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Cancer immunoediting' is a hallmark of cancer® that predicts that lymphocyteskill
more immunogenic cancer cells to cause lessimmunogenic clones to dominate a
population. Although proven in mice'?, whether immunoediting occurs naturally in
human cancers remains unclear. Here, to address this, we investigate how 70 human
pancreatic cancers evolved over 10 years. We find that, despite having more time to
accumulate mutations, rare long-term survivors of pancreatic cancer who have
stronger T cell activity in primary tumours develop genetically less heterogeneous
recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify
whether immunoediting underlies these observations, we infer that a neoantigen is
immunogenic (high-quality) by two features—'non-selfness’ based on neoantigen
similarity to known antigens*>, and ‘selfness’ based on the antigenic distance required
for aneoantigen to differentially bind to the MHC or activate a T cell compared with its
wild-type peptide. Using these features, we estimate cancer clone fitness as the
aggregate cost of T cells recognizing high-quality neoantigens offset by gains from
oncogenic mutations. With this model, we predict the clonal evolution of tumours
toreveal that long-term survivors of pancreatic cancer develop recurrent tumours
with fewer high-quality neoantigens. Thus, we submit evidence that that the human
immune system naturally edits neoantigens. Furthermore, we present amodel to
predict how immune pressure induces cancer cell populations to evolve over time.
More broadly, our results argue that the immune system fundamentally surveils host
genetic changes to suppress cancer.

In1957, Burnet and Thomas proposed that the immune system in multi-
cellular organisms must eliminate transformed cells as an evolutionary
necessity to maintain tissue homeostasis. This theory of ‘cancer immu-
nosurveillance’was later redefined more broadly as ‘cancerimmunoedit-
ing’®—as a consequence of theimmune system protecting the host from
cancer, theimmune system must also sculpt developing cancers"”. When
cancers develop, they accumulate mutations, some of which generate
new proteinsequences (neoantigens)®. As neoantigens are mostly absent
from the human proteome, they can escape T cell central tolerance

in the thymus to become antigens in cancers®. However, neoantigens
typically arise in passenger mutations, and therefore distribute hetero-
geneously in cancer cell clones with variable immunogenicity. Thus,
T cells selectively ‘edit’ clones' with more immunogenic neoantigens?,
inducing lessimmunogenic clones to outgrow in cancers.

Although cancer immunoediting has been demonstrated through
longitudinal studies in immune-proficient and immune-deficient
mice*3, whetheritis a general principle of how human cancers evolve
remains uncertain. Despite suggestive evidence’ ™, definitive evidence
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Fig.1|LTSs of PDACdevelop tumourswithdistinctrecurrence time,
multiplicity and tissue tropism. a, The experimental design.b, ¢, Overall
survival (b) and disease-free survival (c) of patients with PDAC. d-g, The number
(d), correlation with overall survival (e), patterns (f) and sites (g) of recurrent
PDACs.Ing, otherindicatesomentum, aorta, diaphragm and perirectum (STS);

requires longitudinal tracking of large numbers of patients and can-
cers over time. As this is logistically challenging, whether the human
immune system naturally edits cancers and whether edited clones can
be predicted a priori remain unclear.

Quantifying selection pressures on neoantigens

To address this, we examined how 70 pancreatic ductal adenocarci-
nomas (PDACs) from 15 patients evolved longitudinally over 10 years
(Fig.1a). We reasoned that PDAC is an ideal cancer to test the immu-
noediting hypothesis. First, human PDACs have fewer neoantigens
(35 on average)*? compared with more immunogenic cancers (112
in non-small-cell lung cancer®, 370 in melanoma' on average). This
theoretically maximizes our ability to both distinguish true neoantigen
selection from neutral genomic changes over time and isolate effects of
individual neoantigens on clonal selection. Second, T cell infiltratesin
PDACsrange from nearly zero to1,000-fold higher®. Thus, PDACs have
subsets that approximate immune-deficient and immune-proficient
cancers, enabling us to theoretically observe how differentialimmune
selection pressures modulate cancer cell clones. Finally, mutationsin
oncogenes occur early in PDAC carcinogenesis and are clonal*—this
largely equalizes the cell-intrinsic oncogenic pressures among clones,
maximizing our ability to detect how cell-extrinsicimmune pressures
affect clonal evolution.

