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Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs) control gene expression by acting
at multiple levels and are often deregulated in epithelial tumors; however, their roles in the fine
regulation of cellular reprogramming, specifically in epithelial–mesenchymal transition (EMT), re-
main largely unknown. Here, we focused on the hnRNP-Q (also known as SYNCRIP), showing by
molecular analysis that in hepatocytes it acts as a “mesenchymal” gene, being induced by TGFβ
and modulating the EMT. SYNCRIP silencing limits the induction of the mesenchymal program and
maintains the epithelial phenotype. Notably, in HCC invasive cells, SYNCRIP knockdown induces
a mesenchymal–epithelial transition (MET), negatively regulating their mesenchymal phenotype
and significantly impairing their migratory capacity. In exploring possible molecular mechanisms
underlying these observations, we identified a set of miRNAs (i.e., miR-181-a1-3p, miR-181-b1-3p,
miR-122-5p, miR-200a-5p, and miR-let7g-5p), previously shown to exert pro- or anti-EMT activities,
significantly impacted by SYNCRIP interference during EMT/MET dynamics and gathered insights,
suggesting the possible involvement of this RNA binding protein in their transcriptional regulation.

Keywords: hnRNPQ; EMT; mirRNAs; HCC; RNA binding proteins; metastasis

1. Introduction

Epithelial–mesenchymal transition (EMT) is a cellular reprogramming mechanism
that allows epithelial cells to acquire mesenchymal properties. This transdifferentiation
process has a key role in physiology and pathology, being required in the embryo for
gastrulation and morphogenesis, in the adult for wound healing, and in epithelial tumors
for several functions, such as stemness, resistance to therapy and, mainly, malignant
progression. Transitional cells, indeed, can migrate and disseminate, allowing carcinoma
cells to metastasize. In secondary sites, mesenchymal cells can reacquire an epithelial
phenotype by undergoing mesenchymal–epithelial transition (MET), which is regulated by
tumor niche (reviewed in [1]).

Master transcriptional factors (EMT-TFs) (including Slug (Snail2), Twist-related protein
1 (Twist1), zinc-finger E-box-binding homeobox 1 and 2 (Zeb1 and Zeb2), and, primarily,
Snail (Snai1), induce the EMT program in a non-redundant manner [2–4]. Moreover,
a fine crosstalk between EMT-TFs and the involvement of several ncRNAs, including
microRNAs (e.g., miR-200 family members [5,6] and long non-coding RNAs (lncRNAs, e.g.,
HOTAIR [7,8])), have been described. In this complex scenario, the EMT/MET dynamics
may also result in metastability, a hybrid state in which epithelial and mesenchymal features
are co-expressed [9,10].
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Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a class of RNA Bind-
ing Proteins (RBPs), with conserved RNA-binding domains (RBDs), that control different
classes of cellular RNAs. HnRNPs, indeed, are involved in translational regulation, alter-
native splicing, mRNA stabilization, pri-miRNAs processing as well as miRNAs compart-
mentalization (reviewed in [11]). HnRNPs can also bind pyrimidine-rich DNA sequences,
including those at promoters, and are involved in chromatin remodeling and transcrip-
tion, telomere elongation, and monitoring the genome integrity [12–15]. Because of their
pleiotropic functions, hnRNPs are often deregulated in pathological conditions, particularly
in tumors. However, while it is conceivable that hnRNPs can be involved in the fine regu-
lation of cellular reprogramming, their functions in the regulation of EMT is still largely
uncharacterized. Current evidence is limited to the regulation of (i) Snail by hnRNP-A2/B1
and hnRNP-F, respectively, in lung [16] and bladder [17] cancer cells, (ii) disabled-2 (Dab2)
and interleukin-like EMT inducer (ILEI) by hnRNP-E1 in mammary gland cells [18,19],
and, finally, (iii) invasion by PCBP-1 in hepatoma cells [20].

