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Abnormal cell (ABC) is a markedly heterogeneous tissue area and can be categorized into three main types: benign hyperplasia
(BH), carcinoma (Ca), and intraepithelial neoplasia (IN) or precursor cancerous lesion. In this study, the goal is to determine
and characterize the continuum of colorectal cancer by using a 3D-texture approach. ABC was segmented in preprocessing step
using an active contour segmentation technique. Cell types were analyzed based on textural features extracted from the gray level
cooccurrencematrices (GLCMs). Significant texture features were selected using an analysis of variance (ANOVA) of ABCwith a 𝑝
value cutoff of𝑝 < 0.01. Features selected were reducedwith a principal component analysis (PCA), which accounted for 97% of the
cumulative variance from significant features.The simulation results identified 158 significant features based onANOVA froma total
of 624 texture features extracted from GLCMs. Performance metrics of ABC discrimination based on significant texture features
showed 92.59% classification accuracy, 100% sensitivity, and 94.44% specificity.These findings suggest that texture features extracted
from GLCMs are sensitive enough to discriminate between the ABC types and offer the opportunity to predict cell characteristics
of colorectal cancer.

1. Introduction

Colorectal cancer (CRC) represents one of the most frequent
cancers affecting people [1]. It is characterized by abnormal
and uncontrolled cellular proliferation [2]. Surgical resection
of the primary tumor with curative intent is possible in only
70% of patients. Unfortunately, up to 30% of CRC patients
who undergo surgical resection of the primary tumor expe-
rience a subsequent relapse within 3 years and with a median
time to death of 12 months [3, 4]. Colorectal cells are trans-
formed by CRC into anomalous and heterogeneous shapes
[5, 6]. In this context, heterogeneity is a pronounced feature
of colorectal cancer that manifests as areas of high cell den-
sity. Attempts to quantify heterogeneity have been made
using multiple feature functions such as Haralick features
[6]. Another instance has used the link between the texture
of hepatic tissue and its entropy and uniformity to predict
survival using computer tomography images [7]. However,
limited studies have used texture features to assess the con-
tinuum of CRC from benign to malignant cells.

Additionally, classical optical microscopy systems can
detect ABC by applying advanced image processing tech-
niques [8]. Early detection of ABC by shape or heterogeneity
is of high interest in order to diagnose and start therapy early
[6]. Hence, automating the process allows a faster and more
precise reading of microscopic biopsies and may even allow
classification of samples as BH, IN, or Ca [6, 9, 10]. In this
context, numerous studies have considered developing auto-
mated reading procedures of such biopsies [5, 11–14]. The
biopsies examined by these procedures can be prepared
and preprocessed for automated reading using the optical
microscopy system. Then, ABCs can be analyzed from their
surrounding media using segmentation techniques [15]. In
this context, the appropriate segmentation techniquemust be
carefully established in order to process multispectral bioim-
ages from microscopic system that provides high resolution
gray scale images. Moreover, identification of ABC within
an image should take into consideration some characteristic
features that are representative of each ABC type [6]. Texture
feature extraction fromABC can be a promising technique to
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characterize each ABC type. Then, discrimination between
ABC types can be done by applying one of the classifier
approaches such as the decision tree approach [16]. The
analysis of the textures and structures of each ABC type
permits a more accurate diagnosis of the malignant cells as
they are structured in various patterns and textures.

In this work, we propose to analyze each of ABC type
by extracting texture features from GLCM. Texture refers to
the variability in tone within a region, or the spatial rela-
tionships among the gray levels of neighboring pixels. Three-
dimensional (3D) texture analyses offer more information
by using two phases and multioffset pixels to detect the
variability of pixel pairs in 3D space [16, 17]. The statistical
approach of image analysis based on the matrix of cooccur-
rence is commonly applied to optical and medical images
to evaluate morphology [5, 11, 18, 19]. The texture features
thus extracted from GLCM describe the texture and local
variation in an image. For classification, we selected twelve
principal features in order to identify ABC types, while dis-
carding those that are either redundant or confusing, thereby
improving the performance of the proposed feature based
detection technique.

In summary, the purpose of this study is the derivation
of quantitative texture multispectral image features from
optical microscopy images that classify the continuum of
CRC lesions. The novelty of this study was the first training
on an automated continuum prediction of CRC. This will
be foundation of radiomic maps that associate these texture
features with various ABC types.