Tomodel howimmune-proficientand immune-deficient human can-
cersevolve, we compared how primary PDACs evolve to recurrencein
acohortoflong-termsurvivors (LTSs) and short-term survivors (STSs)
(Fig.1a, b and Supplementary Table 1). We previously demonstrated
that, compared with STSs, LTSs have primary tumours with around a
12-fold greater number of activated CD8' T cells>**" that are predicted
to targetimmunogenic neoantigens’, therefore phenocopying relative
greaterimmune pressure. Furthermore, inthe current cohort we find
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and pericardium, inferior vena cava, adrenal, kidney and liver (LTS). nindicates
thenumber of individual patients (b-f) or recurrent tumours (g). The
horizontal bars show the median values. Pvalues were determined using
two-tailed log-rank tests (Mantel-Cox; b and ¢), two-tailed Mann-Whitney
U-tests (d), two-tailed Pearson correlation (e) and two-tailed x tests (f).

thatthelargest T cell clones of LTS tumours have more similar CDR33
sequences'® compared with the largest T cell clones in STS tumours
(Extended DataFig.1a,b), suggesting T cell clonal expansionand there-
fore greaterimmune activity in LTSs. We therefore hypothesized that
this higherimmune pressure in LTSs would induce tumours to prefer-
entially lose tumour clones withimmunogenic neoantigens over time
(Fig. 1a). To test this hypothesis, we compared how tumours evolved
from primary to recurrent tumours. We found that compared with
STSs, LTSs had later (Fig.1c) and fewer recurrent tumours (Fig. 1d) that
inversely correlated with longer survival times (Fig. 1e). Moreover,
75% of LTSs versus 0% of STSs had recurrent tumours that were only
metastatic (Fig. 1f), with distinct tissue-tropic recurrence patterns
(Fig.1g). Thus, LTS tumours recur with distinct latency, multiplicity
and tissue-dependent evolutionary trajectories.

To examine whether differential selection pressure could explain
these unique recurrence patterns, we performed whole-exome
sequencing (Extended Data Fig. 2a) and inferred the clonal struc-
tures of matched primary and recurrent tumours. We reasoned that
greater immune selection pressure in LTS tumours should limit the
diversity of tumour clones over time, due to immunoediting of neo-
antigens. Consistently, we found that, although primary tumours in
LTSs were only slightly more homogeneous than in STSs, recurrent
tumours in LTSs were much more homogeneous (Fig. 2a (left)), indi-
cating that LTSs probably evolved fewer clones (Fig. 2a (right) and
Extended DataFig.3a, b). To examine whether this could be explained
by greater selection pressure on neoantigens, we compared the total
number of non-synonymous mutations (tumour mutational burden
(TMB)) and computationally predicted MHC-I restricted neoantigens*>.
Consistently, although primary LTS tumours had a similar TMB with
acomparable number of neoantigens as STS tumours (Fig. 2b), recur-
rent LTS tumours had a lower TMB with fewer neoantigens (Fig. 2b).
Despite these differences, LTS and STS tumours had comparable
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Fig.2|LTSs of PDAC develop tumours withfewer neoantigens. a, Shannon
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primary andrecurrent PDACs. ¢, d, The differencein TMBand NA (c), and the

numbers of synonymous mutations and mutationsin driver oncogenes
(Extended Data Fig. 2b, c). Although recurrent tumours of LTSs had
fewer co-occurring mutations in oncogenes compared with recurrent
tumours of STSs (Extended Data Fig. 2d), the number of mutations in
oncogenes did not correlate with TMB (Extended DataFig. 2e). Further-
more, LTS recurrent tumours gained significantly fewer mutations and
neoantigens compared with STS recurrent tumours (Fig. 2c), remaining
largely neutral over time”. LTS tumours also gained fewer mutations
that generate neoantigens than STS tumours (Fig.2d), indicating that
LTS tumours preferentially depleted neoantigenic mutations. These
data support the hypothesis that greater immune selection in LTS
tumours edited tumour clones and neoantigens.

The neoantigen quality model

To identify the edited neoantigens, we extended our previous neo-
antigen quality model*’ that quantifies the immunogenic features
of aneoantigen to propose that two competing outcomes determine
whether a neoantigen is high-quality—whether the immune system
recognizes or tolerates aneoantigenic mutation (Fig. 3a). To estimate
thelikelihood theimmune system recognizes a neoantigen, we meas-
ure the sequence similarity of the mutant neopeptide (p"") to known
immunogenic antigens. Thisinfers the ‘non-self’ recognition potential
Rof p™T, a proxy for peptides within the recognition space of the T cell
receptor (TCR) repertoire.

