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Strategies to battle malignant tumors have always been a dynamic research endeavour. Although various vehicles (e.g.,
chemotherapeutic therapy, radiotherapy, surgical resection, etc.) are used for skin cancer management, they mostly remain
unsatisfactory due to the complex mechanism of carcinogenesis. Increasing evidence indicates that redox imbalance and
aberrant reactive oxygen species (ROS) are closely implicated in the oncogenesis of skin cancer. When ROS production goes
beyond their clearance, excessive or accumulated ROS could disrupt redox balance, induce oxidative stress, and activate the
altered ROS signals. These would damage cellular DNA, proteins, and lipids, further leading to gene mutation, cell
hyperproliferation, and fatal lesions in cells that contribute to carcinogenesis in the skin. It has been known that ROS-mediated
skin carcinogenesis involves multiple ways, including modulating related signaling pathways, changing cell metabolism, and
causing the instability of the genome and epigenome. Nevertheless, the exact role of ROS in skin cancer has not been thoroughly
elucidated. In spite of ROS inducing skin carcinogenesis, toxic-dose ROS could trigger cell death/apoptosis and, therefore, may
be an efficient therapeutic tool to battle skin cancer. Considering the dual role of ROS in the carcinogenesis and treatment of
skin cancer, it would be essential to clarify the relationship between ROS and skin cancer. Thus, in this review, we get the
related data together to seek the connection between ROS and skin carcinogenesis. Besides, strategies basing on ROS to fight
skin cancer are discussed.

1. Introduction

Skin cancer is the most common type of cancer, and its
incidence has gradually increased in recent years [1]. It is
characterized by aberrant cell growth with a potential to
invade or spread elsewhere in the body, which involves the
complex process of carcinogenesis [2]. At present, the main
types of skin cancer are melanoma and nonmelanoma skin
cancer (NMSC), while the latter includes basal cell carcinoma
(BCC) and squamous cell carcinoma (SCC). Ultraviolet (UV)
exposure is one of the main factors inducing skin cancer, and
cutaneous cells may be damaged directly by UV radiation or
indirectly by UV-mediated reactive oxygen species (ROS)
overproduction [3]. Long-term UV radiation could cause
photochemical reactions or/and oxidative DNA damage,
induce DNA mutation and misexpression, and trigger skin

carcinogenesis [4]. UV irradiation induces the skin to pro-
duce substantial ROS, which results in nuclear DNA damage
via forming a large amount of cyclobutane pyrimidine
dimers (CPDs), pyrimidine (6-4), pyrimidone photoprod-
ucts, and 8-oxodG [5]. 8-oxodG, a biomarker of oxidative
damage to DNA, could be removed from the damaged
DNA by the enzyme human 8-oxoguanine-DNA glycosylase
1 (hOGG1). In the study, it was shown that UVB-induced
ROS triggered 8-oxoguanine (8-oxoG) production and
hOGG1 reduction in the skin, further damaging the DNA
repair pathway, and eventually initiating cutaneous carcino-
genesis [6, 7].

ROS belong to oxygen-derived small molecules including
oxygen-centered radical species (e.g., superoxide (O2

•-),
hydroxyl (•OH), peroxyl (R-O2

•), and alkoxyl (RO•)) and
nonradical compounds that are either oxidizing agents or
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easily converted into radicals, such as hypochlorous acid
(HOCl), ozone (O3), singlet oxygen (1O2), and hydrogen per-
oxide (H2O2) [8]. ROS are one of the normal products of
physiological metabolism and are mainly derived from
endogenous and exogenous sources [9]. Endogenous sources
are primarily produced by complex I and complex III in the
oxidative respiratory electron transport chain (ETC) of mito-
chondria [10]. Some also originate from enzymes, including
NADPH-oxidases (NOXs), lipoxygenases, xanthine oxidases,
nitric oxide synthases, and cytochrome p450 enzymes [11].
Apart from the previously mentioned sources, environ-
mental stress (e.g., chemical substances, drugs, UV radiation,
ionizing radiation (IR), and hypoxia) could induce ROS
production. Under physiological conditions, ROS produc-
tion and scavenging are in a dynamic equilibrium and
the body is in a redox homeostasis at the presence of the anti-
oxidant defense system, which is vital to normal physiologi-
cal response [12]. The antioxidant defense system mainly
includes an enzymatic antioxidant system (e.g., superoxide
dismutase (SOD), glutathione peroxidase (GSH-Px), catalase
(CAT), thioredoxin (TRX), and peroxiredoxin) and a nonen-
zymatic one (e.g., tripeptide glutathione (GSH), vitamins
(vitamins C and E), β-carotene, and uric acid) [13]. Through
these two antioxidant systems, oxygen radicals and nonradi-
cals (O2

•-, •OH, H2O2, etc.) could be converted into H2O and
eventually into O2 [14, 15].

