuged and cell fractions

were loaded on a Ficoll-Paque Plus gradient (Amersham

Biosciences, Piscataway, NJ, USA) to harvest cells from the

interphase, followed by a washing step. The isolated bone marrow

cells were seeded for expansion in complete isolation medium

constituted of RPMI-1640 (Gibco, Invitrogen, Carlsbad, Ca, USA)

supplemented with 20% fetal bovine serum (Invitrogen), 100

units/ml penicillin and 100 mg/ml streptomycin (Invitrogen). After

24 hours non-adhering cells were removed by extensive washing

with Dulbecco’s phosphate buffered saline (DPBS Invitrogen). The

attached cells were cultured until confluent and subsequently

subcultured at low density (50 cells/cm2) with complete expansion

medium consistent of Iscove’s Modified Dulbecco’s Medium

(IMDM, Invitrogen) supplemented with 20% fetal bovine serum

(Invitrogen), 100 units/ml penicillin and 100 mg/ml streptomycin

(Invitrogen). Medium exchange was performed twice weekly.

Characterization of GFP MSCs by flow cytometry
GFP MSCs were washed with DPBS, harvested with 0.25%

trypsin and 1 mM EDTA (Invitrogen) for five minutes at 37uC,

divided into round-bottom polystyrene tubes and incubated with

pooled mouse IgG (Sigma Aldrich, St. Louis, MO, USA) for 15

minutes at room temperature (RT). Subsequently, cells were

labelled with phycoerythrin (PE)- or peridinin-chlorophyll protein

complex (PerCP)-conjugated monoclonal antibodies (mABs)

specific for CD29, CD11b, CD105, CD34, CD117 (c-kit),

CD44, Ly6A/E (Sca-1) (all Biolegend, San Diego, CA, USA) as

wells as SSEA-4 (R&D Systems, Mineapolis, MN, USA), MHC

Class II (I-A/I-E), MHC Class I (H2D) and CD45 (all Becton

Dickinson Biosciences, San Jose, CA, USA) for 30 minutes at 4uC
in the dark. PE- as well as PerCP-conjugated isotype-matched

mABs were used as negative controls. To asses cell viability Via-
ProbeTM Cell Viability solution (Becton Dickinson Biosciences,

San Jose, CA, USA) was added shortly before flow cytometric

analysis. Two additional washes were performed and cell surface

antigen expression was analyzed on a FACScan using Cell-

QuestTM software (both BD Biosciences, San Jose, CA, USA) with

10,000 events recorded for each sample.

In vitro differentiation of GFP MSCs
Assessing the potential of isolated cells to differentiate into

osteogenic and adipogenic lineages was performed as previously

described [27]. Briefly osteogenic differentiation was induced

culturing MSCs in 6-well culture plates (TPP, Trasadingen, Switzer-

land) in IMDM medium containing 10% FBS, 100 units/ml

penicillin and 100 mg/ml streptomycin and supplemented with

50 mM ascorbate 2-phosphate, 10 mM b-glycerol phosphate and

100 nM dexamethasone (all from Sigma Aldrich, St. Louis, MO,

USA). Medium was changed twice a week for a period of 2–3 weeks.

To observe calcium deposition, cultures were washed with PBS,

fixed with 4% paraformaldehyde (PFA, Sigma Aldrich, St. Louis,

MO, USA) for ten minutes and stained with Alizarin Red, pH 4.1,
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for ten minutes on a rotating platform. Cultures were rinsed two or

three times with PBS to reduce non-specific staining.

Adipogenic differentiation was induced after growing MSCs as

a monolayer and allowing them to become confluent. Complete

medium was exchanged to adipogenic induction medium

consisting of IMDM medium containing 10% FBS, 100 units/

ml penicillin and 100 mg/ml streptomycin, 1 mM dexamethasone

and 0.5 mM methyl-isobutylxanthine, 10 mg/ml insulin and

100 mM indomethacin (all from Sigma Aldrich, St. Louis, MO,

USA). Cells were incubated in this medium 48–72 hours and then

adipogenic maintenance medium containing 10 mg/ml insulin and

10% FBS in IMDM was applied for 24 hours. Cells were then

again treated for 48–72 hours with adipogenic induction medium

followed by a period of 24 hours in maintenance medium and a

third treatment with induction medium. Finally, cultures were kept

for one week in adipogenic maintenance medium. Cells were fixed

in 4% PFA and lipid droplet staining was performed using Oil Red

O (Sigma Aldrich, St. Louis, MO, USA).

