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ABSTRACT

Background: Inactivated vaccines are limited in preventing foot-and-mouth disease (FMD) 
due to safety problems. Recombinant virus-like particles (VLPs) are an excellent candidate for 
a novel vaccine for preventing FMD, given that VLPs have similar immunogenicity as natural 
viruses and are replication- and infection-incompetent.
Objectives: The 3C protease and P1 polyprotein of type O FMD virus (FDMV) was expressed 
in yeast Hansenula polymorpha to generate self-resembling VLPs, and the potential of 
recombinant VLPs as an FMD vaccine was evaluated.
Methods: BALB/c mice were immunized with recombinant purified VLPs using CpG 
oligodeoxynucleotide and aluminum hydroxide gel as an adjuvant. Cytokines and 
lymphocytes from serum and spleen were analyzed by enzyme-linked immunosorbent assay, 
enzyme-linked immunospot assay, and flow cytometry.
Results: The VLPs of FMD were purified successfully from yeast protein with a diameter of 
approximately 25 nm. The immunization of mice showed that animals produced high levels 
of FMDV antibodies and a higher level of antibodies for a longer time. In addition, higher 
levels of interferon-γ and CD4+ T cells were observed in mice immunized with VLPs.
Conclusions: The expression of VLPs of FMD in H. polymorpha provides a novel strategy for 
the generation of the FMDV vaccine.

Keywords: Yeast Hansenula polymorpha; food-and-mouth disease; virus-like particles; 
immunogenicity

INTRODUCTION

Foot-and-mouth disease (FMD) is an acute infectious disease affecting cloven-hoofed 
animals in Asia, Africa, the Middle East, and South America, seriously influencing the quality 
of animal products and world trade. FMD virus (FMDV) exists in seven distinct serotypes: A, 
O, C, Asia 1, and South African Territories-1–3 [1,2]. Type O is the most prevalent serotype 
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in the world [3]. The open reading frame (ORF) of the genome of FMDV is translated to 
generate a polyprotein, which is processed rapidly, both during and after translation, to 
generate the structural protein precursor (P1-2A) and the precursors of the non-structural 
proteins, P2 and P3. P1-2A is processed mainly by 3C protease (3Cpro) to generate the 
structural proteins VP0, VP1, and VP3, among which VP0 splits further into VP2 and VP4 
during the viral particle assembly process. The intact viral capsid has a regular icosahedral 
structure composed of four structural proteins VP1, VP2, VP3, and VP4, with the VP4 protein 
located inside [2,4].

Inactivated vaccines for FDM have been forbidden in some countries due to biosafety 
concerns [5,6]. Virus-like particles (VLPs) maintain similar immunogenicity with native 
viruses and lack genetic materials, making them promising vaccine candidates for preventing 
FDM [7]. Several expression systems have been used to generate recombinant VLPs for 
FMDV [8-11]. Yeast is used widely in cell factories with multiple advantages, such as rapid 
growth, simple operation, easy fermentation, and high biomass concentration, especially 
for expressing recombinant proteins that require post-translational modifications for proper 
folding. The Hansenula polymorpha is commonly employed as an expression platform because 
of its excellent capability like thermotolerance, proper glycosylation of protein, and using 
methanol as a carbon source [12-14].

This research showed that the type O VLPs of FMD were expressed in H. polymorpha by 
transfecting a construct containing an ORF-encoding P1 structural protein and 3C protease. 
BALB/c mice were immunized with VLPs together with CpG oligodeoxynucleotide (CpG 
ODN) and aluminum hydroxide gel to evaluate their potential as an FMD vaccine. The results 
showed that the purified VLPs exhibited stronger immunogenicity.

MATERIALS AND METHODS

Construction of recombinant yeast
The H. polymorpha strain U358 was from Grand Theravac Life Sciences Co., Ltd. (China). 
ORFs encoding the P1 and 3C protease of FMDV O strain O/BY/CHA/2010 (Gen Bank 
No. JN998085.1) were synthesized by Anhui General Biology Co., Ltd. (China), which 
were subcloned into the pMAUR vector (Grand Theravac Life Sciences) to generate 
recombinant plasmids pMAUR-P1 and pMAUR-3CD. The pMAUR-P1 gene fragment 
containing the promoter and terminator was cut into the pMAUR-3CD plasmid after 
enzyme digestion to obtain the pMAUR -P1-3CD plasmid. After linearization with Bgl II, 
the plasmid pMAUR-P1-3CD was transformed electrically into the H. polymorpha strain 
U358 cells. The positive clones were selected and verified using the following polymerase 
chain reaction with primers: forward 5′-ACATCAATCTAAAGTACAACACACC-3′, reverse 
5′-GTAAACACCCTTGTGGTCGGTTGG-3′ and 5′-GTTACCGCCAGCAGAATGAGTAC-3′.

