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Abstract

Intestinal stem cells play a pivotal role in the epithelial tissue renewal, homeostasis and cancer development. The lack of a
general marker for intestinal stem cells across species has hampered analysis of stem cell number in different species and
their adaptive changes upon intestinal lesions or during development of cancer. Here a two-dimensional model, named
STORM, has been developed to address this issue. By optimizing epithelium renewal dynamics, the model examines the
epithelial stem cell number by taking experimental input information regarding epithelium proliferation and differentiation.
As the results suggest, there are 2.0–4.1 epithelial stem cells on each pocket section of zebrafish intestine, 2.0–4.1 stem cells
on each crypt section of murine small intestine and 1.8–3.5 stem cells on each crypt section of human duodenum. The
model is able to provide quick results for stem cell number and its adaptive changes, which is not easy to measure through
experiments. Its general applicability to different species makes it a valuable tool for analysis of intestinal stem cells under
various pathological conditions.

Citation: Wang Z, Matsudaira P, Gong Z (2010) STORM: A General Model to Determine the Number and Adaptive Changes of Epithelial Stem Cells in Teleost,
Murine and Human Intestinal Tracts. PLoS ONE 5(11): e14063. doi:10.1371/journal.pone.0014063

Editor: Stefan Wölfl, Universität Heidelberg, Germany

Received May 26, 2010; Accepted October 29, 2010; Published November 19, 2010

Copyright: � 2010 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by Singapore-MIT Alliance and Department of Biological Sciences of National University of Singapore. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wzhengyuan@gmail.com

Introduction

The intestinal epithelium represents the most rapidly renewing

tissue in mammals [1]. It has been estimated that billions of cells

are exfoliated and replaced in the human intestine on a daily basis

[2]. The stem cells play a pivotal role in this process [3] and their

deregulation will lead to development of cancer, which is

becoming a leading killer in modern society [4,5]. Analysis of

the changes in the intestinal stem cell number upon occurrence of

any intestinal lesions would thus serve an important role. Up to

date, a general tool is not available for people to analyze the stem

cell number and their adaptive changes under different physio-

logical and pathological conditions. This work aims to develop

such a tool that facilitates the analysis of stem cells in the intestinal

tracts of different species.

Current literature contains multitude of reports studying the

epithelium turnover process [6,7,8,9,10,11,12] by using either a

grid model [13], lattice-free model [7] or discrete multi-

compartmental model [9]. Epithelium migration, cell insertion

or apoptosis has been studied in these reports. For example,

Gerike et al studied dynamics of epithelium proliferation and

differentiation, where all columnar cells may become clonogenic

stem cells depending on the level of a hypothetical growth factor

[6]. Michor et al used probablity-based linear models to study the

dynamic effects of gene mutations in tumorigenesis [14]. Then

d’Onofrio et al proposed a non-linear model and suggested that

fluctuations in cell death would render the exponential growth of

cells irriversible [15]. Johnston et al utilized both an age-structured

model and a continuous model to study epithelium homeostasis

and found that mutations in either death, differentiation or

renewal of stem cells or transit amplifying cells will initiate

tumorigenesis in the colon [11]. None of the models in current

literature, however, was designed to address the number of

intestinal stem cells and their adaptive changes.

In this work, a two-dimensional model has been developed to

examine the number of intestinal stem cells present in each two-

dimensional section of mammalian intestinal crypt, or inter-villus

pocket region of teleost intestines, taking input information gained

from experimental measurements. This is taking advantage of the

important fact that the intestinal epithelium renewal along the

crypt-villus axis is essentially a two-dimensional process [16,17,18].

It has been our aim to devise a simple and novel model that requires

minimal experimental input to directly address the stem cell

number. It has been named STORM model (STem cell mediated

Optimal Renewal of epithelium Model). As an illustration, the

model is applied to zebrafish, murine and human intestines, though

it may also be applied to other animal models. As the results suggest,

the stem cell number is largely conserved across species despite

differences among these animal models. In the mean time, the

analogy of intestinal epithelium renewal paradigm from zebrafish to

mouse and human has rendered zebrafish as an alternative model

for study of intestinal stem cells [19,20,21,22].
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Results

Development of the model
The model was developed based on two assumptions: (1)

Epithelial tissue was renewed in a stem cell – transit amplification –

differentiation – apoptosis paradigm; (2) The epithelial renewal

dynamics naturally evolved to have optimal restitutive efficiency.