Cell transplantation
For MSC transplantation, two groups of (PLP)-a-SYN mice

were included in the study, one group termed (PLP)-a-SYN+MSC

(n = 12) receiving 500,000 cells in 150 ml of saline through the tail

vein, and the control group termed (PLP)-a-SYN (n = 6) sham

injected with an equal amount of saline only. Survival in the (PLP)-

a-SYN+MSC group was around 60%.

Behaviour
To determine the efficacy of intravenously transplanted MSCs

with respect to a potential amelioration of motor dysfunction in

the (PLP)-a-SYN mouse modelling MSA [28], the following motor

function assessment was carried out: beam walking test and stride

length analysis with DigiGait.
Beam walking test. Fine motor coordination and balance

capabilities of mice were assessed by the beam walking test [29].

The beams consisted of long stripes of wood (each measuring

70 cm) with square cross sections of 0.9 cm and 1.6 cm,

horizontally placed 50 cm above the bench surface. The mice

were encouraged to walk a distance of 50 cm. For training, three

daily sessions of three trials (9 crossings) were performed using the

1.6 cm square large beam. Mice were then tested 1 week, 2 weeks

and 4 weeks post transplantation (p.t.) using the 0.9 cm square

beam. Mice were allowed up to 60 seconds to traverse the beam.

The latency to traverse the beam and the number of times the

hind feet slipped off, over the given distance of 50 cm, were

recorded for three consecutive runs. Analysis of each session was

based on the mean score of the three trials.
Stride length analysis with DigiGait. The DigiGait System

(DigiGait Imaging System, Mouse Specifics, Boston, MA, USA) is

a non-invasive method for quantitatively compare gait dynamics

[30]. Each mouse was placed on a transparent belt of a treadmill

enclosed by a plastic scaffold. The speed of the treadmill was set to

20 cm/s for all experimental groups. The ventral side of the mice

as they walk was imaged by a high-speed camera, which captured

the dynamics of the paws and corresponding limbs as they

approach and move away from the belt. A special software,

DigiGait Imaging System, Mouse Specifics, Boston, MA, USA)

automatically calculated stride length and other spatial and

temporal gait indices for each limb. DigiGait analysis was

performed at 1 week, 2 and 4 weeks p.t.

Tissue processing
Four weeks after MSC treatment, animals were transcardially

perfused with PBS under deep thiopental anaesthesia. Brains were

removed and cut to separate the hemispheres. One hemisphere

was put into 4% PFA overnight and cryoprotected with 20%

sucrose. Brains were slowly frozen and kept at 280uC for further

processing.

The other hemisphere was cut to obtain midbrain-brainstem

tissue, put into a cryovial (Nunc, Rochester, New York, USA) and

frozen in liquid nitrogen and stored at 280uC until use. A

modified RIPA buffer [31] was used to homogenize brain tissue of

each preparation. Brain homogenates were centrifuged at

16,000 g for ten minutes at 4uC and supernatants were stored at

280uC until further processing.

Immunohistochemistry
Six series of 40 mm sections throughout the whole hemisphere

were cut on a cryostat (Leica, Nussloch, Germany). One series was

directly mounted on gelatine-coated slides and used for cresyl

violet (Nissl) staining. Immunolabelling was performed on free

floating sections using the following antibodies: rat anti-mouse

CD11b (1:150; AbD Serotec, Oxford, UK), polyclonal rabbit anti-

green fluorescence protein (1:1000; GFP, Abcam, Cambridge,

UK), polyclonal rabbit CD3 (1:7500, Abcam, Cambrige, UK) and

monoclonal mouse anti-tyrosine hydroxilase (TH, 1:1000, Sigma,

St. Louis, MO, USA). Secondary antibodies were biotinylated

anti-rat IgG, biotinylated anti-rabbit IgG, anti-mouse IgG (1:200,

all Vector Laboratories, Burlingame, CA), Alexa-fluor 488-

conjugated goat anti-rabbit or Alexa-fluor 594-conjugated goat

anti-rat (both 1:500, Molecular Probes, Leiden), respectively.

Endogenous peroxidase activity was quenched in H2O2. After

normal serum blocking, sections were incubated with the primary

antibody overnight at 4uC, followed by incubation in biotinylated

secondary antibody. After incubation in Vectastain ABC reagent

(Vectastain ABC kit, Vector Laboratories, Burlingame, CA), the

immunohistochemical reaction was developed with 3,39-diamino-

benzidine (DAB) and sections were mounted onto gelatine-coated

slides, counterstained with cresyl violet or Mayer’s haematoxylin

solution, dehydrated and coverslipped with Entellan. Immunoflu-

orescence staining performed for tracing GFP positive MSCs was

carried out by normal serum blocking and overnight incubation

with the anti-GFP primary antibody followed by incubation with

the respective secondary antibody, and counterstaining of the

nucleus by 49, 6-Diamidin-29-phenylindoldihydrochlorid (DAPI,

Sigma Aldrich, St. Louis, MO, USA). For GFP staining, brain

sections from C57BL/6-Tg(UBC-GFP)30Scha/J mice were used

as positive controls and tissue sections from (PLP)-aSYN

transgenic animals as negative controls. Double-immunofluores-

cence staining for GFP and CD11b was performed as described

above; dilution of the commercial rat anti-mouse CD11b antibody

was 1:50.

