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The conserved C2 phospholipid-binding domain in
Delta contributes to robust Notch signalling
Torcato Martins1 , Yao Meng2, Boguslawa Korona2, Richard Suckling3, Steven Johnson3,

Penny A Handford2,* , Susan M Lea3,**,† & Sarah J Bray1,***

Abstract

Accurate Notch signalling is critical for development and home-
ostasis. Fine-tuning of Notch–ligand interactions has substantial
impact on signalling outputs. Recent structural studies have iden-
tified a conserved N-terminal C2 domain in human Notch ligands
which confers phospholipid binding in vitro. Here, we show that
Drosophila ligands Delta and Serrate adopt the same C2 domain
structure with analogous variations in the loop regions, including
the so-called b1-2 loop that is involved in phospholipid binding.
Mutations in the b1-2 loop of the Delta C2 domain retain Notch
binding but have impaired ability to interact with phospholipids
in vitro. To investigate its role in vivo, we deleted five residues
within the b1-2 loop of endogenous Delta. Strikingly, this change
compromises ligand function. The modified Delta enhances pheno-
types produced by Delta loss-of-function alleles and suppresses
that of Notch alleles. As the modified protein is present on the cell
surface in normal amounts, these results argue that C2 domain
phospholipid binding is necessary for robust signalling in vivo fine-
tuning the balance of trans and cis ligand–receptor interactions.
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Introduction

The Notch signalling pathway is highly conserved and plays key

roles in many aspects of development and homeostasis (Bray,

2016). Aberrant Notch signalling results in a number of inherited

diseases and is associated with various cancers and other acquired

disorders (Ma�sek & Andersson, 2017; Nowell & Radtke, 2017; Siebel

& Lendahl, 2017; Monticone & Miele, 2021). As both the Notch

receptors and the ligands are single-pass type I transmembrane

proteins, signalling is initiated by direct protein–protein contact

between adjacent cells, which may occur in some instances via long

cell processes such as cytonemes (De Joussineau et al, 2003; Cohen

et al, 2010; Huang & Kornberg, 2015; Hunter et al, 2019; Boukhatmi

et al, 2020). Canonical Notch signalling involves a simple cascade,

whereby ligand binding induces successive cleavages to release the

Notch intracellular domain (NICD) which translocates to the

nucleus and directly regulates gene expression with its binding part-

ners (Kovall, 2008; Kovall & Blacklow, 2010; Bray, 2016; Kovall

et al, 2017). One challenge is to understand how this simple core

mechanism is modulated to ensure appropriate spatio-temporal

regulation of the pathway. Mechanisms that fine-tune the ligand–

receptor interactions are likely to make important contributions.

All Notch ligands have a similar architecture, with an extracellu-

lar domain consisting of multiple (7, 8, or 16) epidermal growth

factor (EGF) repeats, a so-called Delta/Serrate/Lag-2 (DSL) domain

and a highly conserved N-terminal region (Bray, 2006; D’Souza

et al, 2008; Kopan & Ilagan, 2009; Kovall & Blacklow, 2010). Recep-

tor binding involves the N-terminal portion including the DSL and

N-terminal domains (Cordle et al, 2008; Luca et al, 2015, 2017).

Structural studies of the N-terminal region from human Delta and

Jagged ligands revealed that it adopts a conformation characteristic

of a phospholipid-binding C2 domain (Chillakuri et al, 2013;

Kershaw et al, 2015). In agreement, these domains interact with

phospholipid-containing liposomes in vitro and exhibit ligand-

specific preferences for liposomes of different compositions (Suck-

ling et al, 2017). Comparisons between mammalian Jagged and

Delta type ligands revealed a diversity in the structures of the loops

at the apex of the C2 domain which are implicated in membrane

recognition in other C2 domain proteins (Suckling et al, 2017). A

subset of missense mutations, which affect these loops in Jagged-1,

are associated with extrahepatic biliary atresia (EHBA)(Kohsaka

et al, 2002). Purified EHBA variants show reduced Notch activation

in reporter cell assays and lead to a reduction in phospholipid bind-

ing, but do not alter Notch binding (Suckling et al, 2017). The C2

domain may therefore have a role in tuning the activity of the Notch

ligands through its lipid-binding properties.
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Mutations affecting the single Delta or Serrate (Jagged-like)

ligands in Drosophila have well-characterized consequences on

development (e.g. Heitzler & Simpson, 1991; Thomas et al, 1991; de

Celis et al, 1996, 1997; Fleming, 1998; Bishop et al, 1999). Homozy-

gous loss of ligand function leads to lethality but several defects,

including wing venation abnormalities, are detected even in Delta

heterozygotes, which have one normal gene copy (Dexter, 1914; de

Celis et al, 1997; Huppert et al, 1997). As these defects occur when

only one allele is mutated, it is evident that patterning is highly

sensitive to ligand levels and activity. This therefore provides a

powerful context in which to investigate the contributions from the

apical C2 domain loops to ligand activity in vivo.

As the loop regions of the C2 domains are the most variable,

we first set out to solve the structure of the C2 domains from the

Drosophila Delta and Serrate ligands. This revealed similar promi-

nent b1-2 and b5-6 loops to those in the C2 domain of the

mammalian ligands that are thought to be responsible for the

interaction with phospholipid head groups (Suckling et al, 2017).

To test the functional contribution, we focussed on the b1-2 loop

in Delta and used CRISPR/Cas9 genome editing to delete 5 amino

acids so that we could analyse the impact on Notch activity during

development. In vitro, such DlDb1-2 mutation(s) resulted in expres-

sion of a stable protein with altered phospholipid binding proper-

ties. Strikingly, in vivo the DlDb1-2 mutation compromised ligand

function, exhibiting characteristics of reduced signalling activity.

Our data therefore confirm the relevance of C2 domain loops for

full ligand activity and, given their ability to confer lipid binding,

suggests that membrane-binding properties are important for

robust signalling.

Results

Structure and binding properties of the C2 domain of
Drosophila ligands

To determine whether the Drosophila ligands adopt the same

arrangement as their mammalian counterparts, we solved the struc-

tures of the N-terminal region of Drosophila Delta and Serrate

(Fig 1) as well as the ligand-binding region of Drosophila Notch

(EGF11-13; Fig EV1A–E). These were solved using molecular

replacement of the individual domains from the human homologues

to resolutions between 1.5 and 3.0 �A (Table 1, Fig 1). When the

new Drosophila ligand structures were overlaid on their mammalian

equivalents, Jagged-1 and DLL-4, it was evident that the core

domain structure and arrangements of the fly ligands are highly

conserved (Figs 1A–C and EV1D; RMSD 2.5 �A for Delta and 3.1 �A

for Serrate) as was the structure and domain arrangement of the

Notch receptor ligand-binding region (Fig EV1D; RMSD 1.1 �A). The

conserved domain arrangement allows us to model the Notch–

ligand complex by overlay of the Drosophila structures on the earlier

structures of the mammalian complexes (Luca et al, 2015, 2017)

with this leading to no significant clashes between the Notch and

ligand coordinates. Notable exceptions to the overall conserved

arrangements are the b1-2 and b5-6 loops which exhibit different

lengths and folding in the ligands. These highly variable loops

protrude apically from the C2 domain core and are positioned far

from the Notch-binding interface.