In this work, we specifically focused on the role in the EMT of hnRNP-Q, also known as
Synaptotagmin-binding Cytoplasmic RNA-Interacting Protein (SYNCRIP). This evolution-
arily conserved RBP recognizes different RNA sequences to modulate different processes
such as pre-mRNA splicing, mRNA translation, and pri-miRNA processing [21–32]. More-
over, it affects miRNA localization by mediating the partition between the intracellular
compartment and extracellular vesicles (EVs) [33,34]. Notably, a role for SYNCRIP in
the development and differentiation of specific cell lineages has been described [24,35],
as well as its aberrant regulation in different disorders, including cancers [32,36–40]. In
particular, SYNCRIP expression represents an unfavorable prognostic marker for hepato-
carcinoma (HCC) ([40]; see also https://www.proteinatlas.org, 2 November 2021). The
molecular heterogeneity of HCC advanced stages is clearly increased by EMT plasticity,
and tumor progression is associated with hepatocyte dedifferentiation and the acquisition
of invasive properties [41].

Despite this body of evidence, a link between SYNCRIP overexpression and the ability
of cancer cells to metastasize has not yet been clarified.

Here, SYNCRIP upregulation was found to occur during transforming growth fac-
tor (TGF)β-induced EMT. The impairment of this hnRNP in hepatocytes interfered with
the responsiveness to TGFβ in terms of morphological changes as well as the modu-
lation of epithelial and mesenchymal gene expression. Moreover, in murine invasive
HCC cells, SYNCRIP knockdown was demonstrated to impair migration as well as
mesenchymal phenotype.

In exploring possible molecular mechanisms underlying these observations, evidence
for the ability of SYNCRIP to regulate specific miRNAs (i.e., miR-181-a1-3p, miR-181-b1-3p,
miR-122-5p, miR-200a-5p, and miR-let7g-5p), previously known to exert pro- or anti-EMT
activities by targeting EMT-TFs (i.e., Snail and Zeb2) [5,42–51], was gathered in both cell
models. Furthermore, the provided data suggested the involvement of SYNCRIP in the
transcriptional regulation of these miRNAs during EMT/MET dynamic.

2. Results
2.1. SYNCRIP Is Involved in TGFβ-Induced EMT of Hepatocytes

To explore the possible SYNCRIP function in the EMTs, we treated non-tumorigenic
hepatocytes with a TGFβ cytokine previously found to be sufficient to induce Snail expres-
sion in these cells and the loss of the epithelial differentiated phenotype [8,52].

As shown in Figure 1A, the analysis of SYNCRIP levels highlighted that this RBP was
upregulated in the transdifferentiation process. In order to evaluate whether SYNCRIP
modulation was only correlative or rather causal to the EMT, we analyzed the effects
of SYNCRIP knockdown. To achieve this aim, hepatocytes were stably infected with
retroviral vectors expressing different shRNAs against SYNCRIP (shSYN) and a scrambled
sequence as a control (shCTR). RT-qPCR and Western blot analysis validated that SYNCRIP

https://www.proteinatlas.org
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levels in shSYN cells were significantly reduced by the viral vectors targeting its transcript
(Figure 1B,C; in line with [33]).
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Figure 1. SYNCRIP is involved in TGFβ-induced EMT of hepatocytes. (A) Western blot analysis of
intracellular levels of SYNCRIP in hepatocytes (3A) treated or not for 24 h with TGFβ. GAPDH was
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used as loading control. All the experiments were performed three times and images are repre-
sentative of one indicative experiment of the independent ones. The densitometry analysis (right
panel) was conducted by using Image J software. Data are reported as means ± SD. Statistically
significant differences are reported (* p < 0.05). (B) qRT-PCR analysis of Syncrip intracellular levels
in hepatocytes stably silenced for SYNCRIP (3A shSYN) compared to cells with the empty vector
(3A shCTR). The values are calculated via the 2 (−∆Ct) method, normalized to the 18S ribosomal RNA
levels and shown as mean ± SD. Statistically significant differences are reported for four independent
experiments (* p < 0.05). (C) Western blot analysis of SYNCRIP and GAPDH as loading control. The
image is representative of four independent experiments. The densitometry analysis (right panel)
was conducted by using the Image J software. Data are means ± SD of four independent experiments.
Statistically significant differences are reported (*** p < 0.001). (D) Phase contrast micrographs of
3A shSYN cells or 3A shCTR, treated or not for 24 h with TGFβ as indicated. (E) Immunofluores-
cence assays for epithelial (ZO-1 and E-Cadherin) and mesenchymal (SNAIL and FIBRONECTIN)
markers in TGFβ-treated or untreated 3A shCTR and 3A shSYN cells. Nuclei were stained with
Hoechst (blue). Images are representative of three independent experiments. Scale bar is indicated.
(F) qRT-PCR analysis for the indicated mesenchymal (Snail and Zeb2) and epithelial (E-cadherin
and HNF1α) markers in TGFβ-treated or untreated 3A shCTR and 3A shSYN cells. The values are
calculated by the 2 (−∆Ct) method, normalized to the 18S ribosomal RNA levels and shown as mean
± SD. Statistically significant differences are reported for five independent experiments (* p < 0.05;
** p < 0.01; ns = no significance). (G) Western blot analysis of intracellular levels of the indicated
epithelial and mesenchymal markers in TGFβ-treated or untreated 3A shCTR and 3A shSYN cells.
The image is representative of four independent experiments. GAPDH was used as loading control.
The densitometry analysis (right panel) was conducted by using the Image J software. Data are means
± SD of four independent experiments. Statistically significant differences are reported (* p < 0.05;
** p < 0.01; ns = no significance).