Quantification of a-synuclein concentration in brain
lysates

Brain lysates were analysed for aSYN concentration using an a-

synuclein immunoassay kit (Invitrogen, Carlsbad, CA, USA),

following manufacturer’s instructions. ELISA plates were analysed

with a multi-well plate reader at 450 nm (Beckman Coulter, Brea,

CA, USA).

Quantification of cytokine concentrations in brain lysates
Brain lysates were analysed using the mouse Th1/Th2 10-plex

kit, MCP-1 and TGF-b1 (Flow Cytomix, Bender MedSystems,

Vienna, Austria) according to the manufacturer’s instructions.

Data were acquired using a FACScan (BD Biosciences, San Jose,

CA, USA) with 1500 events recorded for each sample and further
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analysed by the Flow Cytomix Software version 2.3 (Bender

MedSystems, Vienna, Austria).

Microscopy and image analysis technique
Cell culture microscopy was performed using a Leica DMI

4000B microscope and Application Suite V3.1 (Leica, Wetzlar,

Germany). Fluorescent histological sections were analysed with the

aid of an ApoTomeH microscope and AxioVision Software (both

Carl Zeiss Microimaging GmbH, Jena, Germany).

All morphometric analysis was done in a blinded way applying a

computer-assisted image analysis system (Nikon E-800 micro-

scope, CCD video camera, Optronics MicroFire, Goleta, USA;

Stereo Investigator Software, MicroBrightField Europe e.K.,

Magdeburg, Germany). The optical fractionator method [32,33]

was used to estimate the total number of neurons and microglia in

the substantia nigra pars compacta (SNc).

Statistics
All data are given as means 6 standard error of the mean

(SEM). Behavioural data were compared by two-way analysis of

variance (ANOVA) for time and treatment effects followed by a

post hoc Bonferroni test (corrected for multiple comparisons). Data

from cytokine measurements were subjected to two-tailed

unpaired Student’s t-test with regard to treatment. Data obtained

from image analysis technique were analysed by unpaired

Student’s t-test. Correlations between cytokines and the number

of TH+ neurons were performed with the Pearson correlation

analysis. All statistical analyses were performed with GraphPad

Prism 5 Software (GraphPad Software Inc., San Diego, CA, USA).

A p-value of p,0.05 was considered significant.

Results

Isolation and characterization of murine GFP MSCs
MSCs of GFP transgenic mice were isolated from tibia and

femur and kept in culture for several passages. For characteriza-

tion, differentiation and transplantation, cells at passage 8 were

used (Figure S1, A). Before intravenous application the cells were

characterised, flow cytometry analysis confirmed that the cells at

the stage of transplantation were positive for GFP (96.65%), CD29

(98.72%), CD44 (99.51%), CD105 (99.43%), MHC Class I (H2D,

48.23%), Sca-1 (99.48%), SSEA-4 (95.91%) and had a low

number of CD11b (13.28%), CD34 (13.10%), CD45 (1.72%),

CD117 (c-kit, 15.76%) and MHC Class II (I-A/I-E, 11.84%). At

the stage of transplantation 99.92% of all cells were viable, as

revealed by Via Probe staining.

Multilineage potential was demonstrated by differentiation into

adipocytes, indicated by Oil-Red O staining (Figure S1, B) as

well as calcium deposits indicating osteogenic lineage differenti-

ation when stained with Alizarin Red (Figure S1, C).

Cell transplantation and tracing of GFP MSCs
Two groups of aged (PLP)-a-SYN mice were included in the

study, one group receiving 500,000 cells/150 ml of saline through

the tail vein designated (PLP)-aSYN+MSC, and one group serving

as controls with an equal amount of saline only into the tail vein

termed (PLP)-aSYN. Immunofluorescence with a polyclonal

rabbit anti-GFP antibody was performed on PFA fixed MSCs in

culture (Figure 1A) to ensure tracing of GFP MSCs (Figure 1B).

