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Neoantigen quality predicts immunoediting 
in survivors of pancreatic cancer

Marta Łuksza1,16 ✉, Zachary M. Sethna2,3,4,16, Luis A. Rojas3,4,16, Jayon Lihm2, Barbara Bravi5,6, 
Yuval Elhanati2, Kevin Soares4,7, Masataka Amisaki3,4, Anton Dobrin8,9, David Hoyos2, 
Pablo Guasp3,4, Abderezak Zebboudj3,4, Rebecca Yu3,4, Adrienne Kaya Chandra3,4, 
Theresa Waters3,4, Zagaa Odgerel3,4, Joanne Leung4, Rajya Kappagantula7,10, 
Alvin Makohon-Moore7,10, Amber Johns11, Anthony Gill11,12, Mathieu Gigoux3,13, 
Jedd Wolchok3,13, Taha Merghoub3,13, Michel Sadelain8,9, Erin Patterson4, Remi Monasson5, 
Thierry Mora5, Aleksandra M. Walczak5, Simona Cocco5, Christine Iacobuzio-Donahue7,10, 
Benjamin D. Greenbaum2,14 ✉ & Vinod P. Balachandran3,4,7,15 ✉

Cancer immunoediting1 is a hallmark of cancer2 that predicts that lymphocytes kill 
more immunogenic cancer cells to cause less immunogenic clones to dominate a 
population. Although proven in mice1,3, whether immunoediting occurs naturally in 
human cancers remains unclear. Here, to address this, we investigate how 70 human 
pancreatic cancers evolved over 10 years. We find that, despite having more time to 
accumulate mutations, rare long-term survivors of pancreatic cancer who have 
stronger T cell activity in primary tumours develop genetically less heterogeneous 
recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify 
whether immunoediting underlies these observations, we infer that a neoantigen is 
immunogenic (high-quality) by two features—‘non-selfness’  based on neoantigen 
similarity to known antigens4,5, and ‘selfness’  based on the antigenic distance required 
for a neoantigen to differentially bind to the MHC or activate a T cell compared with its 
wild-type peptide. Using these features, we estimate cancer clone fitness as the 
aggregate cost of T cells recognizing high-quality neoantigens offset by gains from 
oncogenic mutations. With this model, we predict the clonal evolution of tumours 
to reveal that long-term survivors of pancreatic cancer develop recurrent tumours 
with fewer high-quality neoantigens. Thus, we submit evidence that that the human 
immune system naturally edits neoantigens. Furthermore, we present a model to 
predict how immune pressure induces cancer cell populations to evolve over time. 
More broadly, our results argue that the immune system fundamentally surveils host 
genetic changes to suppress cancer.

In 1957, Burnet and Thomas proposed that the immune system in multi-
cellular organisms must eliminate transformed cells as an evolutionary 
necessity to maintain tissue homeostasis. This theory of ‘cancer immu-
nosurveillance’ was later redefined more broadly as ‘cancer immunoedit-
ing’6—as a consequence of the immune system protecting the host from 
cancer, the immune system must also sculpt developing cancers1,7. When 
cancers develop, they accumulate mutations, some of which generate 
new protein sequences (neoantigens)8. As neoantigens are mostly absent 
from the human proteome, they can escape T cell central tolerance 

in the thymus to become antigens in cancers8. However, neoantigens 
typically arise in passenger mutations, and therefore distribute hetero-
geneously in cancer cell clones with variable immunogenicity. Thus, 
T cells selectively ‘edit’ clones1 with more immunogenic neoantigens3, 
inducing less immunogenic clones to outgrow in cancers.

Although cancer immunoediting has been demonstrated through 
longitudinal studies in immune-proficient and immune-deficient 
mice1,3,8, whether it is a general principle of how human cancers evolve 
remains uncertain. Despite suggestive evidence9–11, definitive evidence 
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requires longitudinal tracking of large numbers of patients and can-
cers over time. As this is logistically challenging, whether the human 
immune system naturally edits cancers and whether edited clones can 
be predicted a priori remain unclear.