The remainder of this paper is organized as follows.
Section 2 describes the texture feature extraction from 3D
GLCM in detail with performance metrics. Sections 3 and
4 demonstrate experimental results and discussions. Finally,
Section 5 concludes the paper.

2. Materials and Methods

We specifically analyzed 3D multispectral digital whole slide
images (WSI) from 27 colorectal cancer patients. An example
of spatial heterogeneity for each multispectral ABC type is
seen in its histogram distribution. Clearly, there are certain
characteristics and features from preliminary analysis that
differentiate BH, IN, and Ca (Figure 1).

2.1. Sample Preparation and Data Acquisition. Whole tissue
samples were taken from colonic glands with thickness value
of 5 𝜇m which is stained using Haematoxylin and Eosin
(H & E) stains. Images were captured by a charge coupled
device (CCD) camera integrated with a liquid crystal tunable
filter (LCTF) in the optical microscopy system [20]. LCTF
providesmultispectral images of the tissue samples by chang-
ing the wavelength operation [21]. LCTF has a bandwidth
of 5 nm, and its wavelength is controllable through the
visible spectrum range of 400–720 nm. Multispectral images
are produced through repeated image capture in various
wavelengths subbands.Moreover, the impact ofmultispectral
imaging has been shown that the classifier accuracy increases
with the number of spectral bands [22]. Note that each image

band is 8 bits coded and hence has 255 possible light intensity
levels.

In this study, LCTF offered 16 multispectral bands using
a wavelength range of 500–650 nm. Thus, from each original
image, we obtained 16 images representing the wavelength
range and a volume of multispectral data (Figure 1). Hence,
texture extraction from each band of multispectral data
enhances the lesion characterizing each abnormal cell type.
Note that a colorectal pathologist views images at lower
power to identify the abnormal cells which is represented by
a low magnification (×40) of image samples.

2.2. Patients. After excluding samples with incomplete data,
a set of 27 CRC patients were gathered for a preliminary
study. We selected nine volumes of data from each ABC type,
where a volume of data was structured in 16 multispectral
images (Figure 1). Thus, images were filtered by an average
filter (spatial filter) before further segmentation processing
to minimize the effects of noise in images and other external
factors. All the images were reconstructed to a 512 × 512
matrix where the volume size of 512 × 512 × 16 was taken
into consideration in texture feature extraction from GLCM
of ABC (Figure 2(a)).

2.3. Segmentation of Abnormal Cell. Weemployed active con-
tour segmentation to accurately segment anomalous shape
of cells. This technique is based on a dynamic curve that
moves toward and detects the contour of the object by a
number of iterative processes [23, 24]. This approach was
successfully implemented to detect ABC types from similar
kinds of multispectral bioimages. The computation time
was improved by limiting the number of iterations, which
was set automatically based on empirical calculations [6].
Computation time was further strengthened by resizing the
images. For instance, an image of size 512 × 512 pixels was
decreased to 64 × 64 pixels and active contour was applied
to detect cells within the image. Active contour images were
then resized to 512 × 512 pixels and placed on the original
image (Figure 3). In fact, this technique resized the active
contour and not the original image in order to enhance the
computation time. Cell images in 16 multispectral images
were then assessed by a board certified colorectal pathologist.
A volume of a cell segmented in 16 multispectral images (2D
images) was created to represent the variance details in the
multispectral band (Figure 2(a)). To assess the active contour
segmentation, ground truth of cell and cells segmented
based on active contour were considered. In this context,
evaluation of WSI segmentation considered two similarity
metrics, namely, Jaccard similarity coefficient (JSC) and Dice
similarity coefficient (DSC). Additionally, false positive rate
(FPR) and false negative rate (FNR) were also computed. JSC
and DSCmeasure the degree of the correspondence between
ground truth cell images and segmented images.

JSC can be formulated according to the following:

JSC (𝐴, 𝐵) = (𝐴 ∩ 𝐵)(𝐴 ∪ 𝐵) , (1)

where 𝐴 and 𝐵 are the area of ground truth of cell and seg-
mented cell, respectively.
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Figure 1: Multispectral images of three types from abnormal cells showed differences in shape and histograms. These images come from
colorectal biopsies viewed under optical microscopy systems (×40 objective magnification). (a) Benign hyperplasia, (b) intraepithelial
neoplasia, and (c) carcinoma.
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Figure 2: Volume data of multispectral bioimages are shown above. (a) Segmentedmultispectral gray scale images of carcinoma are analyzed
pixel by pixel. In (b), 13 directions controlled by two angles (𝜃∘, Ø∘), where 𝑥 and 𝑦 are the image coordinates and 𝑧 is the wavelength range
of 500–650 nm. (c) A computation map of GLCM shows the distance with direction in 2D.