Single engrafted donor cells were detected four weeks post MSC

injection in the (PLP)-aSYN+MSC group (Figure 1E and 1G)

whereas sections from PLP-aSYN mice served as negative controls

(Figure 1F and 1H). To control the efficiency of the antibody in

fixed tissue, brain sections from (PLP)-aSYN control group served

as negative control (Figure 1C) while brain sections from C57BL/

6-Tg(UBC-GFP)30Scha/J served as positive (Figure 1D) control.

In face of potential contaminations of myeloid cells (CD11b) in the

MSC culture, double staining with GFP and CD11b (Figure 1I, J
and K) was performed in sections of the (PLP)-aSYN+MSC group

to prove the phenotype of GFP positive cells being MSCs and not

myeloid cells.

Behaviour
The efficacy of intravenously transplanted MSCs to restore

motor function in aged (PLP)-aSYN mice versus controls, was

measured with the beam walking test, and stride length was

analysed with the DigiGait system. The beam walking test

determines fine motor coordination and balance capabilities.

Traversing the beam was performed 1 week, 2 and 4 weeks p.t.

Over the period of 4 weeks, no significant improvement in the

time traversing the beam (Figure 2A) (p.0.05) or in the number

of sideslips (Figure 2B) (p.0.05) was detected.

We analysed the stride length on both hindlimbs (left, right) with

the DigiGait System in the transplant and control group. Previous

results from our research group have demonstrated that (PLP)-

aSYN transgenic mice show shortening of hindlimb stride length

associated with TH+ cell loss in the SNc [28]. In the current study

we analysed the stride length of the left (Figure 2C) and right

(Figure 2D) hindlimbs in the transplant and control group at 1

week, 2 week and 4 weeks p.t. Stride length in animals treated with

i.v. MSCs was not significantly altered from stride length in the

control group (for both hindlimbs p.0.05).

Both tests demonstrate that i.v. MSC treatment in aged (PLP)-

aSYN mice has not induced changes in motor behaviour.

Neuroprotective effect on TH+ neurons in the SNc after
MSC treatment

Reduction of TH-immunoreactive neurons was previously

reported in the SNc of (PLP)-aSYN transgenic mice [28] suggesting

that the presence of aSYN in oligodendrocytes induces dopami-

nergic neuron loss. We performed TH staining and stereological

counting in the SNc in the MSC treatment and control group

(Figure 3A–3E) demonstrating a significant recovery of the total

number of TH+ neurons in the MSC treated group ((PLP)-

aSYN+MSC 47476356.8 vs. (PLP)-aSYN 35106368.8; p = 0.036)

4 weeks after transplantation.

aSYN concentration in midbrain-brainstem lysates
In previous studies, research on the (PLP)-a-SYN mouse model

has demonstrated that pathological aSYN accumulation promotes

degeneration of neurons in the SNc, locus coeruleus, nucleus

ambiguous, laterodorsal tegmental nucleus, pedunculopontine

nucleus and Onuf’s nucleus [34,35] similar to findings in MSA

patients (reviewed in [2]). With a aSYN immunoassay we

investigate whether MSC treatment had an effect on aSYN

concentration in midbrain-brainstem lysates. We chose midbrain-

brainstem samples (Figure 4A) since the dissected area includes the

affected nuclei. Statistical analysis by unpaired Student’s t-test did

not show differences on aSYN concentration in MSC treated (n = 7)

versus control animals (n = 6) ((PLP)-a-SYN+MSC 1.89960.1032

vs. (PLP)-a-SYN 1.69260.1322, p = 0.237) (Figure 4B).

MSCs influence cytokine levels in midbrain-brainstem
lysates

IL-1a, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-CSF, INFc,

MCP-1, TGF-b1 and TNFa were assessed in midbrain-brainstem

lysates of (PLP)-aSYN+MSC versus (PLP)-aSYN animals. Four

Mesenchymal Stem Cell Transplantation in MSA
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Figure 1. Tracing of intravenously infused GFP+ MSCs in aged (PLP)-aSYN transgenic mice. (A) GFP+ MSCs in culture showed diffuse
green fluorescence which could be further enhanced by immunocytochemistry using GFP antibody (B). To control the same GFP antibody in brain
sections, negative- ((PLP)-aSYN mice, C) and positive (C57BL/6-Tg(UBC-GFP)30Scha/J transgenic mice, D) tissue sources were applied. Scale bars (A,
B, C, D) represent 50 mm. Single GFP+ MSCs could be observed, throughout the brain in transplanted animals, by ApoTome confocal-like images of
SN (E) and brainstem (G). Negative control sections of GFP staining in (PLP)-aSYN mice of SN (F) and brainstem (H). Scale bars (E, F, G, H) represent
20 mm. Arrows indicate GFP+ MSCs. ApoTome confocal-like images of GFP (I) and CD11b positive cells (J) in PLP-aSYN+MSC mice. The merged image
(K) indicates that GFP+ cells do not colocalize with CD11b+ cells. Asterisk indicate GFP+ cells, circle indicates CD11b+ cell. Scale bars (I, J, K) represent
20 mm. GFP, green fluorescent protein; SN, substantia nigra.
doi:10.1371/journal.pone.0019808.g001
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weeks after intravenous MSC application, we observed a significant