ROS importantly work in the physiology of the skin. As
the first barrier of body, the skin protects the body against
various harmful factors like pathogens, physical factors,
and chemical drugs. At a low level, ROS are beneficial to
maintain normal metabolism and cell growth through
mediating a variety of signal transduction pathways as a sec-
ond messenger [16]. They are quite essential for skin physio-
logical processes such as cutaneous cell proliferation, dermal
angiogenesis, wound healing, and skin repair [17]. Neverthe-
less, high-level ROS produced by various external factors
(e.g., chemical toxicants, UV, IR, and pathogen infection)
or internal factors (e.g., ischemia/reperfusion, inflammation,
and hypoxia) would disrupt redox homeostasis in the skin,
further trigger severe oxidative stress, and then cause cell
membrane lipid peroxidation, eventually resulting in DNA/-
cell damage or variation and even carcinogenesis [18]. These
may encourage cutaneous lesion appearance and tumor
growth in the skin, such as melanoma, BCC, and SCC [19].
It is confirmed that ROS participate in carcinogenesis in
various ways like modulating related signaling pathways,
changing cell metabolism, and causing the instability of
the genome and epigenome [20, 21]. However, the role of
ROS in skin cancer has not been completely clarified. In addi-
tion, it is reported that a super high dose of ROS could
fight cancer basing on ROS inducing cell death/apoptosis,
which indicates that ROS would be a potential target of anti-
cancer therapy. The effects of different concentrations of
ROS on cells are summarized in Figure 1. Herein, we review
the recent data about ROS and skin cancer to elucidate the
role of ROS in carcinogenesis and their correlation. More-
over, treatments based on ROS for skin cancer, including
chemotherapy, phototherapy, radiotherapy, and dietary anti-
oxidants, are also discussed.

2. Role of ROS in Carcinogenesis

There are two ways for ROS to work in carcinogenesis: gen-
otoxicity and nongenotoxicity. The former is chiefly about
genotoxic substance-induced direct DNA damage, which
may cause protooncogene activation, tumor suppressor gene
inactivation, genomic instability, and epigenetic modifica-
tions, further leading to mutations. The latter has an indirect
effect on DNA through the activation of related signaling
pathways. The following are the details that ROS mediate
in cancer, skin cancer in particular, through these two ways.

2.1. ROS-Mediated Genotoxicity in Carcinogenesis

2.1.1. Genomic Instability. As one of the most potent DNA-
damaging agents, ROS induce genomic instability in numer-
ous ways. ROS, derived from mitochondrial respiratory
chain complex III, greatly encourage DNA oxidative damage,
not only destroying DNA bases to generate 7,8-dihydro-8-
oxo-2′-deoxyguanosine (8-oxodG) but also producing spon-
taneous DNA double-strand breaks (DSBs), ultimately
resulting in chromosomal aberrations and the accumulation
of tyrosine kinase inhibitor-resistant BCR-ABL1 mutants
[22]. Weyemi et al. in their reports showed that ROS-
produced NOX4 played a critical role in oncogenic Ras-
induced DNA damage. H-Ras continuously stimulated the
overexpression of NOX4 and its functional partner p22phox,
and thereby produced a large amount of H2O2 which would
induce DNA damage and initiate carcinogenesis [23]. By
activating the expression of Ras and c-Myc oncogenes, ROS
promote cancer progression and invasion; Ras in turn
induces ROS overproduction [24]. Recent studies revealed that
NOX-derived ROS were largely responsible for the develop-
ment of melanoma; NOX1/NOX4-induced ROS could trigger
the invasion of melanoma through enhancing Rac1 expres-
sion, participating in the epithelial-mesenchymal transition
(EMT) process, and activating the downstream signals of the
AKT pathway [25]. Aydin et al. meanwhile reported that
NOX2-derived ROS encouraged metastasis of melanoma
cells via diminishing the effects of NK cells and lymphocytes
[26]. Similarly, NOX5-derived ROS elevated the proliferation
of human UACC-257 melanoma cells via stimulating HIF-1α
expression, further enhancing new blood vessel formation
and accelerating the growth and invasion of tumors [27].
Moreover, endogenous estrogen metabolite-produced ROS
could cause oxidative damage and DSB production, which
induce antioncogene BRCA1 mutations and prevent DNA
damage repair, eventually encouraging genomic instability
and tumorigenesis [28]. Normally, the tumor suppressor
gene p53 plays crucial roles in DNA damage repair, cell
growth/apoptosis, and tumorigenesis inhibition; however,
ROS-induced mutations in p53 may spoil these functions
and promote carcinogenesis including skin cancer, lung can-
cer, gastric cancer, and colon cancer [29–31].