JSC was employed to calculate the overall level of similar-
ity between segmented cell and ground truth cell. DSC was
also employed and can be expressed according to the follow-
ing:

DSC (𝐴, 𝐵) = 2 (𝐴 ∩ 𝐵)|𝐴| ∪ |𝐵| . (2)

Additionally, we employed FPR and FNR which were used to
quantify over- and undersegmentation. Both FPR and FNR
are calculated according to the following:

FPR (𝐴, 𝐵) = (𝐴/𝐵)(𝐴 ∪ 𝐵) ,
FNR (𝐴, 𝐵) = (𝐵/𝐴)(𝐴 ∪ 𝐵) .

(3)

Direct relation between JSC, FPR, and FNR is defined accord-
ing to the following expression:

JSC (𝐴, 𝐵) = 1 − FPR − FNR. (4)

The performance metrics of active contour technique were
reported (Table 1). This volume of WSI was quantified by the
texture feature extracted from GLCMs of each abnormal cell
type.

2.4. GLCM Based Feature. One of the best techniques used
to evaluate the relationships between image pixels is the
texture feature extraction from GLCM. This technique was
proposed by Haralick et al. in 1973 [19]. It is one of the most
popular second-order statistical features which is based on
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Figure 3: The effect of the snake segmentation technique for 2D multispectral bioimages was applied to the three ABC types (a, b, and c).
Schema of 3D multispectral bioimages segmented after area determination from colorectal pathologist (d, e, and f).
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Table 1: Average performancemetrics (%) of three cancer cell types.

Metrics BH IN Ca
JSC 76.12 75.92 81.56
DSC 86.44 86.31 88.21
FPR 07.61 05.03 06.32
FNR 18.08 20.26 16.11

GLCM computation and its texture features. Then, second-
order statistics estimate properties of two ormore pixel values
occurring at specific locations relative to each other. For these
reasons, we proposed to use GLCM based feature technique
in this work.

2.4.1. Gray Level Cooccurrence Matrix (2D and 3D). GLCM
represents the probabilities 𝑃𝑑,𝜃(𝑖, 𝑗) of transition from a pixel
with intensity “𝑖” to a pixel of intensity “𝑗” separated by
a translation vector defined by direction “𝜃” and an offset
“𝑑” (offset known as distance) [11, 16–19]. Given a two-
dimensional (2D) image 𝐼 of size 𝑁 × 𝑁, the cooccurrence
matrix 𝑃𝑑,𝜃(𝑖, 𝑗) can be defined as follows:

𝑃𝑑,𝜃 (𝑖, 𝑗)
= 𝑁∑
𝑥=1

𝑁∑
𝑦=1

{{{
1, if 𝐼 (𝑥, 𝑦) = 𝑖, 𝐼 (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) = 𝑗,
0, otherwise,

(5)

where 𝑑𝑥 and 𝑑𝑦 specify the distance between the pixel of
interest and its neighbor, along the 𝑥-axis and the 𝑦-axis of
an image, respectively. GLCM is a square matrix of size 𝑁𝑔,
where𝑁𝑔 is the number of gray levels in the image.

For 2D images, typical values used for “𝑑” equal {1, 2, 3, 4}
and those for “𝜃” equal {0∘, 45∘, 90∘, 135∘}.The GLCMs corre-
sponding to the additional directions {180∘, 225∘, 270∘, 315∘}
donot add to the specification of the texture already caught by
the 16GLCMs associatedwith combinations of the aforemen-
tioned four offsets and four directions. This is because there
is symmetry in GLCMs described by (𝑃(𝑑, 0∘) = 𝑃𝑇(𝑑, 180∘);𝑃(𝑑, 45∘) = 𝑃𝑇(𝑑, 225∘); 𝑃(𝑑, 90∘) = 𝑃𝑇(𝑑, 270∘); and𝑃(𝑑, 135∘) = 𝑃𝑇(𝑑, 315∘)) (note that superscript “𝑇” denotes
the transpose operation).