downregulation of IL-1a (p = 0.0014), IL-2 (p = 0.019), IL-10

(p = 0.046), IL-17 (p = 0.056), GM-CSF (p = 0.029), TGF-b1

(p = 0.001) and TNFa (p = 0.001) (Figure 5A - 5G) in midbrain-

brainstem lysates of MSC treated animals versus control group,

whereas no significant difference was found for IL-4 (p = 0.16),

MCP-1 (p = 0.18), IL-5 (0.072), IL-6 (p = 0.18) and INFc (p = 0.31).

Due to a significant reduction of the lymphocytic signalling

molecules IL-2 and IL-17, we performed a staining for the T-cell

marker CD3 in (PLP)-aSYN+MSC and (PLP)-aSYN animals. We

could detect single CD3+ cells throughout different brain regions

(Figure 5H–5K).

Moreover, we analysed microglia as an additional source of

cytokines. Previous work of our group has shown that microglial

activation in the (PLP)-aSYN mouse is present in the SNc and

mediates neurodegeneration [34]. Hence counting CD11b-

immunoreactive cells in the SNc as a marker for microglia was

performed (Figure S2, B–C). Statistical analysis with two-tailed

unpaired Student’s t-test, revealed no significant difference in the

number of CD11b+ cells in transplanted animals (n = 7) versus the

control group (n = 6) ((PLP)-aSYN+MSC 65886242 vs. (PLP)-

aSYN 68806529.3; p = 0.6075) (Figure S2, A).

Finally, in order to evaluate whether the cytokines in midbrain-

brainstem lysates (IL-1a, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-

CSF, INFc, MCP-1, TGF-b1 and TNFa) contribute to TH+

neuronal rescue we established a Pearson correlation between the

cytokines and TH+ neurons (Table 1). We could demonstrate

significant inverse correlations for IL-1a (Pearson r = 20.697,

p = 0.0081), IL-2 (Pearson r = 20.823, p = 0.0005), TGF-b1

(Pearson r = 20.647, p = 0.0169) and TNFa (Pearson

r = 20.0575, p = 0.0397).

Discussion

In the present study we aimed to determine whether

intravenous application of murine MSCs in an aged (PLP)-aSYN

MSA mouse model ameliorates behavioural deficits and exerts

neuroprotective and immunomodulatory properties. To date, to

our knowledge there is no experimental evidence of a MSC

therapeutic approach in transgenic MSA models. Recently,

human MSCs have been demonstrated to protect against loss of

neurons in SN and striatum in an animal model of double toxin-

induced MSA-P [23]. A few years ago, in an open-label study

design, disease modifying effects of intra-arterial and intravenous

injected MSCs in eleven patients with MSA-C, have been reported

[22]. Together with in vitro and in vivo findings in PD and other

neurodegenerative disorders, MSCs seem to be an attractive and

feasible therapeutic intervention [20,23,36–39].

As a matter of fact, experimental results are often difficult to

compare, in lieu of standards for MSC isolation, cultivation and in

vivo application. Furthermore there is no unique marker to

Figure 2. Assessing motor coordination with the beam walking test and DigiGait analysis. Duration to traverse a narrow beam analysed 1
week, 2 weeks and 4 weeks post transplantation (p.t.) (A). No difference between (PLP)-aSYN (n = 6) and (PLP)-aSYN+MSC (n = 7) treated animals was
found (p.0.05). Number of side slips traversing a 50 cm narrow beam was analysed at 1 week, 2 weeks and 4 weeks p.t. (B). Statistical analysis did
not reveal any significant difference between both groups. Stride length analysis of left (C) and right (D) hindlimbs of (PLP)-aSYN+MSC (n = 7) versus
(PLP)-aSYN controls (n = 6), 1 week, 2 weeks and 4 weeks p.t. Stride length did not significantly alter in MSC treated animals compared to saline
treated controls (p.0.05). Data were analysed by two-way ANOVA, following Bonferroni post-hoc test (for multiple corrections) and are presented as
means 6 SEM. Statistical significance was set at p,0.05.
doi:10.1371/journal.pone.0019808.g002
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identify MSCs. In general, MSCs are characterised upon

expression of a group of surface receptors and upon their

multilineage potential [40]. Prior to transplantation we have

characterized GFP MSCs, based on a set of criteria proposed by

the International Society for Cellular Thearpy [41], which

includes expression and lack of surface markers and differentiation

potential into adipocytes and osteocytes.