Given the structural conservation with the mammalian ligands,

it is likely that the Drosophila proteins exhibit similar properties.

Purified N-terminal fragments (NE3 variants) were therefore used

to test the liposome-binding capability of variants in which 5 amino

acids were deleted from the b1-2 loop, hereafter referred to as

DeltaDb1-2. The b1-2 loop was selected because of its importance for

phospolipid binding in other C2 domain proteins (Verdaguer et al,

1999; Honigmann et al, 2013; Hirano et al, 2019) and because the

genomic organization (present in a single exon) meant that the

equivalent mutation could be engineered in vivo (as described

below). Using a liposome composition of phosphatidylcholine

(PC): phosphatidylserine (PS): phosphatidylethanolamine-fluoroscein

(PE) (80:15:5), we could detect binding of wild-type Delta (DeltaWT)

fragment to the liposomes as seen for mammalian Notch ligands

(Fig 1D). This binding was compromised when the variable b1-2
loop was shortened, resulting in the deletion of residues GATGK;

DeltaDb1-2 fragment exhibited a significant reduction in binding

when compared to that from DeltaWT. Likewise, the equivalent frag-

ment containing SerrateDb1-2 loop deletion (removal of residues

LRATK) also exhibited reduced binding to liposomes, although to

a variable extent that was not reproducibly significant (Fig 1D).

This may be due to differences in the lipid-binding specificities

because we have previously noted the heterogeneity of the C2

loop sequences in different ligand families and hypothesized

that they may confer different lipid-binding specificities (Suckling

et al, 2017).

Purified Delta (NE3 fragment) also exhibited robust binding to a

fragment of Drosophila Notch (dNotch EGF11-13), which contains

the core ligand-binding sites (Fig 1E). This relies on the conven-

tional contact sites because it is abolished by an alanine substitution

in the DSL domain which replaces a key receptor-binding residue

(F204). In comparison, the variant with the loop deletion, the

DeltaDb1-2 fragment, retained Notch binding as predicted from the

fact that the loop is positioned far away from the Notch-binding

interface (Fig 1A–C). We attribute the small difference in Notch

binding compared to the wild-type to the slightly lower purity of the

protein preparation (Fig EV1F) although we cannot rule out that the

mutation causes a minor modification to the Notch interaction.

Together these data demonstrate that the C2 domain structure is

conserved between species and that the properties detected in the

mammalian ligands are also shared by the Drosophila counterparts.

The main source of variability is present in the N-terminal apical

loops which nevertheless are important for liposome binding in

Drosophila Delta as in DLL-4 and Jagged-1 from mammals.

Phenotypes produced by mutations in the ligand b1-2 loop

The b1-2 and b5-6 loops generally make important contributions

to phospholipid binding in C2 domains (Verdaguer et al, 1999;

Honigmann et al, 2013; Hirano et al, 2019). As the b1-2 loop in

the Drosophila ligands is encoded by a small sequence in a single

exon (exon 2 of Delta and exon 3 of Serrate), it was the most

amenable to mutagenesis by genomic engineering. Therefore, in

order to study the importance of this loop for Notch signalling,

the endogenous exons were replaced by modified exons where the

coding sequence of the loops was partially deleted by CRISPR-

mediated homologous recombination. For each of the ligands,

two gRNAs were designed to flank the target exon, and the
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recombination of the modified exon was promoted by a comple-

mentary sequence within which the b1-2 loop was replaced by a

mutated version (DlDb1-2; Figs 2A and EV2A). Successful recombi-

nation was identified by the presence of a DsRed marker that was

subsequently removed and the mutations were confirmed by

sequencing of the exon. As well as generating DlDb1-2 mutations,

we also recovered a deletion of the entire exon 2, DlDExon2, which

removes a key part of the receptor-binding region and behaves as

a null allele (Fig EV2F).

Severe loss of Delta function, as with DlDExon2, results in lethality.

In contrast, DlDb1-2 homozygotes were viable. Nevertheless, DlDb1-2

adult flies exhibited several visible phenotypes. Firstly, they had
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Figure 1. Structure and binding properties of Drosophila ligands.

A, B Left panels. The structures of the N-terminal regions from Drosophila Delta (A) and Serrate (B) are shown in a cartoon representation (rainbow coloured from blue
at N terminus to red at C terminus). These have been overlaid on their mammalian equivalents DLL-4 (A) and Jagged-1 (B) in the context of their complexes (PDB
entries 4xlw and 5uk5, respectively) with Notch-1 (cartoon representation, coloured grey). The structure of isolated Drosophila Notch is also depicted in each panel
(cartoon, rainbow coloured) superposed on the respective copy of mammalian Notch-1 (cartoon, grey) for each complex. The overlays demonstrate the high degree
of conservation in domain structures and arrangements between the Drosophila and mammalian homologues. Right panels. A close-up view of the C2 domains of
each ligand overlaid with their mammalian equivalent. These demonstrate conservation of overall fold but large differences in the apical loops, particularly in the
b1-2 and b5-6 loops.

C Isolated structure of N-terminal Delta, with residues deleted in Δb1-2 highlighted as red Van Der Waals spheres.
D, E Binding properties of purified Drosophila Delta and Serrate NE3 proteins. (D) Binding to liposomes is reduced for DeltaDb1-2, and to a more variable extent for the

Serrate equivalent when using liposomes composed of PC:PS:PE-fluoroscein (80:15:5). (E) Notch binding to Drosophila Delta NE3 variants. WT and Db1-2 (DeltaDb1-2)
both bind to Notch, unlike variant with F204A substitution in DSL domain. Comparisons were performed with a two-tailed unpaired t-test. Values are shown as
scattered data points with the dark lines representing the means. ns, no significant difference, **P < 0.01; ***P < 0.0001.
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ectopic wing-vein material, with extra vein tissue detected around

L2, L5 and the posterior cross-vein (Fig 2B and C, arrowheads).

Secondly, they had abnormal spacing of the microchaetae on the

thorax (Fig 2D and E). Both venation and microchaetae defects

are consistent with altered Notch pathway activity (V€assin &

Campos-Ortega, 1987; Heitzler & Simpson, 1991), suggesting that

localized mutations affecting the b1-2 loop impair the function of

the Delta ligand.