GLCM computations can be also applied to 3D images. In
this case, the GLCM 𝑃(𝑖, 𝑗) counts the number of pixel pairs
that have intensities “𝑖” and “𝑗” for the spatial relationship
specified by a translation vector (𝑑𝑥, 𝑑𝑦, 𝑑𝑧), where 𝑑𝑥, 𝑑𝑦,
and 𝑑𝑧 represent the number of pixel offsets along the 𝑥-
axis, 𝑦-axis, and 𝑧-axis of the 3D image. For volumetric
data, two angles (𝜃,Ø) lead to 13 directions (Figure 2). Each
segmented cell was histogram equalized to 32 levels, and then
we employed the GLCM computation.

The foremost advantage of GLCMs applied to volumetric
data is the ability to capture intensity relationships between
the pixels in a 3D volume. Further, the number of GLCMs
resulting from 3D operations is typically smaller than that
corresponding to numerous 2D slices. For example, in a data
cube with 10 separate 2D slices, there are a total of 80 GLCMs

(8 GLCMs analogous to 2 offsets and 4 directions per slice).
On the other hand, in a 3D operation, the total number
of GLCMs is 26 (13 directions and 2 offsets). Supported
by the benefit of GLCMs applied on volumetric data, we
computedGLCMs ofmultispectral ABC and quantified these
cooccurrence matrices by Haralick features.

2.4.2. Texture Quantification. Haralick proposed 14 texture
features to be extracted from GLCMs, and the value of each
extracted feature indicates the preliminary indicators of ABC
in the texture image. Among the 14 texture features, we
employed the 12 principal textural features: energy (𝑓1),
entropy (𝑓2), correlation (𝑓3), contrast (𝑓4), homogeneity
(𝑓5), variance (𝑓6), sum-mean (𝑓7), inertia (𝑓8), cluster shade
(𝑓9), cluster tendency (𝑓10), maximum probability (𝑓11), and
inverse difference moment (𝑓12). These features are defined
by their functions as follows

𝑓1 = 𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1

(𝑖𝑗) 𝑃𝑑,𝜃 (𝑖, 𝑗)2 (6)

shows the scale of texture homogeneity. It is high when the
GLCMs consist of few pixels of high amplitude and low when
all the values of GLCMs are almost similar.

𝑓2 = −𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1

𝑃𝑑,𝜃 (𝑖, 𝑗) log (𝑃𝑑,𝜃 (𝑖, 𝑗)) (7)

measures the disorder or complexity of an image.The highest
value of entropy is found when the values of 𝑃(𝑖, 𝑗) are
allocated quite uniformly throughout the matrix.

𝑓3 = ∑
𝑁𝑔
𝑖=1∑𝑁𝑔𝑗=1 (𝑖𝑗) 𝑃𝑑,𝜃 (𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝜎𝑥 ⋅ 𝜎𝑦 (8)

measures the linear dependence of gray level values in the
GLCM or describes the correlations between the rows and
columns of GLCM.

𝑓4 = 𝑁𝑔−1∑
𝑛=0

𝑛2{{{
𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1

𝑃𝑑,𝜃 (𝑖, 𝑗) | 𝑖 − 𝑗 = 𝑛}}} (9)

measures intensity contrast or the local variations present in
an image to show the texture fineness.

𝑓5 = 𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1

( 𝑃𝑑,𝜃 (𝑖, 𝑗)(1 + 𝑖 − 𝑗)2) (10)

returns a value that measures the closeness of the elements
distribution in GLCM to the GLCM diagonal.

𝑓6 = 𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1

(𝑖 − 𝜇𝑥)2 𝑃𝑑,𝜃 (𝑖, 𝑗) + (𝑗 − 𝜇𝑦)2 𝑃𝑑,𝜃 (𝑖, 𝑗) (11)

is expected to be large if the gray levels of the image are spread
out greatly.

𝑓7 = 2𝑁𝑔∑
𝑛=2

𝑛(𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1

𝑃𝑑,𝜃 (𝑖, 𝑗)) (12)

measures the average of the gray levels. It can be high value if
the sum of the gray level of the image is high.
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Table 2: Grouping of texture features.

Groups Offset Phase Features number
G1 1 13 156
G2 2 13 156
G3 4 13 156
G4 8 13 156
G5 1-2-4-8 13 624

𝑓8 = 𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1

𝑖 − 𝑗2 ⋅ 𝑃𝑑,𝜃 (𝑖, 𝑗) (13)

measures the inhomogeneous in image.

𝑓9 = 𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)3 𝑃𝑑,𝜃 (𝑖, 𝑗) (14)

measures the skewness (asymmetric) of the GLCM and is
considered to gauge the perceptual concepts of uniformity.
When the cluster shade is high, the image is asymmetric.