In the (PLP)-aSYN+MSC transplant group the survival rate

after intravenous MSC infusion was low, probably due to the high

age of the animals. Further we presume that due to their size

MSCs got trapped within the pulmonary capillaries, causing

pulmonary and hemodynamic alterations [42]. On the other hand

numerous animal studies and clinical trials have reported

favourable outcomes following systemic infusion of MSCs [36,43].

Since we have only encountered a few single donor engrafted

GFP+ MSCs four weeks after transplantation, the use of GFP as

experimental tool to examine the survival and fate in future studies

is in question, since there are a lot of inconsistent results in the

literature, on tracking and determining cell fate of MSCs using

GFP as a reporter in transplantation studies [44,45]. In addition,

we cannot exclude a detrimental effect of the GFP protein on

MSC survival and therefore preventing proper integration into

sites of neurodegeneration. On the other hand, a number of

reports state that MSCs exert effects on tissue repair despite

exhibiting low and/or transient levels of engraftment [20,40]. This

foreshadows a novel concept of tissue repair relying on secretion of

trophic factors and/or crosstalk with the microenvironment rather

than MSC transdifferentation.

The (PLP)-aSYN transgenic mouse model has been widely

characterized in terms of effects of aSYN overexpression on

neurodegeneration and motor activity [28,35]. Furthermore, this

animal model has been successfully applied in neuroprotective

studies as a preclinical rationale for phase II clinical trials [46,47].

We performed the beamwalking test to define fine motor

coordination and balance capabilities as well as stride length with

a digital system, since shortening of the stride length has been

reported in the (PLP)-aSYN transgenic mouse [28]. In a recent

study, intravenous human MSCs have ameliorated behavioural

deficits in a double-toxin induced mouse model of MSA-P [23].

Our experimental data show no significant effects of intravenously

applied MSCs to alleviate behavioural failure. On the other hand,

the study with double-toxin induced striatonigral degeneration has

been performed in mice lacking aSYN expression in oligoden-

droglia and thus replicating solely striatonigral-like pathology

without reproducing other cardinal features of MSA. It remains

elusive whether oligodendroglial aSYN exerts a deleterious effect

on transplanted MSCs, however in a recent study addressing the

fate of embryonic striatal grafts in presence of oligodendroglial

aSYN inclusions, disturbed dopaminergic re-innervation and

Figure 3. Neuroprotection of dopaminergic neurons in SNc
after MSC treatment of (PLP)-aSYN mice. Quantification of TH-
immunoreactive neurons in the SNc demonstrating a significant survival
of TH+ neurons (p = 0.036) in animals with MSC treatment compared to
controls, four weeks after i.v. MSC transplantation (A). Low magnifica-
tion of TH immunohistochemistry, counterstained with Nissl in (PLP)-
aYN (B) and (PLP)-aSYN+MSC treated animals (C). Scale bar (A,B)
represent 300 mm. High magnification of TH neurons in SNc of Tg (D)
and Tg+MSC treated animals (E). Scale bar (D,E) represent 20 mm. Cell
counts were analysed by unpaired Student’s t-test and the level of
significance was set at p,0.05 (* p,0.05). Data are presented as means
6 SEM. (PLP)-aSYN (n = 6); (PLP)-aSYN+MSC (n = 7); Asterisk in D and E
indicate TH+ neurons.
doi:10.1371/journal.pone.0019808.g003

Figure 4. aSYN concentration is not altered in midbrain-
brainstem lysates of MSC treated mice. aSYN concentrations in
midbrain-brainstem lysates (A) were determined for the (PLP)-aSYN
(n = 6) and (PLP)-aSYN+MSC (n = 7) group by ELISA. Student’s unpaired
t-test revealed no significant difference between both groups
(p = 0.237) (B). Data are presented as means 6 SEM with statistical
significance p.0.05.
doi:10.1371/journal.pone.0019808.g004
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reduced p-zone volume of the grafts in the MSA mouse model has

been attributed to effects of host aSYN pathology [48].