Take zebrafish as an example. Proliferation assay based on

incorporation of bromodeoxyuridine was carried out for zebrafish

intestine. Results showed that cell proliferation was restricted in

the lower part of villi (Figure 1A, left panel). As the cells migrated

upward, they differentiated along either an absorptive or a

secretory fate to perform specialized functions. Once they reached

the tips of villi, they went through cell apoptosis, as shown by the

apoptosis assay (Figure 1A, middle panel), and were then

exfoliated. Based on these results, four compartments might be

identified along the villus axis, as illustrated in Figure 1B (right

panel). In other animals including mouse and human, the

intestinal epithelium was organized and renewed in essentially

the same manner [23]. Thus, our model was built on the general

paradigm of stem cell – transit amplification – differentiation – apoptosis

for intestinal epithelium, which was applicable to both teleost and

mammalian intestinal tracts.

Evidence for natural optimization of epithelial renewal

dynamics comes from literature. Mutational analysis of mice

heterzygous at the Dbl-1 locus showed that crypts drift toward

monoclonality in the small intestine [17,24]. Similarly, expression

analysis of X-chromosome related gene G6PD showed monoclon-

ality of the crypts of large intestine [24]. The mechanism behind

these observations was further studied and the concept of neutral

competition was clearly proposed recently [25,26]. For instance, in

ref. [26], transgenic mice Lgr5-EGFP-Ires-CreERT2/E-cadherin-

mCFP and R26R-Confetti multicolor Cre-reporter were utilized

for lineage tracing in the intestine. This novely invented multicolor

tracing technique proved that descendants of stem cells constantly

went through neutral competition that drived all crypts toward

monoclonality in a few months (75% crypts monoclonal in 2

months and 100% in 6 months). Ultimately, descendants of a

particular stem cell with the optimal renewal efficiency won out

while others disappeared. These results led us to employ an

optimization method (to be shown below) to find out the optimal

dynamics of crypts as selected by the natural process.

Workflow of the model
The overall workflow of the model is illustrated in Figure 2. Based

on the assumptions mentioned earlier and using measured populations

of transit amplifying (TA) cells and differentiated cells, the optimization

formulation will find out the stem cell number as well as the adaptive

changes. Species-dependent outcome of the model would require

species-specific input information about the two populations of cells.

Figure 1. The paradigm of epithelium renewal in the intestine. (A) Cell proliferation and apoptosis in the intestine of zebrafish. Left panel: Cell
proliferation assay with proliferating cells stained dark brown. Middle panel: Cell apoptosis assay with apoptotic cells stained green. Right panel:
Compartmentalization of epithelium into stem cells, transit amplifying cells, differentiated cells and apoptotic cells. (B) The intestinal epithelium is
divided into four components while constructing the model, based on the analogous paradigm of epithelium renewal across teleost, murine and
human species. Stem cells maintain their own population through self-renewal, and in the mean time, they produce progenies that will differentiate
later on. Transit amplifying cells are directly derived from stem cells and go through rapid expansion. Then they go for cell differentiation and finally
apoptosis. Denotation: x1- population of stem cells; x2- population of transit amplifying cells; x3- population of differentiated cells. Note that all
populations are normalized against their homeostatic populations in the model.
doi:10.1371/journal.pone.0014063.g001
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A starting model for epithelium homeostasis
The process of epithelium turnover in the intestine is sketched in

Fig. 1B. This model is composed of three components: the stem

cells, the transit amplifying cells and the differentiated epithelial

cells. The population of stem cells is maintained through self-

renewal and production of progenies. The population of transit

amplifying cells is maintained through supply from stem cells and

expense to cell commitment. The population of differentiated

epithelial cells is maintained through supply from transit

amplifying progenitors and expense to apoptosis. All the

populations are normalized against their homeostatic populations,

respectively. Here, the stem cells are defined to be actively

involved in TA cell production (instead of remaining quiescent for

long periods of time); the TA population is defined to be fast

dividing cells that are derived from the stem cells and that are not

committed to any lineage yet. Once committed to a particular

lineage, either absorptive or secretory, they will be defined as part

of the differentiated population.

Based on Fig. 1B, a simple mathematical model can be derived

assuming that fluxes of cells move only in a one-way manner.

Transit amplifying cells do not reversely dedifferentiate to stem

cells (which was suggested a possibility under some special

circumstances [23]). Using denotations shown in Fig. 1B, a simple

model reads as follows:

dx1

dt
~c1x1{c0x1 ð1Þ

dx2

dt
~c0x1{k1x2 ð2Þ

dx3

dt
~k1x2{k2x3 ð3Þ

where c0, c1, k1 and k2 denote the rates of cell flux for the

population of stem cells, transit amplifying cells and differentiated

cells, respectively. It is worth noting that here we define the transit

amplifying cells as fast dividing cells that are derived from the stem

cells and they are not committed to any lineage yet. Those lineage-

committed cells will become part of the differentiated cells.