By contrast, we posit that the immune system can also fail to dis-
criminate pM' from its wild-type (WT) peptide (p""), and therefore
tolerate it as ‘self”. The immune system must therefore exert greater
self discrimination D (Fig. 3a) in tumours to overcome the principles
of negative T cell selection, the adaptation that limits autoreactivity
to host tissues. We approximate the D between p"" and p™" by two
features—differential MHC presentation and differential T cell reactiv-
ity. Differential MHC presentation of p*"and p™™ (K ' T/KNT), previously
introduced asthe MHC amplitude A (refs. *°), estimates the availability
of T cells to recognize pM". If p""is not presented to T cells in the thymus
or the periphery (as with a high KT, which implies poor p*™-MHC
binding), p“"-specific T cells escape negative selection to expand the
peripheral T cell precursor pool available to recognize ap™ presented
on MHC (low K¥T)%°, Here we extend this concept and introduce
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number of mutations that generate neoantigens (NA Mut) (d) between
recurrent and primary PDACs. nindicates the number of individual tumours.
The horizontal bars show the medianvalues. Fora-d, Pvalues were determined
using two-tailed Mann-Whitney U-tests.

cross-reactivity distance C, anew model term that estimates the anti-
genic distance required for T cells to discriminate between pM" and
p"". Thus, self discrimination D = log(A) + log(C) isa proxy for peptides
outside the toleration space of the TCR repertoire. In summary, we
define neoantigen quality as Q = R x D (Fig. 3a), now with components
that estimate whether aneoantigen canbe recognized as non-selfand
discriminated from self.

Tomodel C, weleveraged recent findings that conserved structural
features underlie TCR-peptide recognition. Specifically, the binding
domains of peptide-degenerate TCRs??? and TCR-degenerate pep-
tides?® share common amino acid motifs, suggesting that T cell
cross-reactivity between pM" and p*" could estimate the relative C of
different neoantigenic substitutions (Fig. 3b). We selected an
HLA-A*02:01-restricted strong epitope (NLVPMVATV (NLV)) from
human cytomegalovirus® that was previously used to model TCR-
peptide degeneracy®?? as amodel p"7, and three NLV-specific TCRs
(Extended Data Fig. 4a—c). We then varied the NLV peptide by every
aminoacid ateach position to model p¥" substitutions, and compared
how TCRs cross-react between each p™" and its p*" across a10,000-fold
concentration range where p"'" changes maximally altered T cell acti-
vation (Fig. 3b). We observed that substitutions were either highly,
moderately or poorly cross-reactive (Fig. 3¢, d), and the cross-reactivity
pattern depended on the substituted position and residue (Extended
DataFig. 5a). Interestingly, we found similar patterns of cross-reactivity
between a model HLA-A*02:01-restricted weaker p"" epitope in the
melanomaself-antigen gp100%* (Extended DataFigs. 4d and 5b), three
p"“"-specific TCRs and single-amino-acid-substituted pM's, suggesting
that conserved substitution patterns define C (Fig. 3e and Extended
Data Fig. 5b). Thus, we quantified the cross-reactivity distance C
betweena p""andits corresponding pM"as C(p"T, pM"y = ECYy /ECYY.
We chose the half maximal effective concentration (EC,,) to model C,
as T cell activation to p*" was consistently a sigmoidal function
(Extended DataFigs. 4c,d and 6a,b) described by aHillequation, where
EC,, determines how a ligand activates a receptor. We next estimated
the EC4, of all 1,026 TCR-p™" pairs toinfer amodel for Cthat estimates
whether a neoantigenic substitution is cross-reactive (and therefore
tolerated) based on the substituted amino acid position and residue
(Extended Data Figs. 6a, b and 7a, b). We then tested whether C pre-
dicted cross-reactive substitutions in an HLA-B*27:05-restricted
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Fig.3|High-quality neoantigens areimmunoeditedin LTS PDACs.
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neopeptide-TCR pair from an LTS (Extended Data Fig. 4e). Notably,
Cpredicted cross-reactive p*’, pM" and p™", p™" substitutions in this
neopeptide-TCR pair (Fig. 3f and Extended Data Fig. 5c, 6¢). Thus, we
combinedall1,197 TCR-p™" pairs to derive acomposite C—the antigenic
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matrix M. h, Observed amino acid substitution frequency versus matrix
M-defined substitution distancein primary and recurrent STSand LTS PDACs.
Mdistance is the matrix M-defined amino acid distance fromg. Circlesindicate
substituted residues. nindicates the number of substitutions. i, Cumulative
probability distributions oflog(C) and D. nindicates the number of
neoantigens. Thered rectanglesin the heat mapsindicate amino acids in p"".
Thegreenlineisalinear regression fit. Heat maps are ordered according to the
aminoacid orderinthedendograming. Pvalues were determined using
two-tailed Pearson correlation (fand h) and two-sided Kolmogorov-Smirnov
tests (i).

distance for a TCR to cross-react between amino-acid-substitution
pairs (Fig. 3g and Extended Data Fig. 7c). Broadly, two factors promote
cross-reactivity: substitutions at peptide termini¥’ and within amino
acid biochemical families (driven by amino acids of similar size and
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hydrophobicity; Fig. 3g). With this composite C, we now define
self-discrimination D between a p"" and its corresponding p™M"
(Fig.3a) as

WT  MT K§" ECSo
D(p"' > p")=(1-w)log| 5 |twlog| —7 | 1
Ky ECso

where w sets the relative weight between the two terms. We chose
the parameters of the neoantigen quality model to maximize the
log-rank test score of survival analysis on an independent cohort of
58 patients with PDAC® (Supplementary Methods and Extended Data
Table1a).

