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A B S T R A C T   

The acute respiratory syndrome COVID-19 disease, which is caused by SARS-CoV-2, has infected many people 
over a short time and caused the death of more than 2 million people. The gold standard in detecting COVID-19 is 
to apply the reverse transcription polymerase chain reaction (RT-PCR) test. This test has low sensitivity and 
produces false results of approximately 15%–20%. Computer tomography (CT) images were checked as a result 
of suspicious RT-PCR tests. If the virus is not infected in the lung, the virus is not observed on CT lung images. To 
overcome this problem, we propose a 25-depth convolutional neural network (CNN) model that uses scattergram 
images, which we call Scat-NET. Scattergram images are frequently used to reveal the numbers of neutrophils, 
eosinophils, basophils, lymphocytes and monocytes, which are measurements used in evaluating disease 
symptoms, and the relationships between them. To the best of our knowledge, using the CNN together with 
scattergram images in the detection of COVID-19 is the first study on this subject. Scattergram images obtained 
from 335 patients in total were classified using the Scat-NET architecture. The overall accuracy was 92.4%. The 
most striking finding in the results obtained was that COVID-19 patients with negative RT-PCR tests but positive 
CT test results were positive. As a result, we emphasize that the Scat-NET model will be an alternative to CT scans 
and could be applied as a secondary test for patients with negative RT-PCR tests.   

1. Introduction 

Complete blood count (CBC) is one of the routine tests used 
frequently during the initial evaluation of patients. CBC analysers such 
as DXH-800 (Beckman Coulter) provide a differential fluorescence 
scattering diagram (WBC differential fluorescence - WDF) that displays a 
classification of white blood cells (WBCs) according to their morphology 
and intracellular components. Each type of leukocyte is always dis-
played in the same area, and different types have different colours. The 
different leukocyte clusters displayed on the WDF scatter diagram are 
matched with optical microscopy and visual inspection and provide the 
user with the scattergram image in Fig. 1. 

Automated haematology analysers are often used in clinical labora-
tories to assess the health status of patients. These analysers provide 
detailed information about WBCs. WBCs are a type of immune cell that 
helps fight infections and other diseases. WBCs or leukocytes are 
important elements of the immune system that help the body fight in-
fections. The different types of WBCs are basophils, neutrophils, eosin-
ophils, lymphocytes, and monocytes. Relationships can be established 

between WBCs found in red blood cells in both men and women and 
weight, uric acid, cholesterol, heart rate, creatinine, ethnicity, sex, 
height, blood pressure, and blood sugar. Abnormalities in the distribu-
tion of cells on the scattergram are important indicators in determining 
many other diseases, such as leukaemia [1–3]. 

Recent reports have shown that some COVID-19 patients have high 
leukocyte counts [4,5]. Clinical data on these patients are important. 
Indeed, many researchers have examined the relationship between se-
vere courses of COVID-19 and white blood cell counts in the body [6,7]. 
In these studies, it was revealed that some patients with COVID-19 had 
increased WBC and neutrophil counts with a decrease in lymphocyte 
count. In addition, the neutrophil-lymphocyte ratio has been shown to 
be a biomarker that can predict the outcome of infection (https://www. 
news-medical.net/news/20.201.019/The-connection-between-severe- 
COVID-19-and-white-blood-cell-counts.aspx). 