A non-trivial steady state may occur only if c1 = c0. If c1.c0, the

model exhibits exponential growth (unbounded growth of stem

cells); whereas if c1,c0, the model exhibits exponential decay

(extinction of stem cells and finally, of everything). Thus the

stability of this system depends on whether the relation c1 = c0

holds and the system is structurally unstable. Biological distur-

bances may easily lead to unbounded growth of cells. In order for

the system to maintain tissue homeostasis in a robust manner, as is

observed in the real world, it is necessary to incorporate a feedback

mechanism into the model.

The feedback mechanism in epithelium homeostasis
In view of the tight regulation on stem cells by various signals

from both epithelial and mesenchymal cells [27], the marginally

stable equation (1) hardly captures the homeostatic feature of the

stem cells [28]. Equation (1) may be modified to become

structurally stable based on the assumption that stem cell

differentiation is related to the second order of stem cell

population. Thus equation (1) becomes:

dx1

dt
~c1x1{c0x2

1 ð4Þ

Now the stem cell population may be maintained in a more robust

way, but this model still yields limited information about dynamics

of the epithelium turnover process. Then a nonlinear term
k5{x3

k4zx3

is incorporated into equation (2) and (3), introducing a saturable

Figure 2. Schematic illustration of the STORM model. The model takes experimental measurement of transit amplifying and differentiated cell
populations as input information. By optimizing the turnover dynamics, it yields the number of stem cells required on each section of pocket or crypt
of the intestine. It also provides information on epithelium turnover changes, for example, extended turnover cycles due to a reduction in the transit
amplifying cells.
doi:10.1371/journal.pone.0014063.g002
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feedback to stem cell self-renewal and transit amplifying cell

division [29,30,31,32,33,34,35,36,37,38].

In the mean time, a factor a, denoting the ratio of transit

amplifying population over stem cell population, and a factor b,

denoting the ratio of differentiated population over transit

amplifying population, were incorporated into the model,

respectively. To reflect the amplifying nature of the transit

population, a factor c is incorporated. Accordingly, the two

modified equations of (2) and (3) now read as follows:

dx2

dt
~

c0

a
x1z

k5{x3

k4zx3
x2{k1x2 ð5Þ

dx3

dt
~

ck1

b
x2z

k5{x3

k4zx3
x3{k2x3 ð6Þ

The two nonlinear terms have been introduced with biological

support and they signify an important difference between our

model and previous models.

For euqation (5), the nonlinear term represents a link between

the TA population and the differentiated population. The link has

been demonstrated in mice genetically deficient in Muc2 (C57BL/

6J6129/SvOla Muc22/2), a mucin gene expressed only in

differentiated cells of the intestine, where impaired cell differen-

tiation via Muc2 led to spontaneous development of adenomas

along the entire gastrointestinal tract [39,40], a pathology where

excessive cells remained proliferative. Similarly, through manip-

ulation of Notch signaling, excessive cell proliferation was

observed, accompanied by impaired cell differentiation in the

intestine [41]. Conversely, excessive production of differentiated

cells was observed, which was accompanied by a reduction in

proliferative cells in the intestine, through utilization of Rosa-

Notch/Cre+ mice [42]. These examples illustrate the inherent link

between populations x2 and x3 and mathematically, which is

modelled by the nonlinear term in equation (5).

For equation (6), the nonlinear term represents a self-fine-tuning

mechanism of the differentiated population. Biologically, it has

been known that there is certain level of overlap between transit

amplifying (fast dividing) cells and lineage committed cells in the

intestine. By utilizing the Math1beta-gal/beta-gal null mice, Yang et al

showed that some cells kept on dividing even after lineage

commitment, producing an overlapped staining by Ki67 and lacZ

reporter of these cells (representing the differentiation marker

Math1) [43], illustrating that these cells formed part of the

regulatory mechanism responsible for lineage generation process

in a self-fine-tuning manner.

The modified model consists of equations (4), (5), (6). As all cell

populations are normalized against their homeostatic values, they

are to be 1.0 when the system achieves tissue homeostasis. Thus we

have:

c0~c1~ak1~abk2=c ð7Þ

k5~1:0 ð8Þ

for the homeostatic state. This information will be utilized in the

following sections.