Immunoediting of neoantigens

We applied our model to PDAC, positing that immunoediting will dif-
ferentially deplete neoantigens with higher D (less self) in LTS versus
STSPDAC:s. First, we stratified the frequency of mutations by the anti-
genic distance as defined by C (Fig. 3g and Supplementary Methods).
Compared with mutations with alower antigenic distance, mutations
with a greater antigenic distance from self were more significantly
depleted in both LTS and STS PDACs (Fig. 3h (left and middle)) and,
interestingly, preferentially more depleted in LTS compared with STS
PDACs (Fig. 3h (right)). To further examine these observations, we
applied the full D model to find that neoantigens with both a higher
C and D were strikingly more depleted in LTS versus STS PDACs

andthe percentage of new neoantigensinrecurrent tumours (d). f, TCR
dissimilarity index and immune fitness cost ,in tumours. nindicates the
number of tumours. Thegreenlineisalinear regression fit. The horizontal
barsshow the median values. Pvalues were determined using two-tailed
Spearman correlation (b), two-tailed Pearson correlation (f) and two-tailed
Mann-Whitney U-tests (c-e).

(Fig. 3i). Interestingly, genes in the HLA class-1 pathway were not dif-
ferentially mutated, deleted, expressed or localized in STS versus LTS
PDACs, indicating that neoantigen depletion was not accompanied
by acquired resistance in the HLA class-I pathway in LTSs (Extended
Data Fig. 8a-c). Thus, tumours in LTSs selectively lose high-quality
neoantigens.

Predicting recurrent tumour composition

We next incorporated neoantigen quality parameters into a fitness
model*’ to test whether our model that predicts clonal tumour evolu-
tion can identify immunoedited clones. We reconstructed joint mul-
tisample phylogenies® for all tumours from each patient to provide a
common clonal structure and track clone frequencies between the
tumours of the same patient. To describe selective pressures acting
ontumour clones, we accounted for positive selection due to cumula-
tive mutations in driver oncogenes. We quantify this effect ina minimal
model F§, which counts the number of missense mutationsin canonical
PDAC driver genes (KRAS, TP53, CDKN2A and SMAD4) in each clone a.
The composite fitness model (Fig. 4a) defines fitness function, F*, of
clone @as the sum of a negative fitness cost due toimmune recognition
of high-quality neoantigens and positive fitness gain due to the accu-
mulation of mutations in driver oncogenes,

Ff=-g,
P

max  Q(p™") + gpF}

€clonea

(2)
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with the free parameters g,and g, setting the amplitude of the fitness
components (Supplementary Methods). We use the model to predict
the frequencies of clones propagated to recurrent tumours as

. 1
Rlec= Exgrim exp(F%), (3

where xgrim is the frequency of clone a in the primary tumour, X%, isits
predicted frequencyintherecurrent tumourand constant Zensures cor-
rectnormalization. We evaluated how closely the fitness model predicted
clonal evolutionin the recurrent tumours. To do this, for each recurrent
tumour inthe LTS and STS cohorts, we performed maximum-likelihood
fitting of the model parameters g,and o,in equation (3).

We found that our model provided abetter fit of the observed evolu-
tion of LTS compared to STS tumour clones, predicting observed evo-
lution in 86% of LTS tumours versus 52% of STS tumours (Extended
DataTable 1b) when compared with a neutral model (no selection pres-
sure on clones; differences were quantified with aBayesian information
criterion; Supplementary Methods). Notably, a partial fitness model
thatincorporates only the oncogenicity component, F* = g,F$, showed
reduced performance for the LTS tumours but not STS tumours
(Extended Data Table 1b and Extended Data Fig. 9). To illustrate this
further, we compared observed and model-fitted clone frequency
changes between the primary and recurrent tumours, X7, /X i, and
Xredl prim (Fig. 4b), for all reliably predictable clones in the primary
tumour (above 3% frequency; Supplementary Methods). The direction
of frequency changes was correctly predicted for 71% of LTS and 58%
of STStumour clones (rank correlation p of 0.65 and 0.28, respectively;
Fig. 4b and Extended Data Table 1b). We attribute the model’s better
predictions in LTS tumours to the presence of immune selection in
these tumours.