𝑓10 = 𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)2 𝑃𝑑,𝜃 (𝑖, 𝑗) (15)

measures the grouping of pixels that have similar gray level
values.

𝑓11 = max
𝑖,𝑗
(𝑃𝑑,𝜃 (𝑖, 𝑗)) (16)

measures the dominant pair pixels in the GLCM. It can be
high if the dominant pair pixel is high.

𝑓12 = 𝑁𝑔∑
𝑖=1

𝑁𝑔∑
𝑗=1

𝑃𝑑,𝜃 (𝑖, 𝑗)1 + (𝑖 − 𝑗)2 (17)

measures the smoothness of the image. It can be high if the
gray levels of the pixel pair are similar.

For the ABC detection problem, the aforementioned tex-
tural features are extracted from the 3D GLCMs conforming
to the 13 directions and 4 types of offset. Therefore, the
length of the resulting feature vector is 12 (functions) × 13
(directions) × 1 (distance or offset) = 156 features. To analyze
the effect of texture feature based on GLCMs, we organized
texture features into 5 groups (G1, G2, G3, G4, and G5)
reported in Table 2.

Moreover, we calculated the average of texture feature
based on 3D GLCM within 13 directions and 4 offsets to
evaluate the value of each one from ABC (Table 3). Addi-
tionally, we employed feature selection techniques on each
texture feature group to demonstrate the effectiveness of
texture analysis in a definite direction and offset, and the
performance metrics were reported (Table 4).

2.5. Statistical Analysis. Textures quantified by twelve func-
tions (based on those suggested by Haralick) can be found
among the BH, IN, and Ca cell samples. 𝑍-score normaliza-
tion was employed on each of the feature vectors, which
converted the features to zero mean and unit variance [25].
Themean and standard deviation (𝜎) of the feature vector are
calculated as follows:

𝑟𝑛 = 𝑟 −mean𝜎 , (18)

where 𝑟 is the original value, 𝑟𝑛 is the new value, and themean
and 𝜎 are the mean and standard deviation of the original
data, respectively.

ANOVA was used to assess the statistical significance
between texture features and ABC types [26]. This test was
used to identify the significant texture feature where a 𝑝 value< 0.01 was deemed significant. An aggregate of 158 significant
features were selected, which was further reduced using PCA.
Five principal components (PCs) representing 97% of the
variance among the 158 selected features were used in a deci-
sion tree classifier (Tables 3 and 4).

2.6. Classifier Setting and PerformanceMetrics. Classification
of the ABC types based on texture features was performed
using the significant features as input variables in a decision
tree (DT) classifier [27]. The most important aspect of a
decision tree induction strategy is the split criteria; it is a
method of selecting an attribute that determines the distri-
bution of training objects into subsets upon which subtrees
are consequently built. In this study, a goodness criterion
based on Gini index was used to determine how well various
feature test conditions performed [28]. The reason to use the
DT classifier is to find automatically the dominant features
and provide the classifiermetrics; however, we considered the
näıve Bayes and nearest neighbors to evaluate the classifier
performance metrics using the known class labels from ABC
types. Due to limited data (27 patients), the classifier was
validated using leave-one-out cross-validation [29]. We con-
sidered the following performance metrics of classification:
accuracy, sensitivity, specificity, 𝐹-score, and area under the
curve (AUC), which were performed to test the reliability
of the texture feature classifier. We used multiple metrics
for better assessing the feasibility of abnormal cell type
discrimination using texture feature based 3D GLCMs. Note
that true positive (TP) and true negative (TN) are the number
of positive and negative samples correctly classified; false pos-
itive (FP) and false negative (FN) are the number of positive
and negative samples incorrectly classified [30]. Then, TP +
FN is the total number of test samples of the considered
class. For example, TP of BH cell type represents the BH
samples correctly classified and FN represents the BH cell
type incorrectly classified. Also, FP of BH cell type represents
the IN and Ca samples classified as BH cell type, while TN of
BH cell type represents the number of correctly classified IN
and Ca samples and number of IN samples classified as Ca
and the number of Ca samples classified as IN cell type.
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Table 3: Comparison of ABC texture features (mean ± STD) between BH, IN, and Ca.