Quantifying selection pressures on neoantigens
To address this, we examined how 70 pancreatic ductal adenocarci-
nomas (PDACs) from 15 patients evolved longitudinally over 10 years 
(Fig. 1a). We reasoned that PDAC is an ideal cancer to test the immu-
noediting hypothesis. First, human PDACs have fewer neoantigens 
(35 on average)5,12 compared with more immunogenic cancers (112 
in non-small-cell lung cancer13, 370 in melanoma14 on average). This 
theoretically maximizes our ability to both distinguish true neoantigen 
selection from neutral genomic changes over time and isolate effects of 
individual neoantigens on clonal selection. Second, T cell infiltrates in 
PDACs range from nearly zero to 1,000-fold higher5. Thus, PDACs have 
subsets that approximate immune-deficient and immune-proficient 
cancers, enabling us to theoretically observe how differential immune 
selection pressures modulate cancer cell clones. Finally, mutations in 
oncogenes occur early in PDAC carcinogenesis and are clonal15—this 
largely equalizes the cell-intrinsic oncogenic pressures among clones, 
maximizing our ability to detect how cell-extrinsic immune pressures 
affect clonal evolution.

To model how immune-proficient and immune-deficient human can-
cers evolve, we compared how primary PDACs evolve to recurrence in 
a cohort of long-term survivors (LTSs) and short-term survivors (STSs) 
(Fig. 1a, b and Supplementary Table 1). We previously demonstrated 
that, compared with STSs, LTSs have primary tumours with around a 
12-fold greater number of activated CD8+ T cells5,16,17 that are predicted 
to target immunogenic neoantigens5, therefore phenocopying relative 
greater immune pressure. Furthermore, in the current cohort we find 

that the largest T cell clones of LTS tumours have more similar CDR3β 
sequences18 compared with the largest T cell clones in STS tumours 
(Extended Data Fig. 1a, b), suggesting T cell clonal expansion and there-
fore greater immune activity in LTSs. We therefore hypothesized that 
this higher immune pressure in LTSs would induce tumours to prefer-
entially lose tumour clones with immunogenic neoantigens over time 
(Fig. 1a). To test this hypothesis, we compared how tumours evolved 
from primary to recurrent tumours. We found that compared with 
STSs, LTSs had later (Fig. 1c) and fewer recurrent tumours (Fig. 1d) that 
inversely correlated with longer survival times (Fig. 1e). Moreover, 
75% of LTSs versus 0% of STSs had recurrent tumours that were only 
metastatic (Fig. 1f), with distinct tissue-tropic recurrence patterns 
(Fig. 1g). Thus, LTS tumours recur with distinct latency, multiplicity 
and tissue-dependent evolutionary trajectories.

To examine whether differential selection pressure could explain 
these unique recurrence patterns, we performed whole-exome 
sequencing (Extended Data Fig. 2a) and inferred the clonal struc-
tures of matched primary and recurrent tumours. We reasoned that 
greater immune selection pressure in LTS tumours should limit the 
diversity of tumour clones over time, due to immunoediting of neo-
antigens. Consistently, we found that, although primary tumours in 
LTSs were only slightly more homogeneous than in STSs, recurrent 
tumours in LTSs were much more homogeneous (Fig. 2a (left)), indi-
cating that LTSs probably evolved fewer clones (Fig. 2a (right) and 
Extended Data Fig. 3a, b). To examine whether this could be explained 
by greater selection pressure on neoantigens, we compared the total 
number of non-synonymous mutations (tumour mutational burden 
(TMB)) and computationally predicted MHC-I restricted neoantigens4,5. 
Consistently, although primary LTS tumours had a similar TMB with 
a comparable number of neoantigens as STS tumours (Fig. 2b), recur-
rent LTS tumours had a lower TMB with fewer neoantigens (Fig. 2b). 
Despite these differences, LTS and STS tumours had comparable 
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horizontal bars show the median values. P values were determined using 
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U-tests (d), two-tailed Pearson correlation (e) and two-tailed χ2 tests (f).
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numbers of synonymous mutations and mutations in driver oncogenes 
(Extended Data Fig. 2b, c). Although recurrent tumours of LTSs had 
fewer co-occurring mutations in oncogenes compared with recurrent 
tumours of STSs (Extended Data Fig. 2d), the number of mutations in 
oncogenes did not correlate with TMB (Extended Data Fig. 2e). Further-
more, LTS recurrent tumours gained significantly fewer mutations and 
neoantigens compared with STS recurrent tumours (Fig. 2c), remaining 
largely neutral over time19. LTS tumours also gained fewer mutations 
that generate neoantigens than STS tumours (Fig. 2d), indicating that 
LTS tumours preferentially depleted neoantigenic mutations. These 
data support the hypothesis that greater immune selection in LTS 
tumours edited tumour clones and neoantigens.