As shown in Figure 1D,E, morphological and immunofluorescence analysis in TGFβ-
treated shCTR hepatocytes confirmed the occurrence of EMT by a morphological change
from an epithelial, cobblestone-like phenotype to a more spindle-shaped mesenchymal
phenotype with (i) Snail and fibronectin positive regulation and (ii) delocalization of the
epithelial markers ZO-1 and E-Cadherin. Conversely, SYNCRIP-interfered cells retained a
more epithelial morphology after EMT induction, with the partial retention of ZO-1 and
E-Cadherin in the membrane and undetectable Snail and fibronectin expression. Coher-
ently, qRT-PCR (Figure 1F) and WB (Figure 1G) analysis showed that while the SYNCRIP-
knockdown did not interfere with the TGFβ-mediated upregulation of the EMT-TF Zeb2, it
significantly prevented the induction of Snail protein and the downregulation of its main
epithelial target genes (E-cadherin and HNF1α).

Overall, these findings indicate that SYNCRIP can act as a mesenchymal gene, posi-
tively regulated in TGFβ-induced EMT, and provide evidence of a functional role for this
hnRNP in the transdifferentiation of the hepatocytes by contributing to the modulation of
Snail and its mediated gene regulation.

2.2. SYNCRIP Impairment Affects Mesenchymal Phenotype and Migratory Properties of
HCC Cells

To shed light on the functional role of SYNCRIP in invasive HCC cells, the effects
of its knockdown were further assessed in murine hepatoma mesenchymal-like BW1J
cells. As shown in Figure 2, SYNCRIP impairment in BW1J cells (Figure 2A,B) allowed a
MET with the rescue of a more differentiated phenotype. Morphological (Figure 2C) and
molecular analysis (Figure 2D,E,F), indeed, highlighted the strong negative regulation of
the mesenchymal markers Vimentin and Fibronectin, the downregulation of the EMT-TF
Zeb2 and N-cadherin with the positive modulation of E-cadherin levels.
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Figure 2. SYNCRIP impairment affects mesenchymal phenotype and migratory properties of HCC
cells. (A) qRT-PCR analysis of Syncrip intracellular levels in BW1J hepatoma cells silenced for SYN-
CRIP (shSYN) compared to cells transfected with the empty vector (empty). The values are calculated
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by the 2 (−∆Ct) method, normalized to the 18S ribosomal RNA levels, and shown as mean ± SD.
Statistically significant differences are reported for five independent experiments (** p < 0.01). (B)
Western blot analysis of SYNCRIP and GAPDH as loading control. The image is representative of
three independent experiments. The densitometry analysis (right panel) was conducted by using the
Image J software. Data are means ± SD of three independent experiments. Statistically significant
differences are reported (** p < 0.01). (C) Phase contrast micrographs of BW1J shSYN and BW1J
empty. (D) Immunofluorescence assays for the mesenchymal marker VIMENTIN in BW1J shSYN
and BW1J empty. Nuclei were stained with Hoechst (blue). Images are representative of three
independent experiments. Scale bar, 10 µm. (E) qRT-PCR analysis of intracellular levels of E-cadherin
and of the mesenchymal genes Zeb2, Snail, Vimentin, and N-cadherin in BW1J shSYN and BW1J
empty. The values are calculated by the 2 (−∆Ct) method, normalized to the 18S ribosomal RNA
levels and shown as mean ± SD. Statistically significant differences are reported for six independent
experiments (* p < 0.05; *** p < 0.001; ns = no significance). (F) Western blot analysis of intracellular
levels of the mesenchymal marker Fibronectin (FN1) in BW1J shSYN and BW1J empty. GAPDH was
used as loading control. The densitometry analysis was conducted by using the Image J software.
Data are means ± SD of three independent experiments. Statistically significant differences are
reported (*** p < 0.001). (G) Scratch assay of BW1J shSYN compared to control cells at the indicated
time. Quantification was performed using the Fiji-ImageJ image processing package. Statistically
significant differences are reported for four independent experiments (* p < 0.05; ** p < 0.01).