Feature BH IN Ca p value
𝑓1 0.014 ± 0.009 0.007 ± 0.002 0.005 ± 0.001 <0.0001
𝑓2 2.316 ± 0.202 2.382 ± 0.108 2.530 ± 0.059 <0.0001
𝑓3 0.014 ± 0.004 0.016 ± 0.004 0.013 ± 0.001 <0.0001
𝑓4 44.355 ± 21.172 33.183 ± 11.019 40.661 ± 11.612 <0.0001
𝑓5 0.088 ± 0.048 0.079 ± 0.006 0.075 ± 0.005 <0.0001
𝑓6 51.784 ± 8.455 49.623 ± 10.162 52.257 ± 5.684 0.0841
𝑓7 17.032 ± 4.356 15.572 ± 0.764 17.075 ± 1.476 <0.0001
𝑓8 44.355 ± 21.172 33.183 ± 11.019 40.661 ± 11.612 <0.0001
𝑓9 −85.194 ± 589.163 375.391 ± 204.221 408.413 ± 229.755 <0.0001
𝑓10 60430.702 ± 13323.791 54856.863 ± 19614.368 58506.092 ± 13952.284 0.0021
𝑓11 0.064 ± 0.035 0.027 ± 0.008 0.026 ± 0.009 <0.0001
𝑓12 0.215 ± 0.081 0.230 ± 0.038 0.201 ± 0.034 <0.0001

Table 4: Performance metrics (%) of ABC discrimination relied on
texture feature selection.

Groups Selected features
(𝑝 < 0.01) Accuracy Sensitivity Specificity

G1 35 66.66 55.55 77.77
G2 35 74.07 66.66 88.88
G3 35 77.77 88.88 94.44
G4 53 55.55 66.66 66.66
G5 158 74.07 77.77 94.44
PCs 5 92.59 100 94.44

Accuracy represents the correctly classified samples and
can be expressed by the following:

Accuracy = TP + TN
TP + FP + TN + FN . (19)

Sensitivity is a measure of the capability of a classifier to
recognize the positive class patterns. It can be expressed
according to the following:

Sensitivity = TP
TP + FN . (20)

Specificity is a measure of the capability of a classifier to
recognize the negative class patterns. It can be expressed by
the following:

Specificity = TN
TN + FP . (21)

𝐹-score is a weighted average of precision and recall and can
be calculated using the following:

𝐹-score = 2 × TP(2 × TP + FP + FN) . (22)

3. Experimental Results

ABC digital images were segmented using the active con-
tour segmentation technique. Figure 3 shows ABC types
segmented using several steps. The process of cell detection
frommultispectral images may appear to be a difficult task as
bioimages contained some areas that have a similar range of
gray shades and irregular shapes.Morphology operators were
necessary to select the required cells from images by a board
certified colorectal pathologist because there were multiple
cell types within images.

Snake (active contour) techniques showed thatABC types
were correctly detected and located (Figure 3). JSC shows a
similarity range of 75.92–81.56% with the best performance
achieved with Ca cell type. Meanwhile, DSC shows a similar-
ity range of 86.31–88.21% with the best performance achieved
with Ca cell type. Moreover, FPR shows a range of 05.03–
07.61% with the best performance achieved with IN cell type,
while we observed that FNR provided a range value of 16.11–
20.26% with the best performance achieved with Ca cell type
(Table 1). These metrics confirmed the feasibility of active
contour segmentation method to determine the abnormal
cell types and specifically the Ca cell type (Table 1).

Figure 4 shows an example case of GLCMs for corre-
sponding ABC types in Figure 3. GLCM images showed the
most pronounced texture associated with Ca cells among the
three ABC types. These texture values represent a high num-
ber of pixel pairs in the original image of Ca cells, followed
by IN and BH cells, respectively. Additionally, BH images
had a homogenous texture that was more homogenous than
IN and Ca; its corresponding GLCM showed that most BH
textures were depicted in the diagonal of the GLCM image.
Notably, when the texture GLCM image has more fitted data
around the diagonal, the original image is less homogenous.
The average of texture functions based on whole offsets and
directions showed the differences between the ABC groups,
which were demonstrated in each of the 12 texture features
extracted from GLCMs (as shown in Table 3). For instance,
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Figure 4: GLCM (32 gray levels) of multispectral bioimages is shown for all three ABC types. GLCM is in one direction (𝜃 = 0∘, Ø = 0∘) and
distance is constant (𝑑 = 1, one pixel offset).