Dynamics of the intestinal epithelium turnover process
The steady state of the system is (1.0, 1.0, 1.0) – normalized

against respective cell populations. It represents the homeostatic

state of the tissue. Equations (5) and (6) are of special interest as

they contain the information on dynamics of epithelium turnover.

By setting their gradients to zero, only one non-trivial steady state

was found, which is {x�2~1:0,x�3~1:0}, just as we expected. The

Jacobian matrix of for equation (5) and (6) is given as follows:

J(x2,x3)~

{
co

a
z

1{x3

k4zx3
{

x2(1{x3)

(k4zx3)2
{

x2

k4zx3

cc0

ab
{

cc0

ab
{

(1{x3)x3

(k4zx3)2
z

1{2x3

k4zx3

2
6664

3
7775 ð9Þ

At steady state of {x�2~1:0,x�3~1:0}, the Jacobian matrix

simplifies as:

J(x�
2
~1:0,x�

3
~1:0)~

{
c0

a
{

1

1zk4

cc0

ab
{

cc0

ab
{

1

1zk4

2
664

3
775 ð10Þ

Its eigenvalues are given in two parts. The first part is given by:

P1eig(J�)~{
s(bzc)

2b
{

1

2(1zk4)
ð11Þ

The second part is given by:

P2eig(J�)~+
1

2b(1zk4)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(1zk4)(bzc)zbð Þ2{4sbc(1zk4)(1z

b

c
zszsk4)

s ð12Þ

where s~c0=a. So the two eigenvalues are given by P1+P2. The

two eigenvalues have negative real part and the system is locally

stable. Upon perturbations, they may re-establish homeostasis with

different dynamics, depending on the parametric values (ie. organ-

dependent and species-dependent).

The STORM formulation to estimate the epithelial stem
cell number

Following our second assumption on optimal restitutive

efficiency, the number of intestinal stem cells contained on each

section of crypt or inter-villus pocket may be determined by

solving the formulation:

(s,k4)~ arg min s,k4jc0,b,c{
s(bzc)

2b
{

1

2(1zk4)
z

1

2b(1zk4)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s(1zk4)(bzc)zbð Þ2{4sbc(1zk4)(1z

b

c
zszsk4)

s

s:t: s(1zk4)(bzc)zbð Þ2{4sbc(1zk4)(1z
b

c
zszsk4)§0;

s§0;

k4§0:

ð13Þ

This is a two-dimensional, multi-variate optimization problem

with nonlinear objective function and nonlinear constraints.

s~c0=a where c0 is directly related to the in vivo division frequency

of the stem cells. a denotes the population ratio of transit

ð13Þ
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amplifying cells over stem cells. b denotes the ratio of

differentiated epithelium over transit amplifying progenitors. c is

directly related to the in vivo division frequency of the transit

amplifying cells. Given the species-specific value of a, c and b, we

are able to find out the stem cell number by solving the above

formulation.

General characteristics of the crypt-villus system
There are some general results from the model, which may

provide some general knowledge about the crypt-villus system.

First, as an adaptive adjustment to the villus size in different

species (varying value of b), the ratio of stem cell over transit

amplifying cell will slightly increase for bigger ratio of b
(Figure 3A). This ratio is kept below 0.63 for all b not exceeding

30. For even bigger values of b, the epithelium renewal process

may be excessively slowed down (Figure 3B), rendering a

practically non-viable crypt-villus system for the host organism.

Second, the renewal cycle of epithelium is correlated to the ratio of

differentiated population over transit amplifying population (b).

For bigger value of b, the system needs to support a larger villus

size and the epithelium will be renewed at a lower rate. Figure 3B

shows the quantitative relationship.

To tailor the model to be species-specific, information about the

populations of transit amplifying cells, differentiated cells and in

vivo dividing frequency of stem cells will be evaluated based on

experimental results. The in vivo division frequency of intestinal

stem cells is not well characterized in the current literature, but it

has been speculated to be once or twice every day [44,45,46]. For

the transit amplifying cells, the amplifying factor c assumes the

value of 2.0.

Determination of the stem cell number in the inter-villus
pocket region of zebrafish (Danio rerio) intestine

Cell counting over 200 villi in zebrafish based on our own

specimens shows the population of proliferating cells (including transit

amplifying cells and stem cells) to be 12.563.2 cells (mean6std) and

the population of differentiated cells with 100624 cells (mean6std).

Representative histological sections are shown in Figure 1A. Based on

these data, b assumes the value of 8.0 for zebrafish.