The defects produced by DlDb1-2 were relatively mild, and there

were no disruptions to the wing margin (e.g. notching). In agree-

ment, expression of genes cut and deadpan that require high levels

of Notch signalling at the d/v boundary (Micchelli et al, 1997; San

Juan et al, 2012; Babaoǧlan et al, 2013) was not disrupted in DlDb1-2

mutants (Fig EV3A) or in patches of DlDb1-2 mutant cells (Fig EV3B–

E). Likewise, SerDb1-2 had normal wings (Fig EV2B) but exhibited

mild abnormalities associated with ectopic pigmentation of joints

Table 1. Data collection and refinement statistics.

Delta C2-DSL-EGF1 (7ALK) Notch EGF11-13 (7ALJ) Serrate C2-DSL-EGF1-2 (7ALT)

Wavelength

Resolution range 29.11–3.0 (3.107–3.0) 45.2–1.523 (1.577–1.523) 45.61–2.03 (2.103–2.03)

Space group P 21 C 2 P 21

Unit cell 30.99 86.736 47.558 90 94.271 90 180.82 31.2858 21.7952 90 90.769 90 70.329 49.402 93.123 90 110.249 90

Total reflections 16,842 (1759) 61,424 (6192) 126,615 (12180)

Unique reflections 5,024 (520) 18,808 (1771) 38,618 (3814)

Multiplicity 3.4 (3.5) 3.3 (3.2) 3.3 (3.2)

Completeness (%) 99.84 (100.00) 98.38 (92.19) 98.89 (98.63)

Mean I/sigma(I) 4.55 (0.85) 7.75 (1.68) 11.10 (2.28)

Wilson B-factor 33.66 20.54 31.51

R-merge 0.2597 (1.459) 0.07143 (0.4754) 0.06213 (0.6113)

R-meas 0.3097 (1.73) 0.08538 (0.5717) 0.0744 (0.7343)

R-pim 0.167 (0.9225) 0.04621 (0.313) 0.04049 (0.4025)

CC1/2 0.952 (0.483) 0.996 (0.701) 0.998 (0.769)

CC* 0.988 (0.807) 0.999 (0.908) 1 (0.932)

Reflections used in refinement 5,024 (520) 18,654 (1770) 38,601 (3808)

Reflections used for R-free 287 (33) 962 (103) 1,996 (185)

R-work 0.2407 (0.2909) 0.2006 (0.3670) 0.2200 (0.3143)

R-free 0.2968 (0.3939) 0.2407 (0.4334) 0.2578 (0.3285)

CC(work) 0.881 (0.588) 0.946 (0.796) 0.950 (0.787)

CC(free) 0.829 (0.310) 0.918 (0.819) 0.906 (0.770)

Number of non-hydrogen atoms 1,902 1,024 4,255

Macromolecules 1,801 856 4,079

Ligands 99 71 58

Solvent 2 97 118

Protein residues 239 115 539

RMS(bonds) 0.003 0.017 0.005

RMS(angles) 0.58 1.40 0.81

Ramachandran favoured (%) 90.31 95.58 93.95

Ramachandran allowed (%) 9.69 4.42 5.67

Ramachandran outliers (%) 0.00 0.00 0.38

Rotamer outliers (%) 0.50 0.00 1.78

Clashscore 5.19 9.82 3.98

Average B-factor 35.61 31.83 41.24

Macromolecules 35.01 30.95 40.91

Ligands 46.88 36.00 67.50

Solvent 19.82 36.54 39.79

Statistics for the highest-resolution shell are shown in parentheses.
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that could also be indicative of compromised signalling. Together

the data indicate that the specific deletion within the b1-2 loop has a

detectable but mild effect on Notch ligand functions.

Ligand b1-2 loop mutants exhibit reduced activity

To further probe the consequences from the mutations in the C2

domain b1-2 loop, DlDb1-2 was combined in trans with previously

characterized deletions (Df(3R)DlFx3) and loss-of-function (e.g.

Dlrev10) Dl alleles. When heterozygous, the strong Dl alleles exhibit

a robust and consistent wing-vein phenotype, with “deltas” formed

by extra vein material along several of the veins (Fig 3A–C—left

panel). In combination with DlDb1-2, this phenotype was strongly

enhanced, so that more of the veins were affected and they

became uneven and thickened (Fig 3A–D—right panel). The

enhancement of vein defects by DlDb1-2 occurred in combinations

with all Dl alleles tested. Likewise, SerDb1-2 had a similar effect.

Full Notch activity in the wing veins also requires Serrate, as

revealed by chromosomes carrying mutations in both Dl and Ser,

which have more severe phenotypes than Dl mutations alone

despite the fact that Ser/+ flies have normal veins (Fig EV2B).

Combining SerDb1-2 allele with this double-mutant chromosome

enhanced the thickening of veins in a similar manner to DlDb1-2

(Fig EV2C and D). The enhanced vein phenotypes indicate that

deletions within the b1-2 loop of the C2 domain compromise

ligand activity.

One unusual feature of the Notch pathway is that the ligand and

receptor molecules can interact together in cis, when they are

present on the same cell surface (De Celis & Bray, 1997; Micchelli

et al, 1997). This cis-interaction is inhibitory and may be important

to set a threshold that ensures a sharp response (Sprinzak et al,

2010). One manifestation of this balance is that the phenotypes

produced by reduced Notch function are suppressed when combined

with a Delta loss-of-function allele (Fig 3F; De Celis & Bray, 2000).

Notch heterozygous females have a characteristic wing-notching

phenotype (Fig 3E). When combined with DlDb1-2, the wing-

notching phenotype was suppressed to a similar extent as with a

classic Delta allele (Fig 3E and F), suggesting that cis-interactions

A

B

D E

C

Figure 2. Dl b1-2 loop mutant generated by genome editing.

A Two gRNAs flanking the Dl Exon 2 were used to replace the exon with a modified version where 5 amino acids in the b1-2 loop were removed. Red lettering
highlights the genomic sequence of the b1-2 loop.

B, C Adult wings from DlDb1-2 flies. No defects are detected in wings from DlDb1-2/+ (B), Homozygous DlDb1-2/DlDb1-2 have extra vein tissue near L5 and uneven L2 veins
(arrowheads; C).

D Microchaetae are arranged in rows on the thorax of control (yw) flies; these become disordered and more dense in DlDb1-2/DlDb1-2. White rectangle indicates area
scored for E.

E Number of microchaetes per central area (white rectangle in D) in the indicated genotypes.

Data information: ***P < 0.0001 (unpaired t-test). Each dot represents an individual fly, and light or dark shading indicates individuals from independent genetic
crosses. On the violin plot, dashed line represents the median and the dotted lines show the quartiles. Scale bars correspond to 200 lm (B, C) and 500 lm (D).
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are also modified in this context. DlDb1-2 also gave a modest and

variable modification of the vein phenotype from Notch heterozy-

gotes in a similar direction (Fig EV2E). However, we note that the

loop mutation is not sufficient to fully alleviate cis-inhibition, as we

did not detect ectopic target gene expression when homozygous

DlDb1-2 mutant clones were juxtaposed with wild-type cells

(Fig EV3D and E; (Micchelli et al, 1997)).