The neoantigen quality model
To identify the edited neoantigens, we extended our previous neo-
antigen quality model4,5 that quantifies the immunogenic features 
of a neoantigen to propose that two competing outcomes determine 
whether a neoantigen is high-quality—whether the immune system 
recognizes or tolerates a neoantigenic mutation (Fig. 3a). To estimate 
the likelihood the immune system recognizes a neoantigen, we meas-
ure the sequence similarity of the mutant neopeptide (pMT) to known 
immunogenic antigens. This infers the ‘non-self’ recognition potential 
R of pMT, a proxy for peptides within the recognition space of the T cell 
receptor (TCR) repertoire.

By contrast, we posit that the immune system can also fail to dis-
criminate pMT from its wild-type (WT) peptide (pWT), and therefore 
tolerate it as ‘self’. The immune system must therefore exert greater 
self discrimination D (Fig. 3a) in tumours to overcome the principles 
of negative T cell selection, the adaptation that limits autoreactivity 
to host tissues. We approximate the D between pWT and pMT by two 
features—differential MHC presentation and differential T cell reactiv-
ity. Differential MHC presentation of pWT and pMT (K K/d

WT
d
MT), previously 

introduced as the MHC amplitude A (refs. 4,5), estimates the availability 
of T cells to recognize pMT. If pWT is not presented to T cells in the thymus 
or the periphery (as with a high K d

WT, which implies poor pWT–MHC 
binding), pWT-specific T cells escape negative selection to expand the 
peripheral T cell precursor pool available to recognize a pMT presented 
on MHC (low K d

MT)20. Here we extend this concept and introduce 

cross-reactivity distance C, a new model term that estimates the anti-
genic distance required for T cells to discriminate between pMT and 
pWT. Thus, self discrimination D = log(A) + log(C) is a proxy for peptides 
outside the toleration space of the TCR repertoire. In summary, we 
define neoantigen quality as Q = R × D (Fig. 3a), now with components 
that estimate whether a neoantigen can be recognized as non-self and 
discriminated from self.

To model C, we leveraged recent findings that conserved structural 
features underlie TCR–peptide recognition. Specifically, the binding 
domains of peptide-degenerate TCRs21,22 and TCR-degenerate pep-
tides23 share common amino acid motifs, suggesting that T cell 
cross-reactivity between pMT and pWT could estimate the relative C of 
different neoantigenic substitutions (Fig.  3b). We selected an 
HLA-A*02:01-restricted strong epitope (NLVPMVATV (NLV)) from 
human cytomegalovirus24 that was previously used to model TCR–
peptide degeneracy21,22 as a model pWT, and three NLV-specific TCRs 
(Extended Data Fig. 4a–c). We then varied the NLV peptide by every 
amino acid at each position to model pMT substitutions, and compared 
how TCRs cross-react between each pMT and its pWT across a 10,000-fold 
concentration range where pWT changes maximally altered T cell acti-
vation (Fig. 3b). We observed that substitutions were either highly, 
moderately or poorly cross-reactive (Fig. 3c, d), and the cross-reactivity 
pattern depended on the substituted position and residue (Extended 
Data Fig. 5a). Interestingly, we found similar patterns of cross-reactivity 
between a model HLA-A*02:01-restricted weaker pWT epitope in the 
melanoma self-antigen gp10025,26 (Extended Data Figs. 4d and 5b), three 
pWT-specific TCRs and single-amino-acid-substituted pMTs, suggesting 
that conserved substitution patterns define C (Fig. 3e and Extended 
Data Fig. 5b). Thus, we quantified the cross-reactivity distance C 
between a pWT and its corresponding pMT as C( , ) = EC /ECWT MT