2.1.2. Epigenetic Changes. On the other hand, ROS-
induced epigenetic instability/modification also plays an
important part in carcinogenesis via the genotoxicity way.
The ROS-induced epigenetic modification often manifests
as a global hypomethylation of the genome and an abnormal
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hypermethylation in the CpG island region of some genes.
ROS could promote DNAmethylation to result in the silence
of the tumor suppressor gene and the activation of oncogene
by upregulating the expression of DNA methyltransferases
(DNMTs) or by forming a new DNMT-containing complex
[32]. For example, H2O2 powerfully induced the hyperme-
thylation of CDX1 or runt domain transcription factor 3
(RUNX3) promoter and silenced these genes in colorectal
cancer, which indicated that ROS could promote cancer
cell proliferation by inducing tumor inhibitor gene silence
[33, 34]. As the main scavenger of ROS, glutathione peroxi-
dase 3 (GPX3) is considered to be a potent tumor suppressor
in many cancers; nevertheless, GPX3 promoter hypermethy-
lation could stop its antioxidant function in clear cell renal
cell carcinoma (ccRCC), which indicates that the failure of
the antioxidant system in ccRCC cells may be related to renal
carcinogenesis [35]. Furthermore, ROS could promote carci-
nogenesis through mediating histone modifications or inter-
fering microRNA (miRNA) dysregulation. Gene activation
or inhibition caused by ROS-mediated histone modification
depends on the modified amino acid residues, and histone
acetylation modification is mainly coordinated by histone
acetyltransferase (HAT) and histone deacetylase (HDAC),
while the level of histone acetylation is always low in cancer
cells; especially, the hypomethylation of histone H3K9
leads to melanoma epigenetic instability [36]. Besides, ROS-
induced miRNA (such as miR-125b) dysregulation is closely
implicated in skin carcinogenesis via interfering with the
normal activities of key genes [37].

2.2. ROS-Mediated Nongenotoxicity in Carcinogenesis:
Abnormal Activation of Cellular Signaling Pathways.Moder-
ate-dose ROS like O2

•- and H2O2 facilitate the abnormal pro-
liferation, metastasis, and infiltration of various tumor cells
through activating multiple pathways including oxidative
stress-related pathways and antioxidant stress pathways,
such as the mitogen activated-protein kinase (MAPK) path-
way, the phosphoinositide-3-kinase (PI3K)/protein kinase B
(PKB or AKT)/mammalian target of rapamycin (mTOR)
pathway, the nuclear factor-κB (NF-κB) pathway, and the
nuclear factor erythroid 2-related factor 2 (Nrf2) pathway
[38]. First, the MAPK signal pathway, consisting of the
extracellular-regulated kinase (ERK), the c-Jun N-terminal
kinase (JNK), and the p38 kinase isoenzyme, effectively
works in mitosis, metabolism, cell proliferation, and growth,
as well as apoptosis [39]. In many studies, it has been
observed that elevated ROS could activate the MAPK/ERK
signaling pathway and enhance the proliferation, invasion,
and metastasis of tumor cells [40, 41]; most melanoma
patients carried BRAF gene mutations, which might activate
theMAPK/ERK signaling pathway, further promoting tumor
cell proliferation through regulating the downstream signals,
and ultimately leading to tumorigenesis and even tumor pro-
gression [42]. Second, the PI3K/AKT/mTOR pathway, as a
classic signaling pathway, widely exists in cells to promote
cell survival, inhibit apoptosis, and prevent autophagy; this
pathway is overactivated in various tumor tissues and facili-
tates carcinogenesis and angiogenesis [43, 44]. ROS are able
to activate the PI3K/AKT/mTOR pathway and mediate the
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Figure 1: The effects of different concentrations of ROS on cells. (a) ROS, derived frommitochondria, NOXs, etc., mainly contain H2O2, O2
•-,