Changes to signalling were also detected in another Notch-

dependent process, the spacing between the sensory organs, micro-

chaetae, on the notum. In the absence of Notch signalling, an

excess of sensory organ precursors are formed due to failure in

lateral inhibition (Heitzler & Simpson, 1991; De Joussineau et al,

2003; Cohen et al, 2010; Sjöqvist & Andersson, 2017). Milder

defects in Notch signalling lead to irregular and reduced spacing

between the sensory organ precursors with the consequence that

there is an increase in the number of microchaete on the adult

notum as seen in flies heterozygous for a deletion of Delta (e.g. Df

(3R)DlFx3/+; Fig EV4A,B,E). As noted above, DlDb1-2 homozygous

flies had an increased density of microchaetae compared to wild-

type (Figs 2D and E and EV4C and E) and in combination with

strong Delta alleles, DlDb1-2 led to a further increase in micro-

chaetae numbers (Fig EV4D and E; Df(3R)DlFx3/DlDb1-2). Thus, as

with the vein formation, the defects in microchaetae spacing indi-

cate a reduced signalling potential for ligands with a shortened

b1-2 loop, despite the fact that this change should not disrupt bind-

ing to the receptor per se (see Fig 1E).

DlDb1-2 has compromised Notch signalling in photoreceptor
fate decisions

Flies homozygous for DlDb1-2 also had mild roughening of the eyes.

Notch activity is required at several stages in the development of

the photoreceptors, including in the specification of R4 and R7

photoreceptors. The sequential differentiation of the eight neuronal

photoreceptors (R cells) is initiated when a wave of differentiation

(called morphogenetic furrow or MF) spreads from the posterior to

the anterior region of the eye imaginal disc (S�ahin & Çelik, 2013;

Fig 4A). Notch activity in one cell of the five-cell cluster specifies R4

cell fate and can be detected by the expression of E(spl)md0.5-lacZ,
containing the Notch responsive E(spl)md enhancer ((Cooper &

Bray, 1999); Fig 4 A and B). Reducing the levels of Delta, as seen in

Delta heterozygotes Df(3R)DlFx3/+, led to more variable expression

of E(spl)md0.5 (Fig 4B). This was further enhanced in combination

with DlDb1-2, so that many of the ommatidia exhibited very low

A C

D

F

B

E

Figure 3. DlDb1-2 enhances vein thickening from loss-of-function Dl alleles and suppresses Notch phenotype.

A–C Representative images of adult female wings in combinations of DlDb1-2 with loss-of-function Delta alleles. In combinations with Dlrev10 (A), DlDExon2 (B) or Df(3R)
DlFx3 (C), vein thickening is strongly enhanced (right panels) compared to heterozygous mutants alone (left panels). Vertical square brackets indicate the regions
used for vein thickness quantification.

D Quantification of wing-vein thickness in females of the indicated genotypes.
E Representative images of adult female wings demonstrate that DlDb1-2 rescues the wing-notching phenotype, caused by a Notch loss-of-function allele (N55e11).

Horizontal square bracket indicates the L5 vein “delta” at the intersection with the wing margin analysed in EV2E.
F Quantification of wing notching in females of the indicated genotypes, DlDb1-2 rescues notching in a similar manner to Dlrev10.

Data information: ***P < 0.0001 (unpaired t-test). Light, dark shading indicates data points from independent genetic crosses. On the violin plots, dashed lines represent
the median and the dotted lines show the quartiles. Scale bars A-E correspond to 200 lm.
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levels of expression (Fig 4 B and C). No similar reduction occurred

with DlDb1-2 heterozygotes (Fig 4B) nor clones of DlDb1-2 homozy-

gous mutant cells (Fig EV5A and B’’) arguing that the decrease in

activity in these conditions is not below the threshold needed for

E(spl)md0.5 activation. Nevertheless, the fact that the DlDb1-2

enhances the phenotype from the Delta deletion is consistent with it

being compromised for productive Notch signalling.

C2 Domain b1-2 loop mutation does not impair Delta trafficking

Our results indicate that the b1-2 loop region of Delta C2 domain is

required for full functionality. To investigate whether this involves

a change in the localization or trafficking of Delta, we generated

mutant clones in the wing disc, a tissue where the expression and

localization of the ligand is well characterized. In late third instar

A C

B

Figure 4. DlDb1-2 has compromised Notch response in photoreceptor fate decisions.

A Schematic representation of Notch reporter E(spl)md0.5 expression during photoreceptor differentiation. Expression is initiated in R3 and R4 of the 5-cell pre-cluster
and becomes restricted to R4 as Notch activity resolves. Light orange indicates photoreceptors with R3 in light green and R4 in dark green. MF marks the
morphogenetic furrow, boxed region indicates the region shown in B.

B Equatorial region of eye imaginal discs where E(spl)md0.5 expression (green) becomes restricted to a single photoreceptor in each cluster (magenta), as detected in
control and DlDb1-2/+ discs (top panels). In Df(3R)DlFx3 /+ and DlDb1-2/Df(3R)DlFx3 discs (bottom panels), E(spl)md0.5 expression is reduced (Df(3R)DlFx3 /+) or absent from
several clusters (DlDb1-2/Df(3R)DlFx3) indicative of reduced Notch signalling. Scale bars correspond to 10 lm.

C Proportion of photoreceptors clusters that fail to express the E(spl)md0.5 reporter in the indicated genotypes. ns, no significant difference, ***P < 0.0001 (one-way
ANOVA). On the violin plot, dashed line represents the median and the dotted lines show the quartiles.
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stages, the expression of Delta is particularly enriched in two

stripes flanking the DV boundary and in longitudinal stripes that

prefigure the prospective wing veins (Fig 5A and A’). In all regions

of the disc, DlDb1-2 exhibited normal expression levels and it

appeared to be localized at the apical membranes, at similar levels

to wild-type Delta.

To confirm that the mutant protein was present on the cell

surface, we performed an antibody uptake assay (Le Borgne &

Schweisguth, 2003). Wing imaginal discs were incubated ex vivo

with an anti-Dl antibody recognizing the extracellular domain at

4°C. Excess antibody was then washed away, and the tissues trans-

ferred to a permissive temperature (25°C) for 0 or 30 min so that

the membrane localization, uptake and trafficking of bound anti-

body could be measured (Gomez-Lamarca et al, 2015). At zero

minutes when antibody was bound to Delta on the cell surface,

similar levels were detected in control regions and in DlDb1-2 mutant

clones (Fig 5B and B’), indicating that the mutant protein was

present on the cell surface. When endocytosis was allowed to

proceed for 30 min, antibody-bound Delta accumulated in puncta

throughout the epithelial cells in both wild-type and DlDb1-2 tissue

(Fig 5C and C’). The uptake assays confirm therefore that the

mutated protein reaches the cell surface normally and that its

trafficking following endocytic uptake is not grossly affected,

although we cannot rule out a subtle change.