50
MT

50
WTp p .  

We chose the half maximal effective concentration (EC50) to model C,  
as T cell activation to pWT was consistently a sigmoidal function 
(Extended Data Figs. 4c, d and 6a, b) described by a Hill equation, where 
EC50 determines how a ligand activates a receptor. We next estimated 
the EC50 of all 1,026 TCR–pMT pairs to infer a model for C that estimates 
whether a neoantigenic substitution is cross-reactive (and therefore 
tolerated) based on the substituted amino acid position and residue 
(Extended Data Figs. 6a, b and 7a, b). We then tested whether C pre-
dicted cross-reactive substitutions in an HLA-B*27:05-restricted  
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neopeptide–TCR pair from an LTS (Extended Data Fig. 4e). Notably,  
C predicted cross-reactive pWT, pMT and pMT, pMT substitutions in this 
neopeptide–TCR pair (Fig. 3f and Extended Data Fig. 5c, 6c). Thus, we 
combined all 1,197 TCR–pMT pairs to derive a composite C—the antigenic 

distance for a TCR to cross-react between amino-acid-substitution 
pairs (Fig. 3g and Extended Data Fig. 7c). Broadly, two factors promote 
cross-reactivity: substitutions at peptide termini27 and within amino 
acid biochemical families (driven by amino acids of similar size and 
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substituted residues. n indicates the number of substitutions. i, Cumulative 
probability distributions of log(C) and D. n indicates the number of 
neoantigens. The red rectangles in the heat maps indicate amino acids in pWT. 
The green line is a linear regression fit. Heat maps are ordered according to the 
amino acid order in the dendogram in g. P values were determined using 
two-tailed Pearson correlation (f and h) and two-sided Kolmogorov–Smirnov 
tests (i).
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hydrophobicity; Fig. 3g). With this composite C, we now define 
self-discrimination D between a pWT and its corresponding pMT  
(Fig. 3a) as

p pD w
K
K

w( → ) = (1 − )log + log
EC
EC

, (1)WT MT d
WT

d
MT

50
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50
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where w sets the relative weight between the two terms. We chose 
the parameters of the neoantigen quality model to maximize the 
log-rank test score of survival analysis on an independent cohort of 
58 patients with PDAC5 (Supplementary Methods and Extended Data 
Table 1a).

Immunoediting of neoantigens
We applied our model to PDAC, positing that immunoediting will dif-
ferentially deplete neoantigens with higher D (less self) in LTS versus 
STS PDACs. First, we stratified the frequency of mutations by the anti-
genic distance as defined by C (Fig. 3g and Supplementary Methods). 
Compared with mutations with a lower antigenic distance, mutations 
with a greater antigenic distance from self were more significantly 
depleted in both LTS and STS PDACs (Fig. 3h (left and middle)) and, 
interestingly, preferentially more depleted in LTS compared with STS 
PDACs (Fig. 3h (right)). To further examine these observations, we 
applied the full D model to find that neoantigens with both a higher  
C and D were strikingly more depleted in LTS versus STS PDACs 

(Fig. 3i). Interestingly, genes in the HLA class-I pathway were not dif-
ferentially mutated, deleted, expressed or localized in STS versus LTS 
PDACs, indicating that neoantigen depletion was not accompanied 
by acquired resistance in the HLA class-I pathway in LTSs (Extended 
Data Fig. 8a–c). Thus, tumours in LTSs selectively lose high-quality 
neoantigens.

Predicting recurrent tumour composition
We next incorporated neoantigen quality parameters into a fitness 
model4,5 to test whether our model that predicts clonal tumour evolu-
tion can identify immunoedited clones. We reconstructed joint mul-
tisample phylogenies28 for all tumours from each patient to provide a 
common clonal structure and track clone frequencies between the 
tumours of the same patient. To describe selective pressures acting 
on tumour clones, we accounted for positive selection due to cumula-
tive mutations in driver oncogenes. We quantify this effect in a minimal 
model F P