energy (𝑓1) exhibited a higher value (0.014) in BH followed by
IN andCa cells, respectively.This is demonstrated by the high
homogeneity of BH cells. Entropy (𝑓2) showed close values
between theABCgroupswith amaximumvalue of 2.53 forCa
cells.This is reflected by the disorder of texture in Ca cells, but
the close values of ABC types can be a weak classifier feature.
Thus, correlation (𝑓3) showed a maximum value of 0.016 for
IN cells; this is reflected by the higher dependence of gray
level in IN GLCM images. Compared to all texture features
of ABC types, the maximum value of features (𝑓1, 𝑓4, 𝑓5, 𝑓8,𝑓10, and 𝑓11), (𝑓3 and 𝑓12), and (𝑓2, 𝑓6, 𝑓7, and 𝑓9) was found
for BH, IN, and Ca type, respectively. With the exception of
feature (𝑓6), significant differences between the ABC types
were noted in all the texture features examined (𝑝 value <
0.01).

An ANOVA showed that there were 35 significant classi-
fier features among the 156 texture features for G1, G2, and
G3, while G4 provided 53 significant features for discrimina-
tion between ABCs. The total number of significant features
was 158 (G5) by simple concatenation of group features
(Table 4).

Performance metrics range of ABC discrimination based
on specific offset and direction showed accuracy, sensitivity,
and specificity ranges of 55.55–77.77%, 55.55–88.88%, and
66.66–94.44%, respectively.

Maximum values of the performance metrics range were
achieved by using group G3 which represented a four-pixel
offset and 13 directions of GLCMs (Table 4). Moreover,
classifier accuracy for each ABC feature exhibited a range of
55.55–88.88%, 44.44–88.88%, and 55.55–66.66% for BH, IN,
and Ca, respectively (Table 5).

Furthermore, five PCs features showed the highest value
of 92.59% accuracy, 100% sensitivity, and 94.44% specificity
(the last row in Table 4).

The highest classifier accuracy obtained for IN was
88.88% using G1 and G2 features (Table 5). However, BH and
Ca features showed the highest values of 100% using five PCs
features (Table 5).

The analysis of the ROC curve obtained for each ABC
discrimination showed ranges of AUC values of 76.99–
90.30% for BH versus IN, 97.97–99.90% for BH versus Ca,
and 99.18–99.73% for IN versus Ca, respectively. However, the
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Figure 5: Receiver operating characteristic (ROC) curves were determined for each discrimination between ABC (BH versus IN, BH versus
Ca, and IN versus Ca) problems based on real 3D data. The area under the curve (AUC) values achieved are shown for each discrimination
between ABCs in two cases: (a) total selected feature used is 158 and (b) PCs features used are 5.

Table 5: Accuracy classifier (%) of ABC using selected features.

Groups BH IN Ca

G1 55.55 88.88 55.55
G2 66.66 88.88 66.66
G3 88.88 77.77 66.66
G4 66.66 44.44 55.55
G5 77.77 77.77 66.66
PCs 100 77.77 100

best AUC values for ABC discriminationwere achieved using
5 PCs features (Figure 5).

Moreover, using five PCs features, comparative study of
the confusion matrix for abnormal cell type discrimination
based on decision tree (DT), näıve Bayes (NB), and nearest
neighbors (NN) classifier [26–28] showed that the nine BH
and nine Ca samples are correctly classified based on DT
and NB classifier, respectively. However, eight IN samples
are correctly classified based on NB classifier technique
(Table 6). 𝐹-score showed the highest BH, IN, and Ca metric
with 94.73, 94.11, and 100%, respectively, using NB classifier.
This demonstrates that the best classifier technique for
discriminating BH from IN and Ca is NB (Table 7).

Table 6: Confusion matrix of the ABC.

Sample DT NN NB
BH IN Ca BH IN Ca BH IN Ca

9 BH 9 0 0 8 1 0 9 0 0
9 IN 1 7 1 5 4 0 1 8 0
9 Ca 0 0 9 0 0 9 0 0 9

Table 7: F-score (%) of each ABC type.

Classifier BH IN Ca
DT 94.73 87.50 94.73
NN 72.72 57.14 100
NB 94.73 94.11 100

4. Discussion

In this study, we have shown the role of texture feature
extraction from GLCMs to discriminate BH, IN, and Ca. We
demonstrated the use of quantitative image texture features
and reported significant features with performance metrics
for ABC discrimination. Additionally, we showed the power
of texture quantification from GLCMs using 12 functions to
indirectly associate image features with ABC types. Texture
features extracted from GLCMs using four pixels offsets and
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Figure 6: Heat map with correlation coefficients between ABC features: BH, IN, and Ca are the begin hyperplasia, intraepithelial
neoplasia, and carcinoma, respectively. Red rectangular is the correlation effect of ABC feature which decreased the accuracy value of ABC
discrimination.