Notably, SYNCRIP was found to be involved in the acquisition of the migratory
ability of HCC cells, as demonstrated by scratch assays of BW1J cells in which SYNCRIP
knockdown significantly reduced cell motility (Figure 2G). Overall, these data demonstrate
a positive role for SYNCRIP in allowing migration as well as in the maintenance of the
mesenchymal phenotype of HCC cells.

2.3. SYNCRIP Controls Anti- and Pro-EMT miRNA Levels

In order to gain insight into the mechanism of SYNCRIP function in the acquisi-
tion of mesenchymal properties by epithelial cells, we focused on specific miRNAs (i.e.,
miR-122-5p, miR-200a-5p, miR-let7g-5p, miR-181a1-3p and miR-181b1-3p), expressed
by the hepatocytes and broadly involved in the EMT of different cell types [5,33]: no-
tably, miR-122-5p and miR-200a-5p are well known to inhibit different EMT-TFs [5,42–46],
while miR-181a1-3p and miR-181b1-3p act as metastasis-promoting factors leading to
Snail stabilization [47,48].

Firstly, we monitored mature miRNAs levels in hepatocytes undergoing EMT. As
shown in Figure 3A, RT-qPCR analysis demonstrated that the expected TGFβ repression
of miR-200a-5p and miR-122-5p, and induction of miR-181a1-3p and miR-181b1-3p were
significantly interfered with by SYNCRIP knockdown. Then, to evaluate at which level
of control of miRNAs regulation SYNCRIP could participate, the expression levels of
primary miRNAs (pri-miRs) transcripts, whose processing generates mature miRs, were
further investigated. As shown in Figure 3B, in both silenced and control hepatocytes
undergoing EMT, the induction of pri-miR-181a1, pri-miR-181b1, and the repression of pri-
miR-122 matched that of the respective miRs. The same modulation of the corresponding
mature form, even if not significant, was observed for pri-miR-200a. These data indi-
cate that SYNCRIP impacts the TGFβ-mediated regulation of specific miRs and, as its
effect was detectable at the pri-miR level, suggest that this regulation may occur at the
transcriptional level.
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Figure 3. SYNCRIP controls anti and pro-EMT miRNA levels in hepatocytes undergoing TGFβ-
induced EMT. (A) qRT-PCR analysis of intracellular levels of anti-EMT microRNAs (miR-122-5p and
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miR-200a-5p) and pro-EMT microRNAs (miR-181a1-3p and miR-181b1-3p) in 3A shCTR and 3AshSYN
cells treated or not with TGFβ. The values are calculated via the 2 (−∆Ct) method, normalized to
the cel-miR-39, expressed as fold enrichment, and shown as mean ± SD. Statistically significant
differences are reported for six independent experiments (* p < 0.05; ** p < 0.01; *** p < 0.001; ns = no
significance). (B) qRT-PCR analysis of intracellular levels of the indicated pri-miRNAs in the same
cells as in (A). The values are calculated via the 2 (−∆Ct) method, normalized to the 18S ribosomal
RNA levels, and shown as mean ± SD. Statistically significant differences are reported for four
independent experiments (* p < 0.05; ** p < 0.01; ns = no significance).