Formulation (13) may be solved with these parameter values.

After obtaining the stem cell number, the population of transit

amplifying cells needs to be corrected in order to produce a

posteriori-corrected value of b. Then the model needs to be solved

again. This posteriori-correction process is repeated several times

until the solution finally converges and will no longer change. The

final solution is as follows:

b~10:3; s~
c0

a
~0:508 ð14Þ

As the population of transit amplifying cells is known from

proliferation assays, the number of stem cells may be calculated

given the ratio between transit amplifying cells and stem cells. The

result is as follows

stem cell#~
4:1; Vc0~1

2:0; Vc0~2

�
ð15Þ

The actual number of stem cells is dependent on their in vivo

division frequency. If stem cells only divide once per day, there

should be 4.1 stem cells present in each inter-villus pocket; if stem

cells divide twice per day, there will only be 2.0 stem cells required

in each inter-villus pocket. The results are summarized in Table 1.

To examine the adaptive changes in the number of stem cells,

the epithelium homeostasis was reduced by 50%, simulating

occurrence of intestinal lesions causing damage to the differenti-

ated epithelium. The system responds by initiating tissue

restitution process. In the beginning stage, the value of b starts

at 4.0, the epithelium renewal cycle is 36% faster than the normal

cycle and this will trigger an expansion in the stem cell pool and

there will be 3.9 to 7.7 stem cells per pocket region (Figure 4A).

The expansion of stem cell pool supports a transient expansion of

transit amplifying population up to 14.5% (equivalent to one to

two cells; Figure 5). As new epithelium are being generated, the

ratio of b gradually grows back to normal value; The transit

amplifying and stem cell population will also return to their

respective homeostatic states upon completion of epithelium

restitution.

Figure 3. General relationships between s, t and b. (A) In general, s is positively correlated with b. For teleosts where b is smaller, s is lower; For
humans where b is bigger, s is higher. (B) The epithelium renewal cycle is also correlated to the value of b. Bigger value of b means longer renewal
cycle. Cycles are normalized to be dimensionless. s: dividing frequency|stem population/transit amplifying population; t: intestinal epithelium
renewal cycle; b: ratio of differentiated epithelium population/transit amplifying population.
doi:10.1371/journal.pone.0014063.g003
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The general correlation between stem cell number and

epithelium turnover cycle in zebrafish is shown in Figure 4A.

Determination of the stem cell number in each crypt of
murine small intestine

Proceeding as in the section for zebrafish, we obtained that the

population of differentiated epithelial cells is 96618 in the small

intestine of mice; the crypt population is 3868; the priori-

population of proliferating cells (including transit amplifying cells

and stem cells) is 11.562.5 (the numbers estimated based on

references [27,29,42,45,47,48,49]). So b assumes the value of 10.7

for mouse small intestine.

Solve formulation (13) in a priori-posteriori correction manner

to have:

b~16:3; s~
c0

a
~0:548 ð16Þ

Based on the population of transit amplifying cells, the number of

stem cells may be calculated as follows

stem cell#~
4:1; Vc0~1

2:0; Vc0~2

�
ð17Þ

If stem cells only divide once per day, there should be 4.1 stem

cells present in each crypt; if stem cells are allowed to divide twice

per day, there will only be 2.0 stem cells required in each crypt.

Results are summarized in Table 1.

Similar perturbation was conducted to examine the adaptive

changes in the number of stem cells in mice. Results of tissue

restitution following 50% reduction in differentiated epithelium

are shown in Figure 3B, where the epithelium renewed 35% faster

than normal and the pool of stem cells expanded from 4.1 to 8.1

per section of crypt (Figure 4B), accompanied by a transient

expansion of transit amplifying population up to 14.7% (equiva-

lent to one to two cells; Figure 5C).

Determination of the stem cell number in each crypt of
human duodenum

Proceeding as in the section for zebrafish, we obtained that the

population of differentiated epithelial cells in the villus is 120633;

the population of total cells in a crypt is 92612; the priori-

population of proliferating cells (including transit amplifying cells

and stem cells) is 8.862.1(compiled from refs. [50,51,52,53]). So b
assumes the value of 23.1 for human duodenum.

Solve formulation (13) in a posteriori-correction manner to

have:

b~39:0; s~
c0

a
~0:665 ð18Þ

Based on the population of transit amplifying cells, the number of

stem cells may be calculated as follows

stem cell#~
3:5; Vc0~1

1:8; Vc0~2

�
ð19Þ

If stem cells only divide once per day, there should be 3.5 stem

cells present in each crypt; if stem cells are allowed to divide twice

per day, there will only be 1.8 stem cells in each crypt. The results

are summarized in Table 1.