Discussion

C2 domain phospholipid binding properties are essential for

membrane targeting of many intracellular proteins. Notch ligands

are unusual in having an extracellular N-terminal C2 domain (Chil-

lakuri et al, 2013; Kershaw et al, 2015). This structure is present in

all the human Notch ligands and retains the capacity to interact with

liposomes (Suckling et al, 2017). Here, we showed that Drosophila

Delta and Serrate also contain a globular C2 domain that confers the

ability to bind to phospholipid-containing liposomes in vitro. The

C2 domain structures are highly conserved, differing only in the

length and orientation of several loops. A deletion mutation

affecting one of these, a loop between the b1 and b2 strands of the

C2 domain core, was sufficient to compromise liposome binding.

This loop might therefore help to generate a “pocket” capable of

interacting with a specific type of lipid, for example phospholipid/

glycosphingolipid and in this way influence productive Notch

signalling.

A

A′

B

C

B′

C′

Figure 5. DlDb1-2 exhibits normal sub-cellular localization.

A Apical view of wing imaginal disc with homozygous DlDb1-2 clones (GFP negative) stained for Dl (red) and Cadherin (blue). (A’) Z-projection of apical layers spanning a
DlDb1-2 clone (GFP negative) located at the DV boundary. No change in apical localization of Dl (red) and Cadherin (blue) is detected. Panels on the right show the Dl
(grayscale) apical localization on the wing imaginal disc.

B Uptake assay at t = 0. After exposure to extracellular anti-Dl antibody, Dl protein (red) is detected at similar levels apical to Cadherin (blue) in wild-type (GFP) and
DlDb1-2 mutant tissue (GFP negative). (B’) Cross-sectional view of B, Dl protein (red) is present apically relative to Cadherin (Blue) which marks adherens junctions.
Middle and lower panels show the cross section in grayscale of the apical marker Cadherin (Cad) and Delta (Dl), respectively.

C Uptake assay after 30 min, internalized anti-Dl (red) enters the endocytic route and in the cross-sectional view (C’) can similarly be detected as puncta along the cell
axis in wild-type (GFP) and homozygous DlDb1-2 (GFP negative) tissue. Middle and lower panels show the cross section in grayscale of the apical marker Cadherin
(Cad) and Delta (Dl), respectively.

Data information: Scale bars: A, 50 lm; A’ B and C, 10 lm.
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A subset of human Jagged-1 mutations that affect the loops at the

apex of the C2 domain are associated with extrahepatic biliary atre-

sia suggesting these regions are important for tuning the Notch

signal in physiological contexts (Kohsaka et al, 2002; Suckling et al,

2017). Our results, from CRISPR engineering b1-2 loop mutations in

Drosophila Delta and Serrate, support the conserved functional

importance of the C2 domain loops. The mutated Delta exhibited

reduced signalling activity in several different developmental

contexts. The compromised signalling was most evident in genetic

combinations with a strong loss-of-function allele or deletion of the

locus and was manifest by enhanced vein thickening, extra sensory

bristles and reduced signalling during photoreceptor fate choice,

although there were no overt effects at the dorsal-ventral boundary.

All of the processes affected involve highly dynamic signalling and

are sensitive to subtle changes in signalling as evident from the

defects in animals with reduced dosage of wild-type Delta (Df(3R)

DlFx3/+). These results are consistent with the model that C2 domain

loop regions are important for fine-tuning the Notch signal (Fig 6A

and B), as suggested by in vitro results, where the binding of fluo-

rescent liposomes to Jagged was modified/enhanced in the presence

of a Notch-1 11-13 fragment, suggesting a coupling between C2

domain lipid binding and Notch binding, and by the changes in

Notch activation seen with EHBA and related loop variants (Suck-

ling et al, 2017).

There are several models for how C2 domain-mediated

membrane interactions might impact on signalling. One possibility

is that the spatial or temporal residence of Delta in the membrane

may be affected by the C2 domain interactions. Evidence suggests

that relative pools of the receptor and ligands, rather than absolute

concentrations, are important for refining signalling outcomes due

to the balance between cis-inhibition and trans-activation (Sprinzak

et al, 2010). Models based on this relationship inferred that intrinsic

noise would cause the width of the vein to become irregular, one

characteristic of the phenotype produced from DlDb1-2. Loss of inter-

action with certain types of lipids might bias how the ligand inter-

acts with the receptor. For example, it could shift in favour of

NICD

Sending cell

Strong 
NICD signal

DeltaDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
A

B

ta

NNNNNNNNNNNNNNNNNNN

NICD

Sending cell

Weakened
 NICD signal

NNNNNNNNNNNNNNNNNNN

Receiving cell

Receiving cell

Delta

Notch

Notch

Figure 6. Schematic summarizing roles for ligand b1-2 loop.

A, B The C2, DSL domains and N-terminal EGF repeat in Delta (cyan) and the ligand-binding region (EGF11-13) of Notch (magenta) are renditions from the structures
obtained (Fig 1), other regions of the molecules are represented not to scale. The amino acids in the b1-2 loop of Delta are highlighted in yellow (A). (A) The
interaction of Delta (cyan) in trans with the Notch receptor (magenta) is augmented by the C2 domain, possibly through contacts of the b1-2 loop (yellow), with
the “receiving” cell membrane, to yield highest levels of signalling (black arrow; green indicates ligand induced cleavages). Phospholipid contacts from b1-2 loop in
the same cell could also influence cis-interactions between Delta and Notch in the same cell. (B) A deletion of 5 amino acids within C2 domain b1-2 loop (no
yellow) disrupts phospholipid interactions but does not prevent Delta from interacting with Notch. Activation of Notch signalling is weakened (grey arrow) and
phenotypes from transheterozygous combinations suggest that cis-interactions between Delta and Notch are also modulated.
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inhibition, producing a generalized reduction in signalling, despite

there being similar amounts of proteins on the cell surface.

However, the ability of DlDb1-2 to suppress the phenotype from

reduced Notch at the wing margin argues that cis-inhibition is also

compromised by the loop mutation in some contexts. This makes it

more likely that C2 domain interactions fine-tune both activating

and inhibitory interactions, perhaps by modulating the length of

time the ligand is diffusing in the membrane (Khait et al, 2016), and

that the precise consequences may differ depending on the relative

amounts of ligand and receptor present.

In summary, our structure-guided approach to make defined

changes in the endogenous ligands has demonstrated the in vivo

relevance of C2 domain loops for full activity in the physiological

setting (Fig 6A and B). This approach has uncovered subtle func-

tional requirements that would unlikely be detected using in vitro or

in vivo methods alone, highlighting the importance of using inter-

disciplinary methods to fully elucidate function.