Of note, as shown in Figure 4A,B, the SYNCRIP influence on miR-181a1-3p, miR-181b1-
3p, and miR-122-5p levels was further confirmed in BW1J cells. Interestingly, miR-let7g-5p,
another anti-EMT regulator [49–51], as found modulated limitedly to hepatoma cells
(Figure 4A and data not shown). Coherently, in BW1J cells modulations of pri-miRs-181,
pri-miR-122, and pri-miR-let7g were strictly correlated to that of the corresponding mature
forms. Overall, these data indicate that SYNCRIP exhibits a function in miRNA regulation
in both the induction (i.e., during EMT) and the maintenance (i.e., in transformed invasive
cells) of the mesenchymal state of transdifferentiated hepatocytes.
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Figure 4. SYNCRIP controls anti and pro-EMT miRNA levels in hepatoma cells. (A) qRT-PCR
analysis of intracellular levels of anti-EMT microRNAs (miR-122-5p, miR-200a-5p, and let7-g-5p) and
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pro-EMT microRNAs (miR-181a1-3p and miR-181b1-3p) in BW1J shSYN compared to control cells
(empty). The values are calculated via the 2 (−∆Ct) method, normalized to the cel-miR-39, expressed
as fold enrichment, and shown as mean± SD. Statistically significant differences are reported for four
independent experiments (* p < 0.05; ns = no significance). (B) qRT-PCR analysis of intracellular levels
of the indicated pri-miRNAs in the same cells as in (A). The values are calculated via the 2 (−∆Ct)
method, normalized to the 18S ribosomal RNA levels, and shown as mean ± SD. Statistically
significant differences are reported for seven independent experiments (* p < 0.05; ** p < 0.01; ns =
no significance).

3. Discussion

The main finding of this work was to ascribe a role to the hnRNP-Q, also known as SYN-
CRIP, in the modulation of EMT/MET dynamics. This RNA-binding protein was found,
indeed, as positively regulated in non-tumorigenic hepatocytes by TGFβ and, notably, its
impairment prevented the full transdifferentiation. Moreover, SYNCRIP knockdown in
HCC invasive cells allowed the rescue of a more differentiated phenotype by MET.

As pleiotropic regulators of gene expression, and often deregulated in epithelial
cancers (reviewed in [11]), hnRNPs are conceivably implicated in mediating EMT repro-
gramming, but their role in this context remains largely unexplored. Here, we demonstrated
for the first time, to our knowledge, a direct correlation between the function of SYNCRIP
and the EMT outcome. Specifically, SYNCRIP-interfered cells undergoing TGFβ-induced
EMT showed a limited Snail induction, in turn correlated to a minor downregulation of its
main epithelial targets, E-cadherin and HNF1α, controlling hepatocyte differentiation and
the maintenance of the epithelial phenotype [53,54]. These observations were corroborated
by functional data in HCC invasive cells, where SYNCRIP knockdown induced MET and
significantly impaired their migratory capacity. This evidence provides a possible molecu-
lar link between the well-known SYNCRIP overexpression in HCC [40] and the ability of
cells to metastasize.

Mechanistically, our results demonstrated that SYNCRIP knockdown in hepato-
cytes impacted the TGFβ-mediated modulation of specific miRNAs, i.e., miR-122-5p,
miR-181-a1-3p, miR-181-b1-3p, and miR-200a-5p. Coherently, SYNCRIP silencing in hep-
atoma cells modulated miR-122-5p, miR-181-a1-3p, and miR-181-b1-3p, allowing the rescue
of the epithelial phenotype, and also determined let-7g-5p upregulation. Our data are
in line with previous evidence highlighting a key role for these specific miRNAs as key
regulators of EMT and cancer metastasis by orchestrating fine changes in gene expres-
sion: (i) miRs-200 acts as an anti-EMT player, mainly inhibiting EMT-TFs (e.g., Snail and
Zeb2) [5,43–46,55], (ii) miR-122-5p is a tissue-specific miRNA [56], highly expressed in the
liver, known to target Snail 1 and Snail 2 and whose downregulation has been associated
with HCC invasion and metastasis [42]; (iii) let-7g, via the K-Ras/HMGA2/Snail axis,
is sufficient to inhibit the proliferation and migration of HCC cells [49]. Conversely, (iv)
miR-181 is an EMT-promoting regulator causing Snail protein stabilization [47].