•OH, and others. Scavenging involves the antioxidation system, such as SOD, CAT, TRX/PRX, and vitamins. Low doses of ROS production
and scavenging are in a dynamic equilibrium, which is beneficial to the physiological function of normal cells. (b) High-level ROS encourage
cell variation and conversion into malignant cells. The production of ROS and antioxidation ability in tumor cells are both increased in
various degrees, but cancer cells tend to be in a higher oxidation environment. (c) Toxic-dose ROS cause cell death or apoptosis and is
also the killer of cancer cells.
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proliferation and migration of tumor cells [45]. Indeed, ROS
enhance the proliferation of melanoma cells via stimulating
the PI3K/AKT pathway that interacts with the MAPK
pathway [46]. Third, the NF-κB signaling pathway is greatly
activated by increased ROS in cancer cells and has a large
influence on carcinogenesis [47]. Accumulating findings
indicate that NF-κB target genes remarkably benefit cellular
survival. It has been shown that ROS could activate the
NF-κB signal pathway to promote the angiogenesis and
progression of melanoma [48, 49]. On the contrary, the met-
astatic activity of malignant cells would significantly decrease
when ROS-mediated NF-κB activation was suppressed [50].
Fourth, Nrf2 has a dual effect of antitumorigenesis and pro-
tumorigenesis in different stages [51]. In the early stage of
UV-induced skin carcinogenesis, Nrf2 activation promotes
the proliferation of normal cells which greatly outnumbers
precancerous cells, and prevents precancerous cell expansion
and mutant transformation. Inversely in the late stage, Nrf2
activation is quite beneficial to precancerous/cancerous cell
survival, due to oncogene mutations providing higher prolif-
eration and viability for these cells via upregulating Nrf2
expression [52]. On one hand, Nrf2 facilitates carcinogenesis
and cancer cell growth/proliferation; numerous studies have
demonstrated that Nrf2 highly expresses in a variety of can-
cer cells and promotes ROS detoxification and tumorigenesis
[53–55]. Meanwhile, ROS-related Nrf2 activation of macro-
phages increased vascular endothelial growth factor (VEGF)
expression and facilitated cancer cell EMT [56]. Another
study showed that the activated Nrf2 positively worked in
skin tumor by protecting the protumorigenic activity of ker-

atinocytes from ROS-induced damage and apoptosis [57].
On the other hand, Nrf2 has an antitumorigenesis effect.
The decreased Nrf2 spoils the impaired antioxidant defense
system, which may increase the incidence of skin cancer
including melanoma, SCC, and BCC [58]. Similarly, Nrf2
knockout mice were more susceptible to SCC than controls
[59]. More importantly, it has been demonstrated that Nrf2
knockout mice could be subjected to persistent DNA dam-
age, substantial extracellular matrix degradation, and serious
inflammation; inversely, the activation of Nrf2 benefited the
prevention of skin carcinogenesis in Nrf2 knockout mice
[60]. Therefore, the activation of Nrf2 would be a promising
strategy for the treatment and prevention of skin carcinogen-
esis by improving antioxidant capacity to protect cells from
oxidative damage. Many Nrf2-activating compounds are
beneficial to the prevention of skin cancer, and they contain
curcumin, quercetin, and resveratrol [61]. Besides, other
redox signaling pathways are implicated in carcinogenesis
and tumor development, containing Wnt/β-catenin, TGF-
β/Smad, etc. [62, 63]. Figure 2 sketches the role of ROS in
carcinogenesis, especially in skin carcinogenesis.