α, which counts the number of missense mutations in canonical 
PDAC driver genes (KRAS, TP53, CDKN2A and SMAD4) in each clone α.  
The composite fitness model (Fig. 4a) defines fitness function, Fα, of 
clone α as the sum of a negative fitness cost due to immune recognition 
of high-quality neoantigens and positive fitness gain due to the accu-
mulation of mutations in driver oncogenes,
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Fig. 4 | The neoantigen quality fitness model identifies edited clones to 
predict the clonal composition of recurrent tumours. a, Recurrent tumour 
clone composition prediction based on the primary tumour composition and 
the fitness model. b, Model fitted X Xˆ /

α α
rec prim and observed X X/α α

rec rec clone 
frequency changes for the STS (left) and LTS (right) cohorts. Frequency  
ratios below the sampling threshold were evaluated with pseudocounts.  
c–e, The immune fitness cost FI  of recurrent tumours (c), new clones (e),  

and the percentage of new neoantigens in recurrent tumours (d). f, TCR 
dissimilarity index and immune fitness cost FI  in tumours. n indicates the 
number of tumours. The green line is a linear regression fit. The horizontal  
bars show the median values. P values were determined using two-tailed 
Spearman correlation (b), two-tailed Pearson correlation (f) and two-tailed 
Mann–Whitney U-tests (c–e).
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with the free parameters σI and σP setting the amplitude of the fitness 
components (Supplementary Methods). We use the model to predict 
the frequencies of clones propagated to recurrent tumours as

x
Z

x Fˆ =
1

exp( ), (3)α α α
rec prim

where xα
prim is the frequency of clone α in the primary tumour, x̂α

rec is its 
predicted frequency in the recurrent tumour and constant Z ensures cor-
rect normalization. We evaluated how closely the fitness model predicted 
clonal evolution in the recurrent tumours. To do this, for each recurrent 
tumour in the LTS and STS cohorts, we performed maximum-likelihood 
fitting of the model parameters σI and σP in equation (3).

We found that our model provided a better fit of the observed evolu-
tion of LTS compared to STS tumour clones, predicting observed evo-
lution in 86% of LTS tumours versus 52% of STS tumours (Extended 
Data Table 1b) when compared with a neutral model (no selection pres-
sure on clones; differences were quantified with a Bayesian information 
criterion; Supplementary Methods). Notably, a partial fitness model 
that incorporates only the oncogenicity component, F σ F=α

P P
α, showed 

reduced performance for the LTS tumours but not STS tumours 
(Extended Data Table 1b and Extended Data Fig. 9). To illustrate this 
further, we compared observed and model-fitted clone frequency 
changes between the primary and recurrent tumours, X X/α α

rec prim and 
X Xˆ /

α α
rec prim (Fig. 4b), for all reliably predictable clones in the primary 

tumour (above 3% frequency; Supplementary Methods). The direction 
of frequency changes was correctly predicted for 71% of LTS and 58% 
of STS tumour clones (rank correlation ρ of 0.65 and 0.28, respectively; 
Fig. 4b and Extended Data Table 1b). We attribute the model’s better 
predictions in LTS tumours to the presence of immune selection in 
these tumours.

Next, we computed the overall tumour immune cost (averaging the 
immune component, p

p
F Q= max ( )I

α

α∈clone

MT
MT

 over all tumour clones). 

Consistently, the immune fitness cost was lower in recurrent LTS 
tumours compared with in STS tumours (Fig. 4c). Furthermore, we 
considered the immune cost only of clones that are new in recurrent 
tumours, but not present in primary tumours. Recurrent LTS tumours 
contained both fewer new neoantigens (1% versus 18%; Fig. 4d) and 
new clones with markedly lower immune fitness cost (Fig. 4e) compared 
with recurrent STS tumours. These observations again suggest that 
the LTS recurrent tumours had been subject to immunoediting.

Finally, we confirmed these results by analysing TCR sequencing data 
in the available recurrent tumour samples. We quantified the specific-
ity of T cell clonal expansion using the TCR dissimilarity index18 (Sup-
plementary Methods and Extended Data Fig. 1a, b) and correlated this 
index to immune fitness cost. We found greater T cell clonal expansion 
in tumours (lower TCR dissimilarity index) correlated with more highly 
edited tumours (lower immune fitness cost) (Fig. 4f and Extended Data 
Fig. 1c). In summary, these results strongly suggest that neoantigens 
are immunoedited in PDAC, and that our fitness model captures the 
selective pressures by T cells acting on tumour clones.