Next, we computed the overall tumourimmune cost (averaging the

immune component, Ff= _max Q(pM") over all tumour clones).
p"' eclonea

Consistently, the immune fitness cost was lower in recurrent LTS
tumours compared with in STS tumours (Fig. 4c). Furthermore, we
considered the immune cost only of clones that are new in recurrent
tumours, but not presentin primary tumours. Recurrent LTS tumours
contained both fewer new neoantigens (1% versus 18%; Fig. 4d) and
new clones with markedly lowerimmune fitness cost (Fig. 4e) compared
withrecurrent STS tumours. These observations again suggest that
the LTS recurrent tumours had been subject to immunoediting.

Finally, we confirmed these results by analysing TCR sequencing data
intheavailable recurrent tumour samples. We quantified the specific-
ity of T cell clonal expansion using the TCR dissimilarity index™ (Sup-
plementary Methods and Extended Data Fig. 1a, b) and correlated this
indextoimmune fitness cost. We found greater T cell clonal expansion
intumours (lower TCR dissimilarity index) correlated with more highly
edited tumours (lowerimmune fitness cost) (Fig. 4fand Extended Data
Fig.1c). In summary, these results strongly suggest that neoantigens
are immunoedited in PDAC, and that our fitness model captures the
selective pressures by T cells acting on tumour clones.

Discussion

Here we clarify several questions on how the immune system inter-
acts with cancer. First, does cancerimmunoediting occur in humans?
As the theory of cancer immunoediting was developed by studying
carcinogen-induced highly mutated murine sarcomas?, it has remained
uncertain whether these principles apply to human cancers® !, We
postulated that spontaneous immunoediting of ahuman cancer should
manifest when theimmune system recognizes animmunogenic antigen
in a primary tumour, as this should induce the antigen to be subse-
quently eliminated in the recurrent tumour. Indeed, this is what we
found—tumours that evolve under strongerimmune pressure lose more
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immunogenic neoantigens. Although we did not assess the changesin
non-mutated antigens or address how different cellular compositions
and tissue environments may modulate editing, it is notable that the
proofforimmunoeditingisrevealed in PDAC, alow-mutated cancer that
isconsidered to be resistant to endogenous immunity. This strength-
ens the claim that immunoediting is a broadly conserved principle of
carcinogenesis.

Second, does immunoediting manifest as loss of immunogenic
antigens, or do cancers also acquire genetic resistance? Interestingly,
we observed the former but not the latter. We postulate that such
phenotypes are governed by the magnitude of the selective pressure.
Although LTSs exhibit higher immune pressures in tumours than
STSs, this is ostensibly still lower than pharmacologically boosted
immune pressure inatumour®. Thus, in LTSs, as pressure is moder-
ate, tumours lose immunogenic antigens; by contrast, where pressure
is maximal, such as perhaps when under therapy, tumours acquire
resistance®. This distils cancer evolution under immune selection
to a simpler concept—selection determines clonal composition,
and pressure determines adaptive change. Further studies will test
these concepts.

Third, can we quantify how the immune system recognizes muta-
tions? We combined experimental techniques and machine learning
to present anew metric that captures how T cells cross-react between
peptides. We use Cto quantify the antigenic distance of mutated pep-
tides in the TCR-recognition space and the qualities that render indi-
vidual mutationsimmunogenic, building on our previous efforts** to
formalize antigen quality. Although we used our quality model toiden-
tify immunogenic neoantigens, we propose that it captures common
immunogenic featuresinantigens. Thus, we anticipate that our model
canfurtherilluminate the biology of antigens beyond cancer, including
T cell cross-reactivity between antigens, pathologies of cross-reactivity
(such as autoimmunity) and therapies that require rational antigen
selection (such as vaccines).

Finally,itisnotable that quantifying the ability of theimmune system
to discriminate changes in mere single amino acids can predict how
cancersevolve. Thisundoubtedly reflects that afundamental function
of theimmune systemis to maintain integrity of the host genome. We
therefore speculate that our model in essence captures the mecha-
nisms through which theimmune system preserves genomicintegrity.
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Extended DataFig.8|LTS and STS PDACs have equivalent genetic changes
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Extended Data Table 1| Neoantigen quality fitness models
a.