3. Relationship between ROS and Skin Cancer

ROS could promote cutaneous carcinogenesis and cancer
progression by mediating related pathways. But until now,
the mechanism of ROS influencing skin cancer has not been
completely clarified and only part of them have been
explored. Herein, we endeavour to elucidate the relationship
between ROS and skin cancer basing on the related data.
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Figure 2: ROS crucially mediates in carcinogenesis/skin carcinogenesis. High/increased levels of ROS benefit carcinogenesis, especially the
development and progression of skin cancer including melanoma, SCC, and BCC. On the one hand, they activate protooncogenes (BRAF,
N-Ras, RAC1, PTEN, etc.), inactivate tumor suppressor genes (p53, PTCH, etc.), and cause epigenetic modification. These changes lead to
DNA damage and mutation resulting in skin carcinogenesis in a genotoxic way. On the other hand, they trigger cancer in a nongenotoxic
way, namely, through the activation of related signaling pathways, such as MAPK, NF-κB, PI3K/AKT/mTOR, and Nrf2. The activation of
these signaling pathways leads to the proliferation, angiogenesis, and metastasis of skin cancer cells. Together, these processes cause the
occurrence of carcinogenesis/skin carcinogenesis.
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Melanoma, derived from melanocytes, is a highly invasive
tumor with the incidence increasing yearly [64]. Excessive UV
exposure is a crucial susceptibility factor, and UV-produced
substantial ROS contribute to nuclear DNA damage. ROS
not only trigger the occurrence and development of mela-
noma by way of genotoxicity and some specific signaling
pathway activation but they also cause oncogene activation
or tumor-suppressing gene inactivation in melanoma con-
sisting of BRAF, c-Myc, p53, and Ras genes. N-Ras is
upstream of the MAPK pathway, and its mutation com-
monly occurs in melanoma, which contributes to cancer cell
proliferation [65]. Moreover, ROS also drive the stable
expression of HIF-1α to activate the Met protooncogene,
which facilitates the proliferation of the extracellular matrix,
angiogenesis, and the proliferation and metastasis of mela-
noma cells [66]. Other oncogenes, RAC1 in particular, are
associated with an increased risk of melanoma [67]. The
activation of RAC1 depends on the levels of ROS and deter-
mines the ability of the migration and invasion of B16 mel-
anoma cells which could be weakened by the suppression of
ROS-mediated Rac-1 activation [68]. Apart from the above-
mentioned factors, other signaling pathways especially the
PI3K/AKT pathway and NF-κB are implicated in the initia-
tion and progression of melanoma [69]. Therefore, ROS
are crucially responsible for the occurrence and development
of melanoma through inducing related gene mutations
and activating a serial of signaling pathways [70]. How-
ever, too much ROS generation would encourage apopto-
sis, which may become a useful vehicle to kill melanoma
cells. Subsequently, these will be discussed in the follow-up
part of treatments.

Originating from the basal cells near the epidermis-
dermis junction, BCC primarily occurs in middle-aged and
elderly people, and its lesions mostly appear in exposed areas
such as the head, face, and neck. Many factors (e.g., UV,
some harmful chemicals, and IR) may trigger BCC initiation,
among which UV exposure is a particularly important one
[71]. UV-induced ROS could promote the occurrence and
development of BCC by generating 8-oxoG and reducing
hOGG1 [6]. The imbalance of ROS would encourage skin
inflammation, abnormal metabolism, and decreased immu-
nity, which eventually leads to cell mutation and carcino-
genesis. Compared with control individuals, there was a
high level of MDA in BCC patients, with a reduction of
antioxidant components, which enhanced the occurrence
of BCC [72]. In the same way, the expression of oxidative
DNA damage product 8-oxoG increased, while the levels of
antioxidation defenses (e.g., hOGG1, CAT, GPx, and Nrf2)
decreased in BCC tissues [73]. UV radiation and oxidative
stress facilitate the membrane receptor PTCH gene muta-
tions, which would result in abnormal activation of the
hedgehog signaling pathway; in turn, PTCH gene activation
and the abnormal activation of the hedgehog signaling path-
way are closely involved in the pathogenesis of BCC [74].