Similar perturbation was applied as before. Results are shown in

in Figure 3B, where the epithelium renewed 40% faster than

normal and the stem cells expanded from 4.3 to 8.6 per section of

crypt (Figure 4C), accompanied by a transient expansion of transit

amplifying population up to 11% (equivalent to one cell;

Figure 5C).

Comparison of the intestines of different species
To compare the epithelium renewal paradigm among three

different species, the ratios between stem cells, transit amplifying

cells and differentiated cells are plotted in Figure 5A&B. There is a

higher transit amplifying-to-stem cell ratio in teleost. It is the

Figure 4. Adaptive changes in the intestinal stem cell number. (A) Intestine of zebrafish. (B) Small intestine of mouse. (C) Duodenum of
human. Upper and lower limits of the division frequency of stem cells in vivo (once to twice per day) define a range of the number of stem cells
required to be present on each section of inter-villi pocket in zebrafish intestine. Reduction in cell proliferation would result in a bigger value of b and
thus a prolonged epithelium renewal cycle. That would be accompanied by less number of stem cells around. On the other hand, enhanced cell
proliferation would result in a smaller value of b and thus an accelerated epithelium renewal process, accompanied by an increase in stem cell
population. That would be the case where hyperplasia or adenoma starts to develop.
doi:10.1371/journal.pone.0014063.g004

Table 1. Stem cell number in the small intestine of different
species as suggested by STORM model.

Species Priori-beta Posteriori-beta
Stem cell
1 division/day

Stem cell
2 divisions/day

Zebrafish 8.0 10.3 4.1 2.0

Mice 10.7 16.3 4.1 2.0

Human 23.1 39.0 3.5 1.8

doi:10.1371/journal.pone.0014063.t001

STORM Model for ISCs
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lowest in human accompanied by a higher differentiated-to-transit

amplifying cell ratio. This probably reflects two different strategies

in the epithelium renewal mechanism: Rapid repair and quick

restitution of epithelium take higher priority in the teleost system,

whereas relatively slower tissue repair and restitution are allowed

in human, with achievement of high fidelity in genomic

duplication and reduction in susceptibility of carcinogenic

transformations.

The process of tissue restitution takes relatively longer time in

human, but the transit amplifying population is better restrained

from excessive expansion compared with murine and teleost

models (Figure 5C&D). This is important as unrestrained

expansion of transit amplifying population will lead to develop-

ment of cancer. As the model reveals, that may happen during

epithelium restitution in teleost and murine models, but it is less

likely in human intestine (Figure 6).

Application of the model to help evaluate hyperplasia in
human duodenitis and ulcer

Previously, Bransom et al reported of mucosal cell proliferation

in the duodenum with duodenitis or ulcer in endoscopic biopsies

[51]. They intended to find out the presence of epithelium

hyperplasia. That may be achieved by quantitative analysis using

this model. Based on the histological results, the villi were

shortened by 30–50% in duodenal ulcer and duodenitis.

Epithelium proliferation, as indicated by the labeling index (the

ratio of labeled nuclei to total nuclei in the crypt) is 15.661.7 in

duodenal ulcer and 17.861.5 in duodenitis. Utilizing these data,

the model yields that: (1) For duodenal ulcer, s~0:419,

t=t0~0:54, stem cell = 8 on average (In normal human

duodenum, the stem cell number is 1.8–2.7, averaged 4.0 as

shown earlier). The chi-test for duodenal ulcer shows that it is

significantly different from the healthy duodenum (p,0.003). As

the output suggests, there is an increase in the stem cell

population and an accelerated epithelium renewal rate (about

two-fold faster compared with normal rate), implying duodenal

hyperplasia. (2) For duodenitis, s~0:444, t=t0~0:60, stem

cell = 7.5 on average. The chi-test for duodenitis shows that it is

significantly different from the healthy duodenum (p,0.02). As

the output suggests, there is an increase in the stem cell

population and an accelerated epithelium renewal rate (about

1.7-fold faster), implying duodenal hyperplasia. The actual

presence of hyperplasia is further evidenced by the histological

results of biopsies from the patients, in consistence with analysis

result of the current model.