Discussion
Here we clarify several questions on how the immune system inter-
acts with cancer. First, does cancer immunoediting occur in humans? 
As the theory of cancer immunoediting was developed by studying 
carcinogen-induced highly mutated murine sarcomas1,3, it has remained 
uncertain whether these principles apply to human cancers29–31. We 
postulated that spontaneous immunoediting of a human cancer should 
manifest when the immune system recognizes an immunogenic antigen 
in a primary tumour, as this should induce the antigen to be subse-
quently eliminated in the recurrent tumour. Indeed, this is what we 
found—tumours that evolve under stronger immune pressure lose more 

immunogenic neoantigens. Although we did not assess the changes in 
non-mutated antigens or address how different cellular compositions 
and tissue environments may modulate editing, it is notable that the 
proof for immunoediting is revealed in PDAC, a low-mutated cancer that 
is considered to be resistant to endogenous immunity. This strength-
ens the claim that immunoediting is a broadly conserved principle of 
carcinogenesis.

Second, does immunoediting manifest as loss of immunogenic 
antigens, or do cancers also acquire genetic resistance? Interestingly, 
we observed the former but not the latter. We postulate that such 
phenotypes are governed by the magnitude of the selective pressure. 
Although LTSs exhibit higher immune pressures in tumours than 
STSs, this is ostensibly still lower than pharmacologically boosted 
immune pressure in a tumour32. Thus, in LTSs, as pressure is moder-
ate, tumours lose immunogenic antigens; by contrast, where pressure 
is maximal, such as perhaps when under therapy, tumours acquire 
resistance32. This distils cancer evolution under immune selection 
to a simpler concept—selection determines clonal composition, 
and pressure determines adaptive change. Further studies will test 
these concepts.

Third, can we quantify how the immune system recognizes muta-
tions?  We combined experimental techniques and machine learning 
to present a new metric that captures how T cells cross-react between 
peptides. We use C to quantify the antigenic distance of mutated pep-
tides in the TCR-recognition space and the qualities that render indi-
vidual mutations immunogenic, building on our previous efforts4,5 to 
formalize antigen quality. Although we used our quality model to iden-
tify immunogenic neoantigens, we propose that it captures common 
immunogenic features in antigens. Thus, we anticipate that our model 
can further illuminate the biology of antigens beyond cancer, including 
T cell cross-reactivity between antigens, pathologies of cross-reactivity 
(such as autoimmunity) and therapies that require rational antigen 
selection (such as vaccines).

Finally, it is notable that quantifying the ability of the immune system 
to discriminate changes in mere single amino acids can predict how 
cancers evolve. This undoubtedly reflects that a fundamental function 
of the immune system is to maintain integrity of the host genome. We 
therefore speculate that our model in essence captures the mecha-
nisms through which the immune system preserves genomic integrity. 
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Extended Data Fig. 1 | Top ranked T cells in LTS tumours have more similar 
CDR3β sequences. (a) T cell receptor (TCR) CDR3β sequence dissimilarity 
(TCR dissimilarity index) in STS and LTS primary and recurrent PDACs. TCR 
dissimilarity index calculated using the Restricted Boltzmann Machine 
model18. n = individual tumours. Horizontal bars = median. (b) Trend of P value 
of TCR dissimilarity index between STS and LTS PDACs (as in left panel) with 

number of clones in the sample. n = 17 tumours. Blue line indicates a P value of 
0.05; circle = mean P value; error bars = standard error of the mean. (c) TCR 
dissimilarity index based on T cell clone size (Supplementary Methods) and 
immune fitness cost FI. Green line = linear regression fit. P value by two-tailed 
Mann-Whitney U-test (a) and two-tailed Pearson correlation (c).
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Extended Data Fig. 4 | TCR transduction and antigen specificity.  
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β constant regions. (b) Representative gating strategy to detect transduced 
TCR activation and specificity. (c–e) Sequences of model pWTs and WTp -specific 
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Extended Data Fig. 5 | T cell activation is variably degenerate to single amino acid substitutions. (a–c) T cell activation to model pWTs (black curves) and single 
amino acid substituted MTp s (color curves).
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Extended Data Fig. 6 | T cell activation to degenerate substitutions follows a sigmoidal function. (a–c) Fitted T cell activation curves to model WTp s (black 
curves) and single amino acid substituted pMTs (color curves).