As an extremely common type of skin cancer, SCC is
derived from keratinocytes and attacks the upper layer of
the skin. Excessive UV exposure is a main causative factor
for SCC, and UV-induced ROS play a crucial role in carcino-
genesis and in the promotion of SCC, while ROS-mediated

oxidative stress exacerbates the oxidative damage of DNA,
protein, and lipid, further magnifying the progression and
invasion of SCC [75, 76]. UV-produced ROS in skin always
act as an essential role in inducing p53 mutation. As a tumor
suppressor protein, p53 conserves genome stability, main-
tains normal cell growth, and prevents cell malignant trans-
formation. Once DNA is damaged, p53 would accelerate
DNA replication and repair by activating DNA repair pro-
teins, prevent cell growth from arresting the cell cycle, and
initiate programmed cell death if DNA damage is irreparable
[77]. In humans, TP53 is the major gene encoding p53,
and its mutational inactivation most frequently occurs in
skin cancers, e.g., SCC and BCC, especially in SCC [78].
Liu et al. discovered that in the absence of p53 function,
inhibition of p38α MAPK activity enhanced A431 SCC
cell proliferation and drove UV-induced skin carcinogenesis
in p53-/-/SKH-1 mice, which was closely associated with
increased ROS/NOX2 as well as aberrant p53 [79]. In addi-
tion, accumulative ROS could induce PTEN gene mutation
and inactivation in oxidative damage-related skin cancers,
SCC in particular. PTEN, a tumor suppressor gene, nega-
tively regulates the PI3K/AKT pathway and often undergoes
mutations, deletions, or silencing in many cancers [80]. Ming
et al. showed that PTEN expression markedly decreased in
SCC, suggesting a critical effect of PTEN in skin carcinogen-
esis and skin cancer procession [81].

4. Treatments for Skin Cancer Targeting ROS

There are many therapies for skin cancer, including surgery,
chemotherapy, radiotherapy, photodynamic therapy (PDT),
and molecular targeting therapy, etc., among which surgery
is the most common and important one [82]. Nevertheless,
numerous studies have shown that higher-level ROS and
redox imbalance often emerge from cancer cells, which could
cause multidrug resistance (MDR) and immunosuppression
of cancer cells and thereby make it quite difficult to control
tumors [83]. At the same time, when the skin cancer occurs
at a special site, or the lesions are too large or many to oper-
ate, or the patient is too old to tolerate surgery, or distant
metastasis of tumors occurs, other medical approaches such
as radiotherapy, PDT, and/or chemotherapy may be better
alternatives [84]. Given that ROS play an important role in
promoting skin cancer, many ROS-targeted treatments
would be well developed (shown in Figure 3).

4.1. Medical Treatments for Skin Cancer Basing on ROS. Skin
cancer cells have a higher oxidative environment, and ROS
have a double effect on cutaneous carcinoma. On the one
hand, reducing ROS production contributes to inhibiting
skin cancer; but on the other hand, diminishing antioxidant
enzymes may enhance toxic-dose ROS production and
weaken the body’s antioxidant defense, eventually inducing
cancer cell death. Thus, more and more ROS-targeted thera-
pies/drugs have been discovered in recent years.

Related researches have shown that celecoxib combined
with 5-fluorouracil (5-FU) could suppress the phosphoryla-
tion of AKT to reduce the proliferation of SCC cells via pro-
ducing a large amount of ROS in a dose-dependent manner.
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Once FU is converted into FU deoxynucleotides in cells, it
would block thymidine nucleotide synthetase and inhibit
DNA synthesis. FU meanwhile interferes with the synthesis
of RNA to resist tumors. Moreover, increased ROS cause oxi-
dative damage and then result in the breakage of NMSC cell
membrane lipids, proteins, and DNA strand chain [85, 86].
The targeted inhibitors dabrafenib and trametinib were used
to treat melanoma and SCC mainly by involving ROS over-
production and caspase-activated apoptosis [87]. Daniel
et al. also found that the combined therapy of vemurafenib
and potassium channel inhibitor TRAM-34 decreased ERK
phosphorylation and significantly increased intracellular
ROS levels, which stimulated caspase-3 and other proapopto-
tic pathways and decreased the mitochondrial membrane
potential, further leading to the apoptosis of melanoma cells
[88]. For example, targeting BRAF gene drugs vemurafenib
and dabrafenib could inhibit the growth and division of
BRAF-mutated metastatic melanoma cells via blocking the
MAPK signaling pathway and upregulating ROS [89]. Mean-
while, the MEK inhibitor trametinib combining with dabrafe-
nib significantly enhanced the therapeutic effect on melanoma
in the presence of high-level ROS [90]. Besides, chaetocin
derived from the Chaetomium species has a powerful antitu-
mor proliferative activity. It significantly inhibited melanoma
cell proliferation and promoted its apoptosis via increasing
cellular ROS, decreasing the mitochondrial membrane poten-
tial and activating the caspase-9/3 pathway [91]. Nevertheless,
Yu et al. and Wang et al. discovered that the ROS-responsive
gel scaffold that they created in their study could break
immune tolerance and enhance immune response to mela-
noma through reducing the level of local ROS and inhibiting
the programmed death-ligand 1 (PD-L1) [92, 93].