Discussion

A novel model for stem cell number in the intestine
In this work, we have devised a novel model that directly

addresses stem cell number in the intestine. Utilizing the

biological finding of the partial overlap between the transit

amplifying population and the differentiated population [1,43],

we introduced nonlinear terms accordingly to model the renewal

Figure 5. Comparison of epithelium renewal dynamics in different species. (A) The transit amplifying-to-stem cell ratio is the highest in
teleost but the lowest in human during normal homeostasis. (B) The differentiated-to-transit amplifying cell ratio is the lowest in teleost but the
highest in human during normal homeostasis. (C) As a strategy of efficient tissue restitution, there will be a transient expansion of the transit
amplifying population by 10–15% in these species. This value does not vary much as long as the lesion ranges below ,95% of the epithelium tissue.
(D) Recovery time varies in these species. In teleost, epithelium can be restituted in a shorter period of time, but this is achieved by allowing a bigger
transient expansion in the transit amplifying population. In human, it takes longer time to complete epithelium restitution, but this is achieved with a
tighter mediation over the expansion of the transit amplifying population. These data suggest that these species employ different strategies in
maintenance of homeostasis. Compared with intestines of other species, human intestine harbors minimum number of stem cells to support a larger
villus size and restitutes epithelium through tightly mediated proliferation to maintain genome integrity and minimize the possibility of carcinogenic
transformations.
doi:10.1371/journal.pone.0014063.g005
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process in two-dimension. As the intestinal stem cells constantly

compete against each other for optimal renewal dynamics

[25,26], the optimization formulation was devised following this

philosophy. Solution to the optimal model then allowed us to

infer the stem cell number. Design of the model based on the

general stem cells – TA cells – differentiated cells – apoptosis paradigm

has made it possible for the model to be applied to intestines of

different species. To our best knowledge, this is the first model of

its kind ever reported so far.

Linear migration of epithelial cells simplifies three-
dimensional crypt-villus structures into a two-
dimensional model

Though the villi and crypts constitute a three-dimensional inner

surface of the intestine, the linear nature of epithelial cell migration

[16,17,18] nicely simplifies the tissue renewal process into a two-

dimensional model. Cell proliferation is restricted near the bottom

of crypts (in mammals) or in the inter-villus pocket region (in

cryptless zebrafish), whereas apoptosis is restricted at the tips of

villi. Epithelium is renewed through cell migration along the villus

axis. All cells except the Paneth cells are migrating upward,

including columnar cells, goblet cells and enteroendocrine cells in

the two-dimensional model.

Differences have been noticed between the two-dimensional

systems. In mouse, only a few number of cells are going through

apoptosis along each villus (about 7 apoptotic cells over 100 villi

[48]). While in contrast, the number of apoptotic cells is notably

larger in zebrafish, typically around 15–20 cells per section of

villus (Figure 1A). The difference in cell apoptosis agrees with

what the model suggests that tissue renewal process goes faster in

zebrafish than in mammals (Figure 3B) and in case of tissue

recovery, the system recovered more quickly in zebrafish

(Figure 5D).

Achieving optimal epithelium renewal rate is essential to
sustainable organ function

The renewal rate of the intestinal epithelium tissue becomes

critical in terms of maintenance of tissue integrity, organ function

and potential risk of carcinogenic transformation during the life

span of the host organism. A high turnover rate would allow quick

restitution of the lost tissue due to damage; but on the other hand,

high turnover rate would require the presence of more active stem

cells around and more frequent cell divisions, increasing the

susceptibility to genome duplication-induced mutations and the

risk of carcinogenic transformation of the intestinal tissue. These

two opposing requirements ultimately lead to optimization of the

epithelium turnover rate for a defined organism, allowing

maintenance of tissue integrity and organ function with minimal

stem cells and cell divisions required. This may be the driving force

behind the neutral competition dynamics, and this optimizing

procedure persists throughout the adulthood [25,26]. The

optimization model based on this principle has successfully yielded

estimates of the stem cell number contained on a section of crypt

or inter-villi pocket , and they largely agrees with previous

speculations [45,54].

STORM model has produced data in general agreement
with previous literature

In previous reports, Bjerknes et al [16] and Potten [23,54]

estimated that there were 4–6 stem cells in each crypt of mouse

intestine (in three dimension). The recent work by Barker et al

[55,56], through discovery of stem cell marker Lgr5, showed 6

identifiable stem cells in a section of crypt. Based on their

histological results [55,56], there were approximately 3.5 stem cells

per crypt per histological section. Thus in terms of two-

dimensional section, our model is able to produce data that

generally agree with previous experimental measurements.