In a pioneering study that considered whether the white cell distri-
bution could be an indicator of COVID-19, Osman et al. emphasized that 
the presence of plasmacytoid lymphocytes in the white blood cell dis-
tribution diagram indicates suspicion of COVID-19. The findings showed 
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that COVID-19 patients had a sensitivity of 85.9% and a specificity of 
83.5% [8]. Mitra et al. observed that CBC can be associated with 
COVID-19 and observed changes in neutrophil cells. A 46-year-old, 
previously healthy woman had flu-like symptoms, and chest X-ray and 
chest CT showed signs of lobar pneumonia. Subsequent radiology 
studies found that lung findings worsened and that the patient 
(COVID-19) was positive. Leukocytosis (14.1 × 103/μL) and peripheral 
blood smears were observed with the patient’s left-shifted neutrophilic 
cell population after the first complete blood count [9]. Anurag et al. 
studied the relationship between COVID-19’s different haematological 
parameters and the disease severity. They analysed the effects of hy-
pertension and diabetes on the neutrophil to the lymphocyte ratio and 
neutrophil-to-monocyte ratio in patients suffering from COVID-19. The 
study consisted of data on 148 SARS-CoV-2 infections confirmed by 
physicians. As a result, they stated that leukocytes, neutrophils, lym-
phocytes, monocytes and eosinophils, a high neutrophil-monocyte ratio 
(NMR) and a neutrophil-lymphocyte ratio (NLR), are indicators of dis-
ease severity in COVID-19 [6]. Zhao et al. evaluated the clinical findings 
of COVID-19 patients with increased leukocytes. Group t tests were used 
for the evaluation of normally distributed variables, and Mann-Whitney 
U tests were used for non-normally distributed continuous variables. As 
a result of the study, it was determined that the number of leukocytes 
increased and that there was a high number of neutrophils in the pe-
ripheral blood in patients with COVID-19 [10]. Sun et al. investigated 
whether white blood cell characteristics could have potential effects on 
severe COVID-19. Using Mendelian randomization, an increased per-
centage of eosinophils of WBCs, myeloid white blood cell count, and 
granulocyte count have been associated with a high risk of severe 
COVID-19 [11]. Zhao et al. aimed to analyse the clinical characteristics 
and abnormal immunity of those who died from COVID-19. A total of 
125 patients who died and a total of 414 randomly selected patients with 
COVID-19 were used as controls. The results were evaluated using the 
logistic regression algorithm. According to the results obtained, neu-
trophils, lymphocytes, low CD4+ T cells and decreased C3 are 
immune-related risk factors that predict the mortality of COVID-19 pa-
tients [12]. Selim et al. stated that the leukocyte and lymphocyte counts 
in COVID-19 patients are reliable indicators of SARS CoV-2 infection 

[5]. Martens et al. showed that there was a significant decrease in the 
numbers of leukocytes, platelets and absolute neutrophils in COVID-19 
patients. In addition, they stated that lymphocyte forward scattering 
and reactive lymphocytes were high [13]. 

1.1. Motivation 

RT-PCR is considered to be the basic standard diagnostic search for 
SARS-CoV-2 that causes COVID-19. However, RT-PCR can produce false 
results between 15% and 20%. In cases that the doctor deems to be 
suspicious, the patient’s CT images are checked. If the COVID-19 virus is 
not infected in the lung, this test result is also stated as negative. In this 
paper, we propose a CNN-based model that can be used in place of CT 
scans and eliminate suspicious situations in RT-PCR and CT scans. The 
proposed method makes the diagnosis of COVID-19 accurate, faster and 
reliable. The proposed system uses scattergram images obtained from 
the WBC blood test taken from the patients. The scattergram shows the 
distribution of white blood cell types (basophils, neutrophils, eosino-
phils, lymphocytes and monocytes) in the 2D plane. Scattergram images 
obtained from patient and non-patient subjects determined by RT-PCR 
and CT images are first classified with pretrained CNN (Alexnet, Goo-
glenet and Resnet18) architectures and then with the Scat-NET archi-
tecture. With the results obtained, we claim that Scat-NET will be a 
complementary test to RT-PCR and CT scans and that COVID-19 can be 
diagnosed from scattergram images. 

1.2. Novelties and contributions 

In this paper, a 25-depth CNN model was used to detect COVID-19 
from scattergram images. The novelties are the following: 

- For the first time, COVID-19 detection was conducted with scatter-
gram images. 

- Cell numbers such as basophils, neutrophils, eosinophils, lympho-
cytes and monocytes and the ratios between them are used in the 
diagnosis of the disease. With this study, all of the parameters were 
evaluated together, and it was shown that scattergram images ob-
tained from the parameters could be used in the diagnosis of COVID- 
19. 