Materials and Methods

Protein expression, crystallization and structure determination

Codon optimized open reading frames for constructs (synthesized by

GeneArt�, Life Technologies Ltd., Paisley, UK), with recommended

BiP signal peptide (for secretion), were subcloned into expression

vector pEXS2-2 (Expres2ion� Biotechnologies, Horsholm, Denmark)

using EcoRI and NotI restriction sites (see Table EV1 for primer

sequences). Each construct was expressed as a monomer with a C-

terminal 8xHis tag to facilitate purification. Purification was as

described in Suckling et al (2017). Drosophila (d) Delta and Serrate

NE3 (C2 domain-DSL, EGF1, EGF2, EGF3) constructs were used for

liposome- and Notch-binding assays. NE3 (residues 1–332 Delta;

1–388 Serrate), NE2 (residues 1–293 Delta, residues 1–349 Serrate),

NE1 (1–259 Delta, 1–314 Serrate) constructs were used to set up

preliminary crystal trials. Delta NE1 and Serrate NE2 constructs

produced best diffracting crystals. NotchEGF11-13 was produced

using the same expression system, and the purified cleaved form

used for crystallization.

The Notch receptor construct was concentrated to 24.2 mg/ml in

a buffer A (10 mM Tris pH 7.5, 150 mM NaCl, 10 mM CaCl2) and

crystallized by the sitting drop method from 200 nl + 200 nl drops

with mother liquor 0.1 M MES pH 6.5, 1.8 M ammonium sulphate,

0.01 M cobalt chloride. Crystals were cryoprotected by addition of

25% ethylene glycol and data collected at the European Synchrotron

Radiation Facility, beamline ID29. Serrate was concentrated to

15.8 mg/ml in buffer A and crystallized by the sitting drop method

from 200 nl + 200 nl drops with mother liquor 0.1 M imidazole

malate pH 7, 25% PEG4K and cryoprotected by addition of 25%

ethylene glycol, 20 mM CaCl2. Data were collected at Diamond Light

Source, beamline I02. Delta was concentrated to 17.7 mg/ml and

crystallized by the sitting drop method from 200 nl + 200 nl drops

with mother liquor 0.1 M Tris pH 8.5, 0.2 M MgCl2, 30% PEG4K

and cryoprotected with 25% glycerol, 20 mM CaCl2. Data were

collected at Diamond Light Source, beamline I04.

All structures were solved by molecular replacement using sepa-

rated domains from the human homologues using program PHASER

(McCoy et al, 2007) from program suite CCP4 (The CCP4 suite:

programs for protein crystallography, 1994) rebuilt using BUCCA-

NEER (Cowtan, 2006) and COOT (Emsley et al, 2010) and refined in

PHENIX (Liebschner et al, 2019). For all constructs, data processing

and model statistics are described in Table 1. Coordinates and data

are deposited in the Protein Data Bank with accession codes 7ALJ,

7ALT, 7ALK for Notch, Serrate and Delta, respectively.

Liposome- and Notch-binding assays

Liposome-binding assays were carried out as described in Suckling

et al (2017) using purified Delta/Serrate variants and liposomes

comprising phosphatidylcholine (PC): phosphatidylserine (PS):

phosphatidylethanolamine-fluoroscein (PE) in a 80:15:5 ratio. Lipo-

somes were prepared as described in Chillakuri et al (2013). Notch-

binding assays were carried out as described in Suckling et al

(2017) using purified Delta variants and Notch EGF 11-13. The nega-

tive control Delta F204A variant reduces Notch/ligand binding at

Site 2, by altering a key residue within the ligand DSL domain

Notch-binding loop. We note there is some slight variability in the

purity of the protein preparations (see Fig EV1F).

Drosophila melanogaster strains and genetics

All Drosophila melanogaster stocks were grown on standard

medium at 25°C. Alleles are as described in Flybase (Thurmond

et al, 2019) and in particular the following were used to sensitize

the genetic background: Dlrev10 (Heitzler & Simpson, 1991), Dlrev10,

SerRx106 (Thomas et al, 1991), Df(3R)DlFx3 (V€assin & Campos-

Ortega, 1987), N55e11 (#BL28813). DlDb1-2 clones were generated

using FRT-mediated recombination (Xu & Rubin, 1993) – recombi-

nation was promoted by heat shock of 1 h at 37°C 72 h prior to

dissection and analysis. The E(spl)md0.5 reporter was used for

analysis of R3/R4 determination in eye imaginal discs, (Cooper &

Bray, 1999).

Generation of b1-2 loop Notch ligands mutants
using CRISPR/Cas9

Lines were generated by CRISPR-mediated homology repair (HR)

strategy. As described in Figs 3 and EV2, two guideRNAs were

designed to flank the target exon coding the b1-2 loop (see

Table EV1 for primer sequences) and cloned into the guide RNA

expression pCFD4 vector (Addgene #49411). The exon of interest

and homology arms were cloned into donor template plasmid pHD-

ScarlessDsRed (Addgene # 64703) using the Gibson Assembly Proto-

col (see Table EV1 for primer sequences). Modifications to the

exons were made using standard mutagenesis and PCR amplifi-

cation prior to the co-injection of the guide RNAs and the donor

template constructs into nos-Cas9 (#BL54591) embryos. Modifi-

cations included the following: 1) deletion of 15 bp within b1-2 loop

of Dl (DlDb1-2); 2) deletion of 15 bp within b1-2 loop from Ser Exon

3 (SerDb1-2); 3) deletion of region between the two gRNAs (DlDExon2).

ΔExon 2 could in principle produce a modified protein, the deletion

would be in frame, but it would lack any signal peptide. As no resid-

ual protein was detected by antibody staining (Fig EV2F), the

product is either not made or is unstable. Engineered flies were

identified by expression of DsRed in the eyes and verified by

genomic PCR sequencing. The transposable element containing the
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DsRed was removed subsequently by crossing to flies carrying

PiggyBac Transposase (#BL32070).

Immunostainings

The following primary antibodies were used for immunofluores-

cence staining: Goat anti-GFP (1:200, Abcam, ab6673), Mouse anti-

Cut (1:20, Developmental studies hybridoma bank (DSHB)), Rat

anti-DE-Cad2 (1:200, DSHB), Mouse anti-Delta (1:30, DSHB),

Guinea pig anti-Delta (1:2,000, a gift from Mark Muskavitch, (Hup-

pert et al, 1997)), Guinea pig anti-Dpn (1:2,000, a gift from Christos

Delidakis), Mouse anti-NECD (1:50, DSHB), Rat anti-ELAV (1:200,

DSHB), Mouse anti-b-Gal (1:1,000, Promega, Z378A). Uptake assay

was performed as described previously (Gomez-Lamarca et al,

2015).

Adult tissues analysis

For the analysis of the adult fly wings, female flies were collected in

70% ethanol for 2 h, rehydrated in PBS and one wing per fly was

isolated and mounted in a 50% glycerol solution. To analyse the

microchaete number, flies were collected in 70% ethanol for 2 h,

rehydrated in PBS 1× and mounted on apple juice agar plates for

imaging.