Extended Data Fig. 7 | Cross-reactivity distance C model. Amino acid 
position dependent factor (a) and substitution matrix (b) of cross-reactivity 
model based on T cell receptor (TCR) cross-reactivity to strong (CMV) and 
weak (gp100) pWTs and single amino acid substituted MTp s (Fig. 3d, e).  
(c) Correlation of substitution-induced differential MHC-I binding  
( Alog( )  = K K/d

WT
d
MT) and substitution induced differential TCR activation  

( Clog( )  = EC /EC50
MT

50
WT) for all model WTp -TCR pairs and single amino acid 

substituted pMTs. K d
WT and K d

WT determined through computational predictions 
of pWT and pMT binding to HLA-A*02:01 (CMV, gp100 peptides) and HLA-B*27:05 
(tumour neopeptide) with Net MHC 3.4. EC50

MT and EC50
WT measured 

experimentally through pWT and pMT reactivity to TCRs. n = individual 
peptide-TCR measurements. P values by two-tailed Pearson correlation (c).
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Extended Data Fig. 8 | LTS and STS PDACs have equivalent genetic changes 
in HLA class-I pathway genes. (a) Number of mutations (synonymous and 
non-synonymous), homozygous deletions, heterozygous deletions and copy 
number neutral loss of heterozygosity (LOH) changes in HLA class-I pathway 
genes (B2M, CANX, CALR, HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, TAP1, TAP2, 
TAPBP, ERAP1, ERAP2, HSPA5, PDIA3, SAR1B, SEC13, SEC23A, SEC24A, SEC24B, 
SEC24C, SEC24D, SEC31A) in primary and recurrent PDACs. (b) mRNA 
expression in HLA class-I pathway genes by bulk RNA sequencing (ICGC, TCGA 

cohorts) and transcriptional analysis (Affymetrix, Memorial Sloan Kettering 
Cancer Center (MSKCC) cohort) in primary PDAC tumours. (c) Representative 
multiplexed immunohistochemical images (left) and ratio (right) of MHC-I+ 
tumour cells (CK19+) and MHC-I+ non-tumour cells (CK19-) in STS and LTS 
primary PDACs. n = individual tumours. Horizontal bars = median. Horizontal 
bars on violin plots show median and quartiles. P value by Wald’s test adjusted 
for multiple comparison testing.
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Extended Data Fig. 9 | Evaluation of clone fitness model predictions. The 
log-likelihood score (Supplementary Methods, eq. (31)) is shown for the STS 
and LTS cohorts to estimate the statistical information gain of fitness models 
and the amount of evidence of the selective pressures captured by each of the 
models. The orange bars show the aggregated log-likelihood scores, 

F FΔ ( , )N
STSL  and F FΔ ( , ) ,N

LTSL  of the two-component fitness model, F, with 
parameters σ σ,I P optimized for each recurrent tumour sample, as compared to 
the null model, FN, standing for neutral clone evolution, with zero fitness and 

parameters σ σ= 0, = 0I P . The red bars present the corresponding aggregated 
log-likelihood scores F FΔ ( , )P N

STSL  and F FΔ ( , )P N
LTSL  for the driver-gene only 

fitness model, FP, which accounts for positive selection on driver genes but 
disregards the effect of immune selection, with parameter σ = 0,I  and σP 
optimized for each recurrent tumour sample. Finally, the blue bars present the 
corresponding aggregated log-likelihood scores F FΔ ( , )I N

STSL  and L F FΔ ( , )I N
LTS  

for the immune-only fitness model, FI, with parameter σ = 0,P  and σI  optimized 
for each recurrent tumour sample.
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Extended Data Table 1 | Neoantigen quality fitness models

Full and partial neoantigen quality fitness models to predict survival (a) and recurrent tumour clone composition (b). We provide additional details on the respective models in the  
Supplementary Methods.
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