PDT is a phototherapy based on the accumulation
of photosensitizers in the body and the irradiation of light

with a specific wave length, which can generate substantial
ROS to produce cytotoxicity and kill cancer cells. Currently,
5-methylaminolevulinic acid (MAL) and 5-aminolevulinic
acid (ALA) are both extremely common photosensitizers in
PDT, and PDT has been widely used to treat skin tumors,
e.g., SCC, BCC, and Bowen’s disease. The presence of either
MAL or ALA in the body may be converted into protopor-
phyrin IX (PpIX) with strong photosensitivity, which pro-
duces substantial ROS to kill cancer cells after irradiation
with adequate-wavelength light, while neighbouring normal
cells are scarcely affected [94]. However, PDT has a large
limitation in skin cancer due to the infiltration of photo-
sensitizers into deep skin tissue. To overcome this defi-
ciency, some improvements, including pretreatment with a
laser or a microneedle and encapsulating the photosensitizer
in nanoparticles and combining with drugs, are made to
enhance PDT efficacy in skin cancer [95]. Others, like indo-
line-fused-triazole-mediated PDT can increase ROS produc-
tion and enhance apoptosis-related protein expression,
thereby inducing BBC cell death [96].

Furthermore, there are other ways for skin cancer treat-
ment targeting ROS. Typically, radiotherapy is an effective
vehicle in the management of skin cancer in recent decades
[97]. Via locally producing and releasing a large quantity of
ROS, radiotherapy can cause violent oxidative eruptions to
kill tumor cells and make solid tumor smaller [98]. Recently,
it has been demonstrated that some ROS-inducers are con-
ducive to enhancing the sensitivity of skin cancer cells to IR
through a ROS-mediated manner. Selenadiazole derivatives,
for example, could increase the sensitivity of A375 human
melanoma cells to X-ray by the induction of ROS-mediated
DNA damage and AKT inactivation. Besides, IR benefits
more ROS generation, G2/M phase arrest, andmelanoma cell
apoptosis [99].