13 directions (G3) showed a higher accuracy to discriminate
between types of ABC than other features groups.This proves
that the GLCMs of fourth pixel neighbors in 13 directions
can offer the best automated ABC classification (Table 4).
Similarly, classifier features of BH showed effectiveness to
identify BH cells by texture features extracted from GLCMs
using 4 pixels offsets and 13 directions (G3 in Table 5).
Abnormal IN cell presented the best classification using G1
and G2, and Ca shows the best classification using G2, G3,
and G5. However, without using PCs features, a lack of
predictive accuracy of Ca demonstrated that its texture may
resemble the texture of IN, which represents the complexity
of malignant diagnostic (Table 5).

According to the experiments inwhich different groups of
texture feature were applied to the ABC discrimination pro-
cess, the results showed the efficiency of PC features derived
from significant texture features extracted using GLCMs for
histopathology colorectal cancer image analysis (last row of
Tables 4 and 5). This potential of PC features demonstrated
the highest AUC values for discrimination of BH versus IN,
BH versus Ca, and IN versus Ca (Figure 5). Figure 6 showed
a heat map correlation between the ABC features where the
highest correlation represents the resemblance between the
texture features. We observed that some BH and IN features
(red rectangular shape) have a high correlation value. This
represented the lack of performance metrics.

This study demonstrates that texture feature extraction
can be a map for ABC identification by using the techniques
in image processing such as significant feature and feature
selection. Previously, differentiation of human colon cancer
cells was demonstrated using gene expression of B-tubulin
isotypes [31]. More recently, multilabel classification of colon
cancer using histopathological images was performed using
several types of features. It was concluded that combined
features can offer good performance for multilabel colon
cancer prediction, with a precision of 73.7% [32]. Moreover,
another study has proven that colon cancer prognosis can be
identified by using distinct molecular subtypes and serrated
precursor lesions [33]. Thus, the effort to analyze the contin-
uum of colorectal cancer is still incomplete.

To date, few studies have directly addressed the discrimi-
nation between types of ABC for the diagnosis of colon can-
cer. Most have focused on their heterogeneity; several studies
have suggested that increasing heterogeneity is associated
with malignancy [34]. Additionally, it has been proposed
that greater biologic heterogeneity may be associated with
oxidative stress and genomic instability [35]. Also, a study
based on hepatic texture in patients with CRC found a more
heterogeneous liver texture at coarse scale (textures extracted
based on Laplacian of Gaussian filter) is related to the pres-
ence of occult malignancy [36]. Moreover, in this work, it was
proven that higher value of entropy function is associated
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with carcinoma which represents a higher heterogeneity
between ABC types.

This study offers a simple approach based on texture fea-
ture analysis to evaluate the continuum of colorectal cancer
from benign to malignant by using three abnormal cells.
These three cell types represent the transformation from
benign to malignant cancer. In this context, the results
showed that radiomic texture feature is significant and pro-
vide good classifier metrics and also highlight the potential of
radiomic texture feature extraction for enhanced prediction
of ABC from colorectal tissues. This should trigger further
research of image-based quantitative texture features in colo-
rectal cancer. Given the reality that colorectal cancer is highly
heterogeneous between patients, texture feature analysis is a
more desirable approach to provide clear categorization of
ABC type than the established methods.

Our study had limitations; the most important of these
was the limited subjects (𝑛 = 27). Also the computation
time of the segmentation, 3D GLCM, and texture feature
extraction was around 15 minutes for each case. However,
given the reality of the ABC, texture feature based 3D GLCM
is amore preferable approach to categorizeABC type than the
recognized models.

5. Conclusion

In this paper, a newmethod based onmultitexture features for
abnormal cell classification of colorectal cancer is proposed.
Real data of colorectal cancer was used to validate the dis-
crimination between ABC features. ABC was segmented by
active contour technique and then texture feature extracted
fromGLCMs. Significant texture features were selected based
on ANOVA test. The best results were obtained when com-
bining all features together and PCA was applied to get five
PC features with accuracy of 92.59% to discriminate between
ABC types. This result is promising to make a bride between
image features and colorectal pathology which would lead to
efficient medical diagnosis and treatment.
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