Imaging and statistical analysis

Immunostaining samples were imaged with Leica TCS SP8 micro-

scopes (CAIC, University of Cambridge) at 40× magnification and

512/512 or 1,024/1,024 pixel resolutions. Images of the adult wings

were taken using a Zeiss Axiophot microscope, and images of the

adult Notum were taken using the Leica MZ10F coupled with a

camera Leica DFC3000G. ImageJ software was used to analyse

images and polygon tool was used to measure the vein area on

the region limited by the CV2, L4 and L5 veins on adult wings. The

measurement of the wing notching was done by determining the

tissue missing with the polygon tool after superimposing wings of

the described genotypes with the reference wild-type wing. The

number of microchaete was assayed using a fixed area as reference

on the Notum, as depicted by the white box on Fig 2D. For the anal-

ysis of the Dl and Notch trafficking in DlDb1-2 mutant clones, a

projection of 3-cell diameter was performed after re-slicing the

images into the XZY axis in ImageJ software.

Statistics were calculated with GraphPad Prism. Comparisons

between two groups were performed with a two-tailed unpaired t-

test. Statistical differences among various groups were assessed with

ordinary one-way ANOVA by comparison to the mean of the control

column. In the figures and figure legends, ns indicates no significant

difference; *P < 0.1; **P < 0.001; ***P < 0.0001.

Data availability

Coordinates and data have been deposited in the RCSB Protein Data

Bank (https://www.rcsb.org/) with accession codes 7ALJ, 7ALT,

7ALK for Notch, Serrate and Delta, respectively.

Expanded View for this article is available online.

Acknowledgements
We thank Mark Muskavitch, Christos Delidakis, the Bloomington Stock Center,

the VDRC Stock Center and the Developmental Studies Hybridoma Bank for

Drosophila strains and antibodies. We thank Kat Millen for the technical help

and for injections for the CRISPR engineering. We thank other members of SJB

lab for valuable discussion. This work was funded by grants from BBSRC (BB/

P006175/1 to SJB) and MRC (MR/L001187/1 to SML and PAH; MR/R009317/1 to

PAH, MR/T014156/1 to SJB) and by a Wellcome Trust investigator Award

(100298 to SML).

Author contributions
TM and SJB designed the in vivo experiments. TM performed the in vivo exper-

iments. TM and SJB analysed the data. PAH and SML designed the in vitro

experiments. BK, YM and RS purified ligand and receptor proteins. RS and SJ

performed structure determination. YM performed the Notch-binding experi-

ments. BK performed liposome-binding assays. BK, YM, RS, PAH and SML anal-

ysed data. TM, PAH, SML and SJB wrote the manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Babaoǧlan AB, Housden BE, Furriols M, Bray SJ (2013) Deadpan contributes to

the robustness of the notch response. PLoS One 8: e75632

Bishop SA, Klein T, Arias AM, Couso JP (1999) Composite signalling from

Serrate and Delta establishes leg segments in Drosophila through Notch.

Development 126: 2993 – 3003

Boukhatmi H, Martins T, Pillidge Z, Kamenova T, Bray S (2020) Notch

mediates inter-tissue communication to promote tumorigenesis. Curr Biol

30: 1809 – 1820

Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev

Mol Cell Biol 7: 678 – 689

Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17: 722 – 735

de Celis JF, Garcia-Bellido A, Bray SJ (1996) Activation and function of Notch

at the dorsal-ventral boundary of the wing imaginal disc. Development

122: 359 – 369

Chillakuri CR, Sheppard D, Ilagan MXG, Holt LR, Abbott F, Liang S, Kopan R,

Handford PA, Lea SM (2013) Structural analysis uncovers lipid-binding

properties of notch ligands. Cell Rep 5: 861 – 867

Cohen M, Georgiou M, Stevenson NL, Miodownik M, Baum B (2010) Dynamic

filopodia transmit intermittent Delta-Notch signaling to drive pattern

refinement during lateral inhibition. Dev Cell 19: 78 – 89

Collaborative Computational Project, Number 4 (1994) The CCP4 suite:

programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:

760 – 763

Cooper MTD, Bray SJ (1999) Frizzled regulation of Notch signalling polarizes

cell fate in the Drosophila eye. Nature 397: 526 – 530

Cordle J, Johnson S, Zi Yan Tay J, Roversi P, Wilkin MB, de Madrid BH,

Shimizu H, Jensen S, Whiteman P, Jin B et al (2008) A conserved face of

the Jagged/Serrate DSL domain is involved in Notch trans-activation and

cis-inhibition. Nat Struct Mol Biol 15: 849 – 857

Cowtan K (2006) The Buccaneer software for automated model building. 1.

Tracing protein chains. Acta Crystallogr D Biol Crystallogr 62:

1002 – 1011

D’Souza B, Miyamoto A, Weinmaster G (2008) The many facets of Notch

ligands. Oncogene 27: 5148 – 5167

ª 2021 The Authors EMBO reports 22: e52729 | 2021 11 of 12

Torcato Martins et al EMBO reports

https://www.rcsb.org/
https://www.rcsb.org/structure/7ALJ
https://www.rcsb.org/structure/7ALT
https://www.rcsb.org/structure/7ALK
https://doi.org/10.15252/embr.202152729


de Celis JF, Bray S, Garcia-Bellido A (1997) Notch signalling regulates veinlet

expression and establishes boundaries between veins and interveins in

the Drosophila wing. Development 124: 1919 – 1928

De Celis JF, Bray S (1997) Feed-back mechanisms affecting Notch activation

at the dorsoventral boundary in the Drosophila wing. Development 124:

3241 – 3251

De Celis JF, Bray SJ (2000) The Abruptex domain of Notch regulates negative

interactions between Notch, its ligands and Fringe. Development 127:

1291 – 1302

De Joussineau C, Soul�e J, Martin M, Anguille C, Montcourrier P, Alexandre D

(2003) Delta-promoted filopodia mediate long-range lateral inhibition in

Drosophila. Nature 426: 555 – 559

Dexter JS (1914) The analysis of a case of continuous variation in Drosophila

by a study of its linkage relations. Am Nat 48: 712 – 758

Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development

of Coot. Acta Crystallogr D Biol Crystallogr 66: 486 – 501

Fleming RJ (1998) Structural conservation of Notch receptors and ligands.