For our pilot study, we have chosen transgenic animals at the

age of 18 months, overexpressing aSYN under control of the

PLP promoter, since GCIs are the hallmark of MSA and MSA is

a late onset disease [49,50]. Previous studies have clearly

demonstrated that in this MSA animal model aSYN overex-

pression leads to neurodegeneration [28,35] resembling human

neuropathology. At the age of 18 months, neurodegeneration

due to aSYN overexpression is at a much more progressed

stage, impairing motor activity drastically as shown in MSA

mouse models overexpressing aSYN under control of oligoden-

droglial promoters [51,52]. Currently we are examining this

issue more closely in the (PLP)-aSYN mouse. Nevertheless, the

absent behavioural improvement after MSC treatment, leads

to the conclusion, that MSC treatment at later disease stages

does not induce the desired effect of ameliorating behavioural

deficits.

Since one pathological feature in MSA patients covers selective

neuronal loss in the SNc, and the (PLP)-aSYN mouse model

replicates this feature, we evaluated whether MSC treatment had

an effect on number of TH+ neurons. There was a subtle but

significant recovery of numbers of dopaminergic neurons in the

MSC transplant group compared to transgenic controls.

We further investigated putative factors that may contribute to

this ‘‘rescue’’ of dopaminergic neurons after MSC treatment. We

analysed whether TH recovery is caused by the decrease of aSYN

concentration in midbrain-brainstem lysates. aSYN is known to be

a key factor involved in oligodendroglial and neuronal loss in MSA

patients and in the (PLP)-aSYN transgenic animal model

[3,28,34,35]. Recently genetic variants in the aSYN gene SNCA

have been associated with an increased risk in developing MSA

Figure 5. Influence of MSC treatment on cytokine concentrations in midbrain-brainstem lysates. Cytokine levels in midbrain-brainstem
lysates were quantified by flow cytometry. Significant downregulation of IL-1a (p = 0.0014) (A), IL-2 (p = 0.019) (B), IL-10 (p = 0.046) (C), IL-17
(p = 0.056) (D), GM-CSF (p = 0.029) (E), TGF-b1 (p = 0.001) (F) and TNFa (p = 0.001) (G) in MSC treated animals (n = 7) versus controls (n = 6) was
observed. All data are presented as means 6 SEM and were analysed by the Student’s unpaired t-test. (* p,0.05; ** p,0.01; *** p,0.001).
Representative CD3+ stainings counterstained with Mayer’s haematoxylin solution demonstrated invading T-cells throughout the brain, as presented
here in hippocampus (H), striatum (I), substantia nigra pars compacta (J) and cortex (K) in (PLP)-aSYN transgenic animals. A similar staining pattern
was observed in (PLP)-aSYN+MSC treated animals. Scale bar (H, I, J, K) represents 10 mm. Asterisk indicate CD3+ T-cells. Hi, hippocampus; Str,
striatum, SNc, substantia nigra pars compacta; Ctx, cortex.
doi:10.1371/journal.pone.0019808.g005
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[53,54]. However, aSYN concentration in the midbrain-brainstem

region was not significantly altered between (PLP)-aSYN+MSC

treatment compared to (PLP)-aSYN control group. This finding

highlights the concept of tissue repair of MSCs by releasing anti-

inflammatory and trophic molecules.

Neuroinflammation has been widely regarded as a possible key

player in progressing disease pathogenesis in various neurodegen-

erative diseases. In PD patients as well as PD animal models,

neuroinflammation in terms of microglial activation has been

observed [9]. Lately emerging evidence for the presence of T-

lymphocytes in the midbrain of PD patients suggests that a potential

role of infiltrated peripheral cells is related to PD pathogenesis

[9,55]. In a recent study infiltration of T-cells into the brain actively

participated in dopaminergic neuron degeneration in the SNc [56].

Additionally, overexpression of human aSYN in mouse SN

neurons, induced by an adeno-associated viral vector, has led to

activation of microglia, production of inflammatory cytokines and

stimulated the adaptive immune response [57]. In our experiment

we analysed twelve cytokines, IL-1a, IL-2, IL-4, IL-5, IL-6, IL-10,

IL-17, GM-CSF, INFc, MCP-1, TGF-b1 and TNFa in midbrain-

brainstem lysates and found significant downregulation of IL-1a,

IL-2, IL-10, IL-17, GM-CSF, TGF-b1 and TNFa four weeks after

intravenous MSC application in the treatment group. Additionally

we encountered CD3+ T-cells throughout the brain in (PLP)-aSYN

and (PLP)-aSYN+MSC treated animals. After MSC treatment,

however, the T-cell specific cytokines IL-2 and IL-17 were

significantly downregulated. Furthermore, TH neuronal ‘‘rescue’’

was inversely correlated with IL-2, indicating that MSC treatment

influenced pathogenic T-cell response in (PLP)-aSYN mice. Similar

effects have been widely investigated for multiple sclerosis and

experimental autoimmune encephalitis and support the role of

MSC treatment by modulation of T-cell response [58].