Figure 6. Changes in cell populations during epithelium restitution. The transit amplifying population will transiently expand during
epithelium restitution. In the case of extreme tissue lesion where more than 90% tissue is damaged, there will be an overwhelming response of the
crypt-villus system and the transit amplifying population will expand in an uncontrolled manner, producing intestinal hyperplasia or adenoma in the
teleost and murine intestines, though it seems less likely in human intestine. Denotation: . for zebrafish; N for mouse; & for human.
doi:10.1371/journal.pone.0014063.g006
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As no stem cell marker has been established in zebrafish or

human, verification of the model results still awaits future work in

this field.

The number of stem cells appears to be conserved in
each pocket/crypt of teleost, murine and human
intestines

Despite differences in the intestinal epithelium from teleost to

murine, the stem cell number appears conserved within these

species. In general, it seems not necessary to maintain a large

number of stem cells around from day to day, due to their

immortality, sensitivity to DNA damage and carcinogenic

potential [57,58,59]. In presence of an amplifying mechanism,

tissue homeostasis and restitution may be achieved with efficiency

by the transit amplifying population without an emergency call on

the multipotent stem cells. The human intestine, however, appears

to be a more robust system with a more restricted transient

expansion in the TA population. This feature may help minimize

the potential risk of tumor develpment during the long life-span of

humans, compared with teleosts and mice.

A general model for analysis of stem cell number with
equal applicability to teleost, murine and human
intestinal tracts

For the first time, a general model is developed to analyze the

number of stem cells in the intestinal tracts of teleost, murine and

human with minimal requirement of input: mainly information on

cell proliferation and differentiation (Figure 2). The fact that the

intestinal epithelial cells are essentially renewed in a linear manner

[16,17,18] has allowed us to develop a two-dimensional model to

estiamte the number of stem cells on a section of crypt (or an inter-

villi pocket). In absence of a universal stem cell marker for all

species, this model provides a useful tool for us to examine the

adaptive changes in stem cell number and epithelium renewal

dynamics during physiological and pathological states of the

organ.

Methods

The work is approved by Institutional Animal Care and Use

Committee (IACUC), National University of Singapore with the

approval ID: 070/09.

Maintenance of zebrafish (Daino rerio)
Zebrafish were obtained from local aquarium supply and

maintained in a controlled environment according to standard

condition with a 14/10 hour light-dark cycle at 28uC [60].

Histology
Intestines were isolated from euthanized adult zebrafish, washed

in ice-cold phosphate-buffered saline (PBS), fixed overnight in a

4% paraformaldehyde solution in PBS at room temperature. Fixed

tissue was dehydrated in ethanol with increasing gradients (75%,

90%, 95%, 100% twice), cleared in histoClearII twice and

embedded overnight in paraffin that was melted at 58uC. Samples

were then sectioned at 7 mM using a Reichert-Jung 2030 machine.

Immunohistochemistry
25mM Bromodeoxyuridine (Sigma-aldrich, St Louis, United

States) was orally administered 50uL per fish 10 minutes before

they were euthanized. Immunohistochemistry was performed

according to the manufacturer’s protocol (cat# 2760, Chemicon

International, United States). Briefly, the slides were cleared in

histoClear, rehydrated and quenched in 3% hydrogen peroxide,

incubated in 0.2% trypsin solution for 10 minutes, denatured for

30 minutes. Slides were subjected to blocking solution for

10 minutes before incubation with detector antibody for 60 min-

utes at room temperature. Then streptavidin-horse radish

peroxidase conjugate was applied for 10 minutes and slides were

subjected to a mixture of diaminobenzidine and substrate reaction

buffer until color developed. The slides were covered by coverslips

and sealed by DePex mounting medium and later, images were

taken using a Zeiss Axiovert imaging system.

Immunofluorescent TUNEL assay was carried out according to

the manufacturer’s protocol (S7111, Chemicon International,

United States). Briefly, slides were dewaxed in histoClear,

rehydrated and incubated in proteinase K (20 mg/ml) for

15 minutes at room temperature. Equilibration buffer was applied

before incubation in terminal deoxyribonucleic transferase enzyme

in a humidified chamber at 37uC for 60 minutes. Then stop buffer

was applied before slides were incubated in anti-digoxigenin

conjugate solution in a humidified chamber for 30 minutes at

room temperature in dark. The slides were incubated in 0.5 mg/ml

propidium iodide for 10 minutes as a fluorescent counterstaining

of nuclei. Finally the slides were covered by coverslips, sealed by

DePex mounting medium and images were taken using a Zeiss

Axiovert imaging system.
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