Skin cancer:
melanoma/SCC/BCC

Apoptosis/death

Chemotherapy
Radiotherapy

Targeted therapy
PDT

Dietary
antioxidants

(+) Bcl-2, Bcl-XL, cytochrome c,
Bax, caspase-9/-3/-8

(-) MAPK, PI3K/
Akt, NF-�휅B

ROS

Redox imbalance

Figure 3: Therapies for skin cancer basing on ROS. There are many treatments for skin cancer in a ROS-targeted way, including
chemotherapy, radiotherapy, targeted therapy, and PDT. These therapies cause toxic-dose ROS production and then lead to redox
imbalance, further activating Bcl-2, Bax, and caspase-9 as well as other pathways to induce skin cancer cell death/apoptosis. On the other
hand, dietary antioxidants reduce the production of ROS by inhibiting signal pathways such as MAPK, PI3K-Akt, and NF-κB to prevent
and control skin cancer (melanoma, SCC, and BCC). In fact, the mechanism of the ROS-based treatment of skin cancer is often
interactive. (+) indicates activation and (-) indicates inactivation.
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4.2. Dietary Antioxidants for Skin Cancer Basing on ROS.
Dietary antioxidants are widely distributed in fruits, vegeta-
bles, grain, herbs, spices, and other foods, which are rich in
vitamins, minerals, polyphenols, and flavonoids. Dietary
antioxidants possess various antineoplastic activities: anti-
proliferation, anti-inflammation, immune regulation, antian-
giogenesis, and inhibition of metastasis [100, 101]. Dietary
intake of vitamins, including vitamin C, vitamin E, selenium,
and vitamin A, is inversely proportional to the risk of cancer
and prevents skin carcinogenesis as antioxidant micronutri-
ents [102]. When UV-induced ROS are beyond the antioxi-
dant defense, oxidative stress occurs; nevertheless, these
vitamins could effectively eliminate ROS and prevent oxida-
tive stress through strengthening the antioxidant defense,
ultimately protecting the skin against UV-induced cancer
[103]. Moreover, polyphenols are a group of natural sub-
stances with excellent biological properties and have become
potent dietary-preventive agents against cancer. The polypo-
dium leucotomos extract (PL), a strong antioxidant with a
high-content phenolic compound, is able to prevent and
control skin cancer mainly by inhibiting UV-induced ROS
production, suppressing NF-κB activation, and activating
the p53 protein [104]. Heo et al. found that the decrease of
Nrf2 expression and the antioxidant defense ability in
resveratrol-treated melanoma cells encouraged the genera-
tion of a large amount of ROS and endoplasmic reticulum
stress, then triggered the occurrence of oxidative stress; in
turn, the increased ROS and oxidative stress further inhibited
the growth and proliferation of melanoma cells by downreg-
ulating the Bcl-2 protein level and upregulating the Bcl-2-
related X protein expression [105]. As a member of the flavo-
noid family, quercetin is excellent in strengthening the anti-
oxidant defense via removing H2O2, O2

•-, and •OH and has
a powerful anticancer effect on skin cancer through regulat-
ing molecular mechanisms, e.g., inhibiting activation of
the MAPK, PI3K-Akt/PKB, and NF-κB signal pathways
[106]. Another natural flavonoid, caffeic acid n-butyl ester
(CAE), stimulates the accumulation of toxic ROS and the
decrease of MMP in A431 skin cancer cells to inhibit the
PI3K/AKT/mTOR signaling pathway and thus induce cancer
cell apoptosis [107]. Lee et al. meanwhile showed that the
flavonoid Cudraflavone C was a novel natural drug for the
treatment of melanoma; this drug could activate the phos-
phorylation of MAPKs (p38, ERK, and JNK) and increase
the expression of apoptosis proteins (Bax, cytochrome c, cas-
pase-9, and caspase-3/7) to induce the apoptosis of mela-
noma cells by increasing mitochondrial ROS production
[108]. Proanthocyanidins, a group of flavonoids derived from
grapes, apples, bilberry, cranberry, and other plants, have
potent abilities of deducing the proliferation and invasion
of tumor cells through the production of toxic-dose ROS
and inhibition of MMP-2/9 expression, eventually prevent-
ing skin carcinogenesis, especially SCC [109]. Other studies
also have demonstrated that proanthocyanidins, owing to
their strong antineoplastic and antiangiogenic properties in
cancers, could downregulate VEGF expression, suppress
endothelial cell migration, and lessen vascularization via
attenuating the phosphorylation of Akt, ERK, and p38
MAPK [110]. In addition, dietary antioxidants like some

Thai plants have protective effects against UV-induced skin
cancer [111]. Overall, dietary antioxidants have diverse ben-
eficial properties and provide a protection against skin cancer
through regulating some molecular mechanisms between
ROS and cancer.

Figure 3 summarizes these ROS-targeted treatments on
skin cancer.

5. Conclusion and Future Perspective

Taken together, there is convincing evidence to support the
critical role of ROS in cutaneous carcinogenesis and skin can-
cer progression. Increased ROS contribute to DNA damage
and epigenetic instability, metabolic adaptation, cancer cell
proliferation and migration, and cell death in some cases.
In recent years, it has become a research hot spot in the
tumor therapy field whether to focus on antioxidation or pro-
mote oxidation. In this review, a series of mechanisms in
ROS-mediated skin cancers have been discussed, including
protooncogene activation, tumor suppressor gene inactiva-
tion, genomic instability/mutations, and epigenetic modifica-
tions, as well as multiple related signaling pathways; several
therapeutic approaches targeting ROS, like PDT, radiother-
apy, and dietary therapy, are also introduced. Although the
relationship between ROS and skin carcinogenesis has been
largely elucidated, how they specifically regulate each other
needs further research. We look forward to finding the
balance between ROS and skin carcinogenesis in the near
future and searching a reliable and effective method for the
treatment of skin cancer.
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