Interestingly, we observed that SYNCRIP knockdown, in TGFβ-treated hepatocytes
as well as hepatoma cells, leads to a significant modulation of both the pri and mature
forms of the specific miRNAs investigated, thus indicating the conceivable involvement
of this hnRNP in their transcription. Even if, to our knowledge, there is no previous
evidence of a possible function of SYNCRIP as a transcriptional regulator, the here provided
observations suggest, for SYNCRIP, a role in the chromatin context that might extend the
function of SYNCRIP in the regulation of miRNAs. It is previously known, indeed, that
SYNCRIP mediates (i) their partition between intracellular and extracellular compartments
by binding the hEXO motif (GGCU/A) [33,34]; (ii) the processing of let-7a by recognizing
the UAGAAU sequence on the apical loop of the correspondent pri-miRNA [22].

Further studies are required to clarify whether the here suggested transcriptional
trans activation of specific miRNAs by SYNCRIP can require the direct binding of this
hnRNP to specific DNA sequences, or if it can be indirect, implying its association with
multiprotein complexes of transcriptional regulators and/or epigenetic modifiers or a
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possible SYNCRIP-mediated control of their synthesis. Note that other hnRNPs, such as
hnRNP-U and hnRNP-K, were shown to bind to chromosomal DNA [57,58]. Furthermore,
hnRNP-U interacts with p300, thus controlling the hyperacetylation of histones [59], while
hnRNP-K can recruit the chromatin remodeling enzyme histone methyltransferase [60]
and acts as a transcriptional factor [12,13]. Moreover, given that the role of miRNAs in the
fine-tuning of EMT/MET dynamics is not limited to the hepatocytes (e.g., miR-200 family
regulation is involved in the progression of different epithelial tumors, including breast
and colorectal cancer [46,61,62]), the impact of SYNCRIP in their regulation could also have
relevance in other cell types.

Interestingly, SYNCRIP transcription, promoted by the lncNT5E, has a role in pancre-
atic cancer progression [39].

Further studies are required to dissect whether the function of SYNCRIP in modulating
the EMT correlates to the acquisition of drug resistance by HCC cells. This in line with the
role of other hnRNPs in chemoresistance [63–65] and the observation that the SYNCRIP
target miR-200a-3p affects the drug resistance of Hep3B cells [66]. On the other hand,
SYNCRIP could potentially be involved in molecular pathways known to be the target of
pharmacological approaches [67].

In conclusion, we believe that the major conceptual advance implied by our results
is that SYNCRIP represents a new modulator of EMT. Moreover, our data point to the
involvement of this regulator in the TGFβ-mediated transcription of specific miRNAs.
The further understanding of the mechanism by which SYNCRIP acts will hopefully be
instrumental for research on hepatocyte reprogramming and tumorigenesis.

4. Materials and Methods
4.1. Cell Cultures

Non-tumorigenic murine 3A hepatocytes [68] were grown in RPMI 1640 medium
with 10% FBS (GIBCO® Life Technology, Monza, Italy), 50 ng/mL epidermal growth factor
(EGF), 30 ng/mL insulin growth factor (IGF-II) (PeproTech Inc., Rocky Hill, NJ, USA),
10 mg/mL insulin (Roche, Mannheim, Germany), and penicillin/streptomycin on dishes
coated with collagen I (Collagen I, Rat Tail; Gibco Life Technology, Monza, Italy). When
reported, cells were treated with 2,5 ng/mL TGFβ1 (PeproTech Inc., Rocky Hill, NJ, USA)
for 24 h. Murine BW1J cells [8] were grown in DMEM supplemented with 10% FBS and
penicillin/streptomycin.

4.2. SYNCRIP Knockdown

Stable SYNCRIP knockdown was achieved through the infection of 3A cells with
pSUPER retroviral constructs (Oligoengine, Seattle, WA, USA) expressing different shRNAs
against SYNCRIP and a scrambled sequence as a control (as reported in [33]). Viral su-
pernatants were collected 48 h after the transfection of 293 gp packaging cells, filtered,
then added to cells. Selection was performed starting from 48 h post infection with
2 µg/mL puromycin for at least 1 week before successive analysis. To achieve the SYN-
CRIP knock-down, BW1J cells were transfected with Lipofectamine LTX and Plus reagent
(Invitrogen, San Diego, CA, USA) by using equal amounts of the pSUPER shSYNCRIP
constructs. Analyses of RNAs and proteins were performed 48 and 72 h after transient
transfection, respectively.