VLPs purification
After fermentation in YPG medium with 0.8% methanol, the recombinant yeast was 
harvested by centrifugation and broken down using a low-temperature ultrahigh pressure 
continuous flow cell disrupter. After re-dissolving into a PEG6000/NaCl solution, 
the lysates were filtered through an ultrafiltration membrane (> 100 kD, PXB100C50, 
Pellicon XL; Sigma-Aldrich, USA), followed by sequential purification by anion exchange 
chromatography (Q Sepharose High Performance [QHP]; GE Healthcare, USA), hydrophobic 
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interaction chromatography (Butyl Sepharose 4FastFlow; GE Healthcare), and molecular 
chromatography (Superdex 200 pg; GE Healthcare). The samples were ultracentrifuged with 
a 15% to 45% sucrose density gradient at 28,000 rpm and 4°C for 22 h. Subsequently, a 500 
μL sample was pipetted continuously from the top to bottom of the centrifuge tube, and 
the absorption at 280 nm (A280) was determined using an ultraviolet spectrophotometer 
(NANODROP ONE; Thermo Fisher Scientific, USA). The sample with an absorption peak was 
centrifuged, and the upper layer was taken for testing.

VLPs characterization
For dynamic light scattering (DLS) analysis, the centrifuged sample was placed in a dynamic 
light scatterer (Nano-ZS; Malvern, UK) and equilibrated at room temperature to determine 
the particle diameter three times for each sample.

For high-performance liquid chromatography (HPLC) analysis, the sample (150 µL) was 
injected into the HPLC with the flow rate set to 0.5 mL/min. The purity and homogeneity of 
the sample were analyzed using a TSKgel G5000PWXL (Tosoh, Japan).

For sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the samples 
collected through each purification process were mixed with 5× loading buffer and boiled 
for 10 min, followed by 12% SDS-PAGE (TGX FastCast Acrylamide Kit; Bio-Rad, USA). After 
electrophoresis, the gel was stained with Coomassie brilliant blue, and the decolorized 
samples were photographed and analyzed in the gel imager.

For western-blot analysis, the protein was transferred to a polyvinylidene difluoride 
membrane (Millipore, USA), which then was blocked with 5% nonfat milk, and incubated 
with the rabbit-type O FMDV antibody (donated by Lanzhou Veterinary Research Institute, 
China). After washing with TBST, the membrane was added with horseradish peroxidase 
(HRP)-conjugated sheep anti-rabbit antibody (Abcam, UK) for incubation. After washing 
with TBST, the protein was detected using an ECL solution.

For electron microscopy, the samples identified by sucrose-density-gradient 
ultracentrifugation were adsorbed onto carbon-coated copper webs, negatively stained with 
2% phosphotungstic acid, dried, and observed by transmission electron microscopy (80.0kV, 
HT7700; Hitachi, Japan).

Immunogenicity of FMDV empty-capsid-like particles in mice
BALB/c mice (six–eight-week-old, female) were purchased from Shanghai Lingchang 
Biotechnology Co., LTD. (License SCXK(Shanghai)2018-003, Certificate 20180003019425; 
China). All animal tests were approved by the Laboratory Animal Ethics Committee of Grand 
Theravac Life Sciences Co., Ltd. All mice were divided randomly into four groups, with five 
mice in each group. Two groups were injected with 100 μL sterile PBS, and 200 μL bivalent 
inactivated swine FMD type O and type A vaccine as the control group. The other two groups 
were treated with the preparation for VLPs, CpG ODN, and aluminum hydroxide gel adjuvant 
(ALHYDROGEL 2%, Croda, Denmark) (VLPs:ALHYDROGEL:CpG = 2:10:1) containing 5 
μg and 10 μg VLPs respectively, through injection into the thigh muscles of mice. The time 
of immunization was 2 wk apart. No blood was collected before the first immunization, but 
blood was collected from the orbit the day before. The first and second blood samples were 
collected 2 wk apart, and the third and fourth samples were collected 4 wk apart. At the end 
of the experiment, the mice were sacrificed, and the splenocytes were ground and suspended.
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Enzyme-linked immunosorbent assay (ELISA)
The antibody titer against type O FMD was determined using the FMD type O antibody liquid 
phase blocking ELISA detection kit (improved) (Lanzhou Shouyan Biotechnology Co., LTD., 
China) according to the manufacturer’s instruction.

The serum immunoglobulin G (IgG) level was measured by diluting the VLPs into carbonate–
bicarbonate buffer (2 μg/mL) and then pre-coated them in a reader plate. After blocking with 
5% nonfat milk and washing with PBST, the serum with gradient was added to the plate. The 
sample was then incubated with HRP-conjugated antibody against mouse IgG (sheep anti-
mouse IgG/IgG1/IgG2a-HRP) and viewed using DAB regent. The absorbance at 450 nm/630 
nm was recorded using a microplate reader (TECAN SPARK; Tecan, Switzerland), and the 
antibody titer was calculated.