Parameters
NA quality model Fitness model Number of Sample
Models a k w o op parameters size
Full fitness model; full NA quality model
F = opFp — 0;F,
0 :" I;x DI ! 22.9 1 0.22 1.39 4.68 4 58
Partial models:
Driver gene component only fitness model
F = opFp - - - 0 1.53 1 58
Immune component only fitness model; full NA quality model
F = —0,F,
0=R ><’l; 32,5 1 0.31 0.29 0 3 58
Full fitness model (F = opF, — 0;F,); partial NA quality model
Q=R 24.92 1 - 0.54 0.29 3 58
Q=D - - 0.64 0.46 4.13 3 58
Immune component only fitness model (F = —o,F,); partial NA quality model
Q=R 26.5 1 - 10 0 2 58
Q=D - - 0.93 1.53 0 2 58
NA: neoantigen; BIC: Bayesian information criterion; AIC: Akaike's information criterion.
b.
NA quality model Accuracy of Correlation
parameters clone Pearson
dynamics
Models a k w Cohort p::ediction r P p
Full fitness model; full NA quality model:
F = 0pFp — o/, 229 1 022 LTS 0.71 0.57 1.21x102 0.65
Q=RxD STS 0.58 0.35 1.29x10°"2 0.28
Partial models:
Driver gene component only fitness model
F = oF ; ; B LTS 0.66 0.48 3.61x10° 0.61
STS 0.59 0.24 1.50x10° 0.28
Immune component only- fitness model; full NA quality model
F = —o,F, LTS 0.57 0.7 2.12x10°%7 0.36
Q=RxD 325 1] 031 STS 0.46 0.52 3.94 x10%¢ 0.12
Full fitness model (F = o,F, — 0;F,) ; partial NA quality model
LTS 0.68 0.57 2.07 x10%? 0.65
Q=R 2492 ! . STS 0.57 0.38 5.30 x10°"® 0.3
0=0 R . o064 LTS 0.72 0.75 2.46 x104 0.71
STS 0.53 0.37 2.14 x10°™ 0.36
Immune component only fitness model (F = —g;F,); partial NA quality model
Q=R 26.5 1 ; LTS 0.57 0.5 7.25x10°"7 0.4
STS 0.43 0.42 3.76 x10"® 0.05
LTS 0.49 0.55 2.47 x102° 0.28
Q=D 1 1] 093 STS 0.36 0.42 3.74 x10"® 0.06

NA: neoantigen

Log-rank

Model selection criteria
Log-rank P

Log-likelihood score
(vs. neutral model)

BIC
score value
11.75 0.0006 -7.26
295 0.0858 -1.84
6.53 0.0106 -0.88
7.91 0.0049 -3.63
7.02 0.0081 -1.86
3.24 0.0718 1.64
3.88 0.0489 0.36
Spearman
P Total
2.32x10°%° 1241.23
2.76x10°® 198.24
9.55x10%° 1041.47
1.05x10°® 2233
1.16 x10°® 578.92
0.023 90.75
212 x10%° 1281.74
1.11x10° 230.41
1.95 x10°%8 1594.97
4.61x10" 244.59
6.26 x10"" 373.68
0.30 24.85
9.34 x10°° 442.18
0.27 20.08

AIC

-16.5

-7.06

-9.81
-8.04

-2.48
-3.76

Median

33.6
0.06

12.21
-2.38

0.35
-2.59

30.07
0.89
54.89
2.19

15.46
-2.59
11.01
-2.54

Mean

56.42
6.01

47.34
6.77

26.31
2.75

58.26
6.98
72.5
7.41

16.99
0.75
20.1
0.61

Samples better than
neutral model

No.

19
17

6

Fraction

0.86
0.52

0.64
0.39

0.5
0.12

0.86
0.52
0.95
0.55

0.55
0.18
0.55
0.18

Full and partial neoantigen quality fitness models to predict survival (a) and recurrent tumour clone composition (b). We provide additional details on the respective models in the

Supplementary Methods.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
/N 0nly common tests should be described solely by name; describe more complex techniques in the Methods section.

X| A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Flow cytometric data were collected using FACSDiva (BD Biosciences, version 8.0.1).
Code used to construct and apply the model is available at https://github.com/Lukszalab/NeoantigenEditing.
Data analysis All data analysis was performed using Prism 7.0, GraphPad Software v.9.1.0, or Python v3.4 unless otherwise indicated.

For WES, sequence data were demultiplexed using lllumina CASAVAsoftware. Reads were aligned to the reference human genome (hg19)
using the Burrows-Wheeler Alignment tool (bwa mem v0.7.17) and samtools (v1.6). Duplicates were marked with picard-2.11.0
MarkDuplicates (http://broadinstitute.github.io/picard). Indel realignments were done with the Genome Analysis toolkit
(GenomeAnalysisTK-3.8-1-0-gf15c1c3ef) RealignerTargetCreator and IndelRealigner (ref #35) using 1000 genome phasel indel
(1000G_phasel.indels.b37.vcf) and Mills indel calls (Mills_and_1000G_gold_standard.indels.b37.vcf) as references. Base calls were
recalibrated with BaseRecalibrator (ref #35) and dbSNP version 138.