Semin Cell Dev Biol 9: 599 – 607

Gomez-Lamarca MJ, Snowdon LA, Seib E, Klein T, Bray SJ (2015) Rme-8

depletion perturbs Notch recycling and predisposes to pathogenic

signaling. J Cell Biol 210: 303 – 318

Heitzler P, Simpson P (1991) The choice of cell fate in the epidermis of

Drosophila. Cell 64: 1083 – 1092

Hirano Y, Gao Y-G, Stephenson DJ, Vu NT, Malinina L, Simanshu DK, Chalfant CE,

Patel DJ, Brown RE (2019) Structural basis of phosphatidylcholine

recognition by the C2–domain of cytosolic phospholipase A2a. Elife 8: e44760

Honigmann A, van den Bogaart G, Iraheta E, Risselada HJ, Milovanovic D,

Mueller V, M€ullar S, Diederichsen U, Fasshauer D, Grubm€uller H et al

(2013) Phosphatidylinositol 4,5-bisphosphate clusters act as molecular

beacons for vesicle recruitment. Nat Struct Mol Biol 20: 679 – 686

Huang H, Kornberg TB (2015) Myoblast cytonemes mediate Wg signaling

from the wing imaginal disc and Delta-Notch signaling to the air sac

primordium. Elife 4: 1 – 22

Hunter GL, He L, Perrimon N, Charras G, Giniger E, Baum B (2019) A role for

actomyosin contractility in Notch signaling. BMC Biol 17: 1 – 15

Huppert SS, Jacobsen TL, Muskavitch MAT (1997) Feedback regulation is

central to Delta-Notch signalling required for Drosophila wing vein

morphogenesis. Development 124: 3283 – 3291

Kershaw NJ, Church NL, Griffin MDW, Luo CS, Adams TE, Burgess AW (2015)

Notch ligand delta-like1: X-ray crystal structure and binding affinity.

Biochem J 468: 159 – 166

Khait I, Orsher Y, Golan O, Binshtok U, Gordon-Bar N, Amir-Zilberstein L,

Sprinzak D (2016) Quantitative analysis of delta-like 1 membrane

dynamics elucidates the role of contact geometry on notch signaling. Cell

Rep 14: 225 – 233

Kohsaka T, Yuan Z, Guo S, Tagawa M, Nakamura A, Nakano M, Kawasasaki H,

Inomata Y, Tanaka K, Miyauchi J (2002) The significance of human jagged

1 mutations detected in severe cases of extrahepatic biliary atresia.

Hepatology 36: 904 – 912

Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway:

unfolding the activation mechanism. Cell 137: 216 – 233

Kovall RA (2008) More complicated than it looks: assembly of Notch pathway

transcription complexes. Oncogene 27: 5099 – 5109

Kovall RA, Blacklow SC (2010) Mechanistic insights into Notch receptor signaling

from structural and biochemical studies. Curr Top Dev Biol 92: 31 – 71

Kovall RA, Gebelein B, Sprinzak D, Kopan R (2017) The canonical notch

signaling pathway: structural and biochemical insights into shape, sugar,

and force. Dev Cell 41: 228 – 241

Le Borgne R, Schweisguth F (2003) Unequal segregation of neuralized biases

Notch activation during asymmetric cell division. Dev Cell 5: 139 – 148

Liebschner D, Afonine PV, Baker ML, Bunk�oczi G, Chen VB, Croll TI, Hintze B,

Hung LW, Jain S, McCoy AJ et al (2019) Macromolecular structure

determination using X-rays, neutrons and electrons: recent developments

in Phenix. Acta Crystallogr. Sect. D. Struct Biol 75: 861 – 877

Luca VC, Jude KM, Pierce NW, Nachury MV, Fischer S, Garcia KC (2015) Structural

basis for Notch1 engagement of Delta-like 4. Science 347: 847 – 853

Luca VC, Kim BC, Ge C, Kakuda S, Wu D, Roein-Peikar M, Haltiwanger RS, Zhu

C, Ha T, Garcia KC (2017) Notch-Jagged complex structure implicates a

catch bond in tuning ligand sensitivity. Science 355: 1320 – 1324

Ma�sek J, Andersson ER (2017) The developmental biology of genetic Notch

disorders. Development 144: 1743 – 1763

McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ

(2007) Phaser crystallographic software. J Appl Crystallogr 40: 658 – 674

Micchelli CA, Rulifson EJ, Blair SS (1997) The function and regulation of cut

expression on the wing margin of Drosophila: Notch, Wingless and a

dominant negative role for Delta and Serrate. Development 124:

1485 – 1495

Monticone G, Miele L (2021) Notch pathway: a journey from notching

phenotypes to cancer immunotherapy. Adv Exp Med Biol 1287: 201 – 222

Nowell CS, Radtke F (2017) Notch as a tumour suppressor. Nat Rev Cancer

17: 145 – 159

S�ahin HB, Çelik A (2013) Drosophila eye development and photoreceptor

specification. eLS https://doi.org/10.1002/9780470015902.a0001147.pub2

San Juan BP, Andrade-Zapata I, Baonza A (2012) The bHLH factors Dpn and

members of the E(spl) complex mediate the function of Notch signalling

regulating cell proliferation during wing disc development. Biol Open 1:

667 – 676

Siebel C, Lendahl U (2017) Notch signaling in development, tissue

homeostasis, and disease. Physiol Rev 97: 1235 – 1294

Sjöqvist M, Andersson ER (2017) Do as I say, Not(ch) as I do: Lateral control

of cell fate. Dev Biol 447: 58 – 70.

Sprinzak D, Lakhanpal A, LeBon L, Santat LA, Fontes ME, Anderson GA, Garcia-

Ojalvo J, Elowitz MB (2010) Cis-interactions between Notch and Delta

generate mutually exclusive signalling states. Nature 465: 86 – 90

Suckling RJ, Korona B, Whiteman P, Chillakuri C, Holt L, Handford PA, Lea SM

(2017) Structural and functional dissection of the interplay between lipid

and Notch binding by human Notch ligands. EMBO J 36: 2204 – 2215

Thomas U, Speicher SA, Knust E (1991) The Drosophila gene Serrate encodes

an EGF-like transmembrane protein with a complex expression pattern in

embryos and wing discs. Development 111: 749 – 761

Thurmond J, Goodman JL, Strelets VB, Attrill H, Gramates LS, Marygold SJ,

Matthews BB, Millburn G, Antonazzo G, Trovisco V et al (2019) FlyBase

2.0: the next generation. Nucleic Acids Res 47: D759 –D765

V€assin H, Campos-Ortega JA (1987) Genetic analysis of delta, a neurogenic

gene of Drosophila melanogaster. Genetics 116: 433 – 445

Verdaguer N, Corbalan-Garcia S, Ochoa WF, Fita I, G�omez-Fern�andez JC

(1999) Ca(2+) bridges the C2 membrane-binding domain of protein kinase

Calpha directly to phosphatidylserine. EMBO J 18: 6329 – 6338

Xu T, Rubin GM (1993) Analysis of genetic mosaics in developing and adult

Drosophila tissues. Development 117: 1223 – 1237

License: This is an open access article under the

terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in

any medium, provided the original work is properly

cited.

EMBO reports Torcato Martins et al

12 of 12 EMBO reports 22: e52729 | 2021 ª 2021 The Authors

https://doi.org/10.1002/9780470015902.a0001147.pub2