Enzyme-linked immunospot assay (ELISpot assay)
Diluted total anti-mouse interferon (IFN)-γ was added to an ELISpot plate and incubated 
overnight. The VLPs served as a peptide library and were added to the splenocyte suspension 
(4 × 105 cells/mL) to a final concentration of 10 μg/mL. Concanavalin A (20 μg/mL) was used 
as a positive control. After incubation with the detection antibody and HRP-labeled antibody, 
the samples were viewed using a DAB regent. The number of spots was recorded using an 
enzyme-linked spot reader.

Flow cytometry
For cytokines analysis, spleen cell (2 × 107cells/well) was seeded on the microplates. The B 
cells were detected by incubating the samples with anti-mouse CD16/32 (eBioscience, USA) 
to block the Fc fragment, the antibodies for cell surface proteins, including CD45R-eFluor 
450, CD38-FITC, CD138- PC, and GL7-PE (eBioscience) were added for 30 min in the dark. 
The T cell & T cell cytokines were detected by culturing the spleen cells with the peptide 
library for 5 h and adding the antibodies for cell surface proteins, including CD3-AF700, 
CD4-BV510, CD8a-FITC (eBioscience), for 30 min in the dark. After cell fixation with an IC 
buffer overnight at 4°C, the antibodies for cytokines, including TNF-α-eFluor450, IL-2-APC, 
IL-4-BV711, and IL-17A-PE/Cy7 (eBioscience), were added and incubated for 1 h in the dark. 
The cells underwent flow cytometry analysis (Attvne NXT; Thermo Fisher Scientific). FlowJo 
software (FlowJo, LLC, USA) was used for data analysis.

Statistical analysis
The data were plotted using GraphPad Prism 5 software (GraphPad Software, Inc., USA), 
and the significance was analyzed by one-way analysis of the variance followed by Tukey’s 
multiple comparison test.

RESULTS

VLPs were successfully expressed and purified by H. polymorpha 
As shown in Fig. 1, the sample from H. polymorpha was purified through QHP, Butyl Sepharose 
4FastFlow, and Superdex 200 pg, respectively. The purified samples were then determined 
using western blot analysis. The protein bands were observed at approximately 25–35 KD, as 
expected. The results suggested that the target protein was effectively separated. As shown in 
Fig. 2, homogeneous spherical particles were observed by transmission electron microscopy. 
They showed a similar diameter of approximately 25 nm to that determined by DLS analysis. 
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The VP0, VP1, and VP3 proteins were detected using specific antibodies by western blotting, 
suggesting that the P1 polyprotein was cleaved successfully by 3C protease in H. polymorpha. 
The absorption peak of the sample at A280 was observed at 16.855 min with a purification 
above 98%.

Immunization of BALB/c mice
The VLPs and inactivated vaccines induced the mice to produce high levels of antibodies 
against type O FMDV compared to the control group after immunization (Fig. 3). There 
was no significance between VLPs and inactivated vaccines treatment group after the 
first immunization. However, the level of antibodies for the VLPs group was higher than 
inactivated vaccine group after the following boost. Moreover, VLPs immunization maintained 
a persistently high antibody level, whereas the antibody decreased slightly in the group of 
inactivated vaccine treatment after the last immunization. Hence, the antibody duration and 
titer levels were weaker in the inactivated vaccine group than in the VLPs group (Fig. 3).
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pg; GE Healthcare). The shaded part in the figure is the purified VLPs collected by chromatography. 
VLP, virus-like particle.



On the other hand, the inactivated vaccine and VLPs increased the serum IgG, IgG1, and 
IgG2a production after immunization compared with the control group. In contrast, it is 
lower in inactivated vaccine group than the VLPs group, as shown in Fig. 4. The IgG1/IgG2a 
ratio represents either humoral or cellular immune response when it is positive or negative 
accordingly. As shown in Fig. 4, the inactivated vaccine can activate humoral immunity after 
multiple immunizations, but the VLPs group displayed a balance between humoral and 
cellular immunity.