Mutations were called using Mutect 1.1.7 (ref #35) (https://software.broadinstitute.org/gatk/download/mutect) and Strelka 1.0.15 (ref #36).
Unbiased normal/tumor read counts for each SNV and indel call were assigned with the bam-readcount software 0.8.0-unstable-6-963acab-
dirty (commit 963acab-dirty) (https://github.com/genome/bam-readcount).

HLA-I typing for PDAC patients was performed in silico with the OptiType version 1.3.3 tool (https://github.com/FRED-2/OptiType) (ref #40).

Tumor clones were reconstructed with the PhyloWGS algorithm (https://github.com/morrislab/phylowgs) (ref #28).

For neoantigen prediction, wild-type and mutant genomic sequences corresponding to coding mutations were translated to an amino acid

sequence consistent with the GRCh37 reference genome (GRCh37.75) using snpEff.v4.3t software (ref #41). Predictions of MHC class-I binding
for both the WT peptide (pWT) and mutant peptide (pMT) were estimated using the NetMHC 3.4 software (ref #42, 43)
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We inferred R using a set of known positive epitopes derived from the IEDB (ref #49), restricting the search to all human infectious disease
class-l restricted targets with positive immune assays (http://www.iedb.org). To calculate the alignments between all neoantigens and IEDB
epitope sequences, we used the BLOSUM62 matrix (gap opening penalty=-11, gap extention penalty=-1) with the blastp algorithm. We
calculated alignment scores with the Biopython Bio.pairwise2 package (http://biopython.org) for all alignments identified with blastp.

To estimate the antigen-specificity of a T cell repertoire, for each repertoire, we apply a sequence based probabilistic model called a
Restricted Boltzmann Machine (RBM) (ref #18). The RBM model is trained on the sampled CDR3b sequences and their abundance. Once the
parameters are fixed, it allows us to assign probabilistic scores of specific response to each T cell clone in the sample. We considered the top
25 ranking clones according to this score, and estimated a CDR3b sequence dissimilarity index (DI) within this set.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Source data are provided for all experiments. All raw sequencing data obtained through the Johns Hopkins Hospital medical donation program have been previously
described (ref #19) and are available in the European Genome—Phenome Archive under accession number EGAS00001004097. All other raw sequencing data are
available in the NCBI Sequence Read Archive under accession number PRINA648923 (https://dataview.ncbi.nlm.nih.gov/object/PRINAG489237?
reviewer=5hj966ftr4pnjbslhremst8min). The ICGC data used in this study are available at https://dcc.icgc.org/repositories under the identifier PACA-AU. The TCGA
data used in this study are from TCGA-PAAD dataset available at the NCI Genomic Data Commons (https://gdc.cancer.gov/).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were determined based on a priori estimated sizes required to detected differences in evolutionary patterns. We were unable to
calculate pre-specified effect sizes to optimally determine sample sizes in the two groups, given no prior reports examine the long-term tumor
evolution in humans with pancreatic ductal adenocarcinoma.

Data exclusions | Samples were either primary and recurrent pancreatic ductal adenocarcinoma tissues obtained through rapid autopsy, or surgical resection.
We excluded adenocarcinomas in cystic pancreatic neoplasms and neuroendocrine tumors given their different genetic, histological, and
clinical features compared to PDAC, the most common type of pancreatic cancer. All data exclusions were pre-established at the outset of the
study.

Replication TCR cross reactivity experiments were replicated across 3 different epitope strengths and were reproducible. All other experiments were
observational in patient samples with the indicated sample sizes.

Randomization  There was no randomization. Covariates were controlled by matching primary tumors in short and long-term survivors by similar
clinicopathological characteristics (Supplementary Table 1).

Blinding Investigators were blinded to the allocated groups during data collection (whole exome sequencing, computational mutation and neoantigen
prediction). After data were collected, the analysis was performed unblinded to accurately interpret the results.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies IZI D ChIP-seq
Eukaryotic cell lines |:| |Z| Flow cytometry
Palaeontology and archaeology IZI D MRI-based neuroimaging

Animals and other organisms
Human research participants
Clinical data

Dual use research of concern

XXOXXOO s
OO0XOOX X

Antibodies

Antibodies used Flow cytometry:
CD3 - clone SK-7, PE-Cy7 (Biolegend Cat# 344816); 4 ul/sample
CDS8 - clone SK1, Alexa Fluor 700 (Biolegend Cat# 344724); 2 ul/sample
mMTRB - clone H57-597, PE-Cy5 (Biolegend Cat# 109210); 0.5 ul/sample
CD137 - clone 4B4-1, PE (Biolegend Cat# 309804); 3 ul/sample
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Validation All antibodies were validated by the manufacturer and used per their instructions. In our experiments, isotype and/or FMO
control samples were included. Additional information on validation can be found on the manufacturers' websites:

CD3 - clone SK-7, PE-Cy7 (Biolegend Cat# 344816): https://www.biolegend.com/en-gb/products/pe-cyanine7-anti-human-cd3-
antibody-6934?GrouplD=BLG5900

CDS8 - clone SK1, Alexa Fluor 700 (Biolegend Cat# 344724): https://www.biolegend.com/en-us/search-results/alexa-fluor-700-anti-
human-cd8-antibody-9062?Group|D=BLG10167

mTRB - clone H57-597, PE-Cy5 (Biolegend Cat# 109210): https://www.biolegend.com/en-us/search-results/pe-cyanine5-anti-mouse-
tcr-beta-chain-antibody-273

CD137 - clone 4B4-1, PE (Biolegend Cat# 309804): https://www.biolegend.com/en-us/search-results/pe-anti-human-cd137-4-1bb-
antibody-1510

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) T2 were a kind gift from Michel Sadelain. H29 cells were developed in the Richard C. Mulligan lab and have been previously
described (PMID: 8876147). The K562 cell line was purchased from ATCC (CCL-243).

Authentication We authenticated T2 cells based on concentration-dependent surface upregulation of HLA-A2 with exogenous HLA-A2-
restricted peptides. H29 cells were strictly maintained with two selection antibiotics: G418 (gag/pol selection) and puromycin
(VSV-G selection) to ensure maintenance of retroviral protein-expressing plasmids. STR profiling was performed to
authenticate the K562 cell line.

Mycoplasma contamination Cell lines were regularly tested using MycoAlert Mycoplasma Detection Kit (Lonza). None of the cell lines used in this study
tested positive for Mycoplasma.

Commonly misidentified lines No commonly misidentified lines were used in this study.
(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics We collected matched primary and recurrent PDACs through surgical resection at Memorial Sloan Kettering Cancer Center
(MSK) (n =5/9 LTS), and the Garvan Institute of Medical Research (n = 1/9 LTS) (Supplementary Table 1). Additional matched
primary and recurrent PDACs were previously obtained through the Gastrointestinal Cancer Rapid Medical Donation Program
at The Johns Hopkins Hospital (JHH) (n = 3/9 LTS, 6/6 STS) and have been described (ref # 19) (Supplementary Table 1).
Cohorts of primary only PDAC were previously collected at MSK (MSK primary PDAC cohort) and the International Cancer
Genome Consortium (ICGC primary PDAC cohort) through surgical resection as described (ref # 5, 33).

Recruitment All patients with pancreatic ductal adenocarcinoma at Memorial Sloan Kettering Cancer Center and Garvan Medical Center
undergoing surgery were recruited to participate in an Institutional Review Board-approved protocol. All patients who
provided informed consent had samples collected, and study procedures were conducted in strict compliance with all ethical
and institutional regulations. Although samples collected in short term survivor reflect genetic, histological, and clinical
features of other short term PDAC survivors (ref # 5), they were collected through rapid autopsy which is a potential source
of selection bias. Samples were collected at Memorial Sloan Kettering Cancer Center, Garvan Medical Center, and Johns
Hopkins Hospital which may be a source of institutional bias.
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Ethics oversight Tissues from patients undergoing surgical resection at Memorial Sloan Kettering Cancer Center and Garvan Medical Center
were collected under Institutional Review Board-approved study protocols.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation We purified peripheral blood mononuclear cells (PBMCs) from healthy donor buffy coats (New York Blood Center, New York,
USA) and isolated T cells using a Pan-T cell isolation kit (Miltenyi Biotec, Germany). We activated T cells with CD3/CD28 beads
(Thermo Fisher, MA, USA), IL7(3000 IU/mL), and IL15 (100 IU/mL) (Miltenyi Biotec), and transduced T cells with TCR
constructs on day 2 post activation. We defined TCR transduced CD8+ T cells as live, CD3+, CD8+, mTCR+ cells. Full details are
provided in the Methods.

Instrument Flow cytometry was performed on an LSRFortessa (BD Biosciences; Catalog # 647177; Serial # H64717700135).

Software Data were analyzed using FlowJo Software (version 10, Tree Star).

Cell population abundance Representative cell abundance is indicated in Extended Data Figure 4b.

Gating strategy The relevant gating strategy used is indicated in Extended Data Figure 4b.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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