Finally we analyzed the influence of MSC treatment on

microglial activation, since microglia have been reported to

parallel the neuronal multisystem degeneration in MSA [8] and

mediates dopaminergic neuronal loss related to oligodendroglial a-

synucleinopathy in the (PLP)-aSYN mouse [34]. We quantified

the number CD11b+ microglial cells in the SNc, yet could not

demonstrate a significant difference in microglial cell number after

MSC treatment. However, this finding cannot exclude a

modulatory effect on microglial activation status. Furthermore,

the major proinflammatory cytokine TNFa and IL-1a, also

released by activated microglia and astroglia was significantly

decreased in brain lysates of the MSC treatment group and

inversely correlate with the number of TH neurons indicating that

suppression of microglial activation and astrogliosis may contrib-

ute to dopaminergic neuronal survival. Similar results, demon-

strating decreased activation of astrocytes and microglia by human

MSCs in a mouse model of MSA-P have been recently reported

[23] and are in good concordance with our findings that MSCs

exert modulatory effects on neuroinflammation and promote

survival of dopaminergic neurons in the SNc.

In summary, our study describes the first experimental attempt

using MSCs as a therapeutic intervention in an aged transgenic

mouse model of MSA featuring oligodendroglial a-synucleino-

pathy. We have demonstrated that intravenous application of

MSCs leads to a rescue of dopaminergic neurons in the SNc.

Furthermore we could demonstrate a profound immunomodula-

tory effect after MSC treatment, resulting in downregulation of

various proinflammatory cytokines, which are linked to microglial

activation, astrogliosis and mediation of adaptive immunity.

However, MSC treatment did not alter behavioural deficits in

aged transgenic MSA mice.

Our data have potential implications for MSCs as a future stem

cell source in MSA therapies. Nevertheless, further experimental

studies on the efficacy of MSCs as disease modifying candidates in

MSA as well as different routes of application have to be

performed. Prior to embarking on further human trials, preclinical

studies are necessary since they will reveal if all that glitters

experimentally is truly clinical gold.

Supporting Information

Figure S1 Differentiation of MSCs into adipocytes and
osteocytes. After applying lineage specific induction media,

MSCs (A) differentiated into adipocytes, demonstrated by presence

of Oil-Red O lipid droplet staining (B). Differentiation into the

osteogenic lineage was demonstrated by Alizarin Red staining,

identifying calcification of cells (C). Scale bar (A) represents 20 mm,

scale bars (B,C) represent 50 mm.

(TIF)

Figure S2 MSC treatment had no effect on the number
of CD11b+ microglial cells. Quantification of CD11b+

microglial cells by stereological counting demonstrated that four

weeks after MSC treatment the number of CD11b+ cells was not

significantly altered in the treatment group compared to controls

(p = 0.6075) (A). All data are presented as means 6 SEM and were

analysed by unpaired Student’s t-test. Immunohistochemical

staining of CD11b+ microglial cells in the SNc of a (PLP)-aSYN

(n = 6) (B) and (PLP)-aSYN+MSC (n = 7) mouse (C). Scale bars

(B,C) represent 20 mm. Asterisk indicate CD11b+ cells.

(TIF)
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Table 1. Correlation between cytokines and TH neurons.

Cytokine Pearson r p-value Significance

IL-1a 20.6970 0.0081 **

IL-2 20.8234 0.0005 ***

IL-4 20.1205 0.6950 n.s.

IL-5 20.4112 0.1628 n.s.

IL-6 20.5122 0.0735 n.s.

IL-10 20.5149 0.0718 n.s.

IL-17 20.3720 0.2106 n.s.

GM-CSF 20.3958 0.1806 n.s.

INFc 20.01089 0.9718 n.s.

MCP-1 20.4772 0.0992 n.s.

TGF-b1 20.6465 0.0169 *

TNFa 20.5752 0.0397 *

Abbreviations: interleukin-1alpha (IL-1a), interleukin-2 (IL-2), interleukin-4
(IL-4), interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-10 (IL-10),
interleukin-17 (IL-17), granulocyte macrophage colony-stimulating factor (GM-
CSF), interferon gamma (INFc), monocyte chemotactic protein-1 (MCP-1),
transforming growth factor-beta1 (TGF-b1), tumor necrosis factor alpha
(TNFa);
*p,0.05,
**p,0.01,
***p,0.001;
not significant (n.s.).
doi:10.1371/journal.pone.0019808.t001
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