VLPs increased IFN-γ production in splenocytes significantly compared to the FMD-
inactivated vaccine group. The ELISpot results showed that the positive conversion rate of the 
VLPs group was 100%, and the average spot number was 1,418.5 and 1,644, while the positive 
conversion rate of the inactivated vaccine group was only 40%, and the average spot number 
was 22, as shown in Fig. 5. In addition, the number of B cells in the inactivated vaccine group 
was higher than that in the VLPs group, and there was no change in terms of the Germinal 
center B cell and memory B cell. In contrast, VLPs immunization increased the number of 
Plasma B cells compared to the inactivated vaccine group (Fig. 6). Furthermore, VLPs largely 
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elevated the number of CD4+ T cells but decreased the number of CD8+ T cells. Therefore, 
the CD4+/CD8+ ratio in the VLPs group was higher than that in the inactivated vaccine group 
(Fig. 7). Consistently, CD4+ T cell-specific cytokines, such as IL-2, TNF-α, and IL-17A were 
upregulated significantly in the VLPs group (10 μg) than in the other groups. In contrast, IL-4 
expression in the CD4+ T cells was downregulated in the inactivated vaccine and VLPs groups 
compared to the control group (Fig. 8).

DISCUSSION

The recombinant FMD VLPs requires viral structural proteins VP0, VP3, and VP1, which can 
be expressed alone or generated from P1-2A polyprotein cleavage by 3C protease [8]. Thus 
far, there are no reports on the expression of FMD type O VLPs in yeast H. polymorpha. In this 
study, VLPs were formed autonomously in cells by co-expressing FMD P1 and 3CD proteins. 
The immunized mice with the VLPs showed stronger immunogenicity. These results showed 
that the FMD type O VLPs were expressed in yeast H. polymorpha.
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Neutralizing antibodies and neutralizing antibody-mediated opsonization are major immune 
responses protecting animals from FMD, whereas cellular immune responses also play an 
essential role against FMDV infections [15]. VLPs served as empty viral particles because the 
absence of genetic materials can induce B and T cells to multiply and enhance cell-mediated 
immunity (CMI) [7]. The vaccine adjuvants used in this study are CpG ODN and aluminum 
hydroxide gel. CpG ODN can promote the humoral and cellular immune responses by 
activating the TLR9 signal pathway. In addition, CpG ODN could directly activate B cells and 
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ap < 0.05; bp < 0.01; cp < 0.001.



plasmacytoid dendritic cells, inducing the production of Th1 and proinflammatory cytokines, 
particularly cellular immunity [16,17]. Alum salts are a relatively weak adjuvant and cause 
little cellular immune response. On the other hand, this adjuvant slows the rate of antigen 
release and increases the time the antigen interacts with the immune system, enhancing the 
immune response against the antigen [18]. Specific immune stimulation to antigens was 
increased markedly using alum as a coadjuvant with CpG ODN over using alum and antigen 
alone. Moreover, the immune response was predominantly a Th1-type response [19]. In mice, 
Th1 cells produce IFN-γ resulting in IgG2a induction. In contrast, Th2 cells produce IL-4 and 
IL-5, inducing IgG1 responses [20].

The balance of Th1 and Th2 cells was evaluated by comparing the IgG1 and IgG2a levels, 
which are surrogates of the Th1 and Th2 responses. The IgG1/IgG2a ratio showed that 
after being inoculated many times, the immune response of mice immunized with mixed 
adjuvants tended to be cellular immunity or the balance between cellular immunity and 
humoral immunity. In contrast, the inactivated vaccine group in the control group tended 
to be humoral immunity. Moreover, VLPs immunization worked better in the immune 
response of mice regardless of humoral and cellular immune than in inactivated vaccine 
group, implying its more protective effect on FMDV infection. On the other hand, the 
antigen content of the commercially available inactivated vaccine used in the control was not 
determined. The antigen content of the VLPs group in this trial may be much higher than 
that of the inactivated vaccine group. In a study, guinea pigs immunized with VLP + CpG 
ODN vaccine showed markedly higher CMI compared to the conventional vaccine group, as 
evidenced by higher levels of IgG2 than IgG1 [21,22]. On the contrary, the vaccine using CpG 
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ODN as an adjuvant failed to protect pigs from FMDV infection earlier. The FMD-inactivated 
vaccine and CpG ODN did not improve the efficiency of the vaccine itself [23,24]. Therefore, 
how the preparation of VLPs, CpG ODN, and aluminum hydroxide gel as adjuvants have a 
protective effect on susceptible animals remains unclear.
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These results suggest no significant difference between the high and low doses of VLPs in 
activating the immune responses, indicating that using CpG ODN and aluminum hydroxide 
gel as adjuvants together with 5 μg VLPs could induce strong immunity after multiple 
immunizations. Increasing the VLPs did not improve the immune response significantly.

VLPs with more than 98% purity were obtained through a multi-step purification process. 
Given that FMDV could be purified only through Butyl Sepharose 4FF and Superdex 200 pg 
to collect 98% pure particles [25], the purification process for VLPs expressed in yeast H. 
polymorpha needs to be modified further to make it more economical. Nevertheless, it is still 
instructive for the purification of FMD VLPs. In conclusion, the expression of VLPs in H. 
polymorpha and the purification process provide novel strategies for optimizing VLPs synthesis 
and FMD vaccine development.
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