4.3. RNA Extraction, RT-PCR, and Real-Time qPCR

Total RNA from cells was isolated using Qiazol and the miRNeasy Mini Kit (QI-
AGEN, Hilden, Germany) following the manufacturer’s protocol. RNA purity was as-
sessed using a spectrophotometric measure of optical density 260 (OD260)/OD280∼2
and OD260/OD230 > 1.8 with the Nanodrop 2000c Spectrophotometer (Thermo-Fisher
Scientific, Waltham, MA, USA). Total RNA and pri-miRNAs (500 ng) were reverse tran-
scribed with the iScriptTM c-DNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA,
USA). MicroRNAs (150 ng) were reverse transcribed with the MystiCQ cDNA Synthe-
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sis Mix (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s protocol.
Diluted cDNA samples were used for qPCR in a total volume of 10 µL using GoTaq
qPCR Master Mix (Promega, Madison, WI, USA) and the reactions were carried out in a
Bio-Rad-iQ-iCycler. Relative amounts of mRNAs and pri-miRNAs, obtained using the
2 (−∆Ct) method, were normalized with respect to the housekeeping gene 18S rRNA.
Relative amounts of miRNAs, obtained using the 2 (−∆Ct) method, were normalized with
respect to the synthetic cel-miR-39 (NORGEN, Thorold, ON, Canada). The same amount of
cel-miR-39 was added to 150 ng of miRNAs of each sample before reverse transcription
and was used as an internal control in Real-Time qPCR. Primer sequences are reported
in Table 1.

Table 1. Primers used for qPCR analysis.

Gene Name Primer Sequence

SYNCRIP

For
ACCTTGCCAACACGTAACA

Rev
CCATAGCCTTGACACACCA

Snail

For
CCACTGCAACCGTGCTTTT

Rev
CACATCCGATGGGTTTGG

E-cadherin

For
CTACTGTTTCTACGGAGGAG

Rev
CTCAAATCAAAGTCCTGGTC

HNF1α

For
TATCATGGCCTCGCTACCTG

Rev
ACTCCCCATGCTGTTGATGA

Vimentin

For
AGCAGTATGAAAGCGTGGCT

Rev
CTCCAGGGACTCGTTAGTGC

N-cadherin

For
GTGGAGGCTTCTGGTGAAAT

Rev
CTGCTGGCTCGCTGCTT

18S

For
ACGACCCATTCGAACGTCTG

Rev
GCACGGCGACTACCATCG

mmu-pri-mir-122

For
GCTGTGGAGTGTGACAATGG

Rev
GAGTGGACGGATTGCCTAGC

mmu-pri-mir-let7g

For
CGCTCCGTTCTCTTTTGCC

Rev
CTCCTGTACCGGGTGGTATC

mmu-pri-mir-200a

For
GGCCTCTGTGGGCATCTTAC

Rev
GGTGGGTCACCTTTGAACAT
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Table 1. Cont.

Gene Name Primer Sequence

mmu-pri-mir-181a-1
For CACATCTCTGCCTCACAGGT

Rev
AGGGTACAATCAACGGTCG

mmu-pri-mir-181b-1

For
ATTCATTGCTGTCGGTGGGT

Rev
AAAAAGCGGGGCCACAGTTG

mmu-miR-122-5p TGGATGTGACAATGGTGTTTG

mmu-miR-let7g-5p TGAGGTAGTAGTTGTACAGTT

mmu-miR-200a-5p CATCTTACCGGACATGCTGGA

mmu-miR-181a1-3p ACCATCGACCGTGATTGTACC

mmu-miR-181b1-3p CTCACTGAACAATGAATGC

4.4. Western Blotting

Cells were lysed in RIPA buffer (50mM Tris-HCl pH 7.6, 150 mM NaCl, 0.5% sodium
deoxycholate, 0.1% SDS, and 1% NP40), containing freshly added cocktail protease in-
hibitors (Proteo-Guard EDTA-free, TaKaRa, Kusatsu, Shiga-ken, Japan), and protein con-
centration was determined using a Protein Assay Dye Reagent (Bio-Rad Laboratories,
Hercules, CA, USA). Equal amounts of samples (20 µg in Laemmli Buffer) were sepa-
rated via SDS-PAGE then transferred to a nitrocellulose membrane (Pure Nitrocellulose
Membrane 0.45 µm, Bio-Rad Laboratories, Hercules, CA, USA). Blots, after blocking in 5%
non-fat milk in TBS-Tween (10 mM Tris-HCl pH 7.5, 150 mM NaCl, and 0.05% Tween 20),
were incubated overnight with the following primary antibodies: α-SYNCRIP (MAB11004,
Millipore, Burlington, MA, USA), α-HNF1α (NBP1-33596 Novus Biological, Centennial,
CO, USA), α-E-Cadherin (610182 BD transduction laboratories, Franklin Lakes, NJ, USA),
α-Snail (L70G2, Cell Signaling Technology, Danvers, MA, USA), α-Fibronectin (F0916
Sigma-Aldrich, St. Louis, MO, USA), and α-GAPDH (MAB-374 Millipore Burlington, MA,
USA), used as a loading control. The immune complexes were detected with horseradish
peroxidase-conjugated species-specific secondary antiserum: α-Rabbit 172-1019 and α-
Mouse 170-6516 (Bio-Rad Laboratories, Hercules, CA, USA), α-Goat 705-036-147 (Jackson
ImmunoResearch, St. Thomas’ Place Cambridgeshire Business Park, Ely, CB7 4EX, UK)
then via chemiluminescence reaction (Clarity Max ECL Substrate and Clarity Western ECL
Substrate; Bio-Rad Laboratories, Hercules, CA, USA). Densitometric analysis of protein
expression was performed by using the Fiji-ImageJ image processing package.

4.5. Immunofluorescence Analysis

For immunofluorescence analysis, cells were fixed in 4% paraformaldehyde (for Snail
and FN1), methanol (for ZO-1 and E-cadherin) and permeabilized with Triton-X100. After
the unspecific binding sites were blocked with BSA 3% in PBS, cells were incubated for 1 h
with the following primary antibodies: Snail mouse monoclonal (Cell Signaling Technology,
Danvers, MA, USA), Fibronectin rabbit polyclonal (Abcam, Cambridge, UK), Vimentin
rabbit monoclonal (ab92547, Abcam, Cambridge, UK); ZO-1 rabbit polyclonal (#61-7300.
Invitrogen, San Diego, CA, USA), and E-cadherin mouse monoclonal (BD Biosciences
Pharmingen, San Diego, CA, USA). Secondary antibodies (goat-anti mouse Alexa Fluor
488, Cy3-conjugated secondary antibody, and DRAQ5 staining solution) were from Life
Technologies by Thermo Fisher Scientific, Waltham, MA, USA; Jackson Immuno-research,
St. Thomas’ Place Cambridgeshire Business Park, Ely, CB7 4EX, UK; and Miltenyi Biotec,
Bergisch Gladbach, Germany, respectively. Preparations were examined under a confocal
microscope (Leica TCS SP2) with an objective 63X and a CCD camera (Nikon Inc., Japan).
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Digital images were processed with Adobe Photoshop 7 software (Adobe Systems). The
same enhanced color levels were applied for all channels.

4.6. Scratch Assay

BW1J cells, transfected with pSUPER shSYNCRIP constructs (Oligoengine, Seattle,
WA, USA) or with empty vector (as above), were maintained in culture medium to reach
100% confluence, then shifted to serum-depleted culture medium to inhibit cell proliferation
(as reported in [69]). A scratch wound was created on the cell layer using a micropipette
tip, and micrographs were taken at 0.24 and 48 h after the scratch. Cell-devoid areas at
times of 0.24 and 48 h after the scratch were quantified through the Fiji-ImageJ image
processing package.

4.7. Statistical Analysis

For qRT-PCR, Western blotting, and scratch assay, statistical differences were assessed
with the one-tailed paired Student’s t-test using GraphPad Prism Version 6 (GraphPad
Software). A p-value p < 0.05 was considered statistically significant (* p < 0.05; ** p < 0.01
and *** p < 0.001). Data were obtained from independent experiments and expressed as
means ± s.e.m.
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