The contributions of this study are the following: 
Although hand-crafted feature extraction is effective, it is not effec-

tive in complex computer vision problems. On the other hand, CNN 
models can successfully extract features. Features extracted from scat-
tergram images were classified with the 25-depth Scat-NET model, and 
COVID-19 was identified.  

- In suspicious cases with negative RT-PCR test results, a less costly 
model that uses scattergram images equivalent to CT scans was 
proposed instead of CT scans.  

- With this basic and effective method, cases that cannot be detected 
by CT scans can be detected.  

- The proposed model was developed to assist medical doctors in the 
diagnosis of COVID-19 and to be an alternative test. 

1.3. Paper outline 

The remainder of the paper is organized as follows. Section 2 pre-
sents the related studies. Section 3 introduces the data and the properties 
to be used for the proposed method. Section 4 explains the proposed 
system, Section 5 presents the experimental results, and Section 6 gives 
the discussion. Finally, in Section 7, the conclusions and future work are 
discussed. 

Fig. 1. CBC-DIFF scattergram image.  

S.A. Tuncer et al.                                                                                                                                                                                                                               



Computers in Biology and Medicine 135 (2021) 104579

3

2. Related work 

In this section, we describe some remarkable studies presented in the 
literature on the detection of COVID-19 from RT-PCR tests and CT im-
ages, which directly affect the development of this study. 

The virus named SARS-CoV-2, the new coronavirus responsible for 
COVID-19, has brought the health community and the whole world to 
face great difficulties and increases this difficulty with its new muta-
tions. Early diagnosis of COVID- 19 and controlling the effect of infected 
patients on viral spread are extremely important in pandemic manage-
ment. The standard test for COVID-19 is the RT-PCR test used to detect 
viral RNA (ribonucleic acid) from clinical samples. The disadvantages of 
RT-PCR are waiting for 3–4 h to obtain the test results and having false 
negative rates as high as 15–20%. In addition, there is a need for 
certified laboratories, trained personnel and expensive equipment. The 
World Health Organization recommends a second RT-PCR test in sus-
picious cases where the RT-PCR test is negative. However, studies show 
that the second test is less effective. Therefore, in the detection of 
COVID-19, lung CT images are examined by the doctor as a result of the 
suspicious RT-PCR test. However, COVID-19 might not be detected in CT 
image checks. The reason is that the virus has not yet infected the lungs. 
Therefore, the incompatibility between RT-PCR test results and CT 
findings is confusing for specialist doctors in determining COVID-19. To 
overcome this problem, machine learning-based decision support sys-
tems are being developed to assist doctors. 

Both machine learning and statistical methods have been developed 
to evaluate the diagnostic value of CT and real-time reverse 
transcriptase-polymerase reaction (rRT-PCR) used in the diagnosis of 
COVID-19 disease. Long et al. determined the sensitivity of CT and rRT- 
PCR tests by including all patients with suspected COVID-19 and 
pneumonia who were examined by both CT and RT-PCR at first 
admission. They suggested repeating the rRT-PCR test in patients with 
positive CT findings because rRT-PCR could give false negative results 

[14]. Trisnawati et al. stated that multiple RT-PCR tests were performed 
11, 8, 11 and 14 times in 4 different patients, and both negative and 
positive results were obtained [15]. Brinati et al. studied 279 patients 
with the rRT-PCR test. A total of 177 of these patients were positive, and 
102 were negative. They proposed a machine learning model to distin-
guish patients who are positive or negative for SARS-CoV-2. According 
to the results, the accuracy was 86%, and the sensitivity was 95%. In this 
study, a decision support system was developed to interpret blood tests 
for suspected COVID-19 cases determined by the rRT-PCR test. As a 
result, the feasibility and clinical robustness of using blood test analysis 
and machine learning as an alternative to rRT-PCR to identify 
COVID-19-positive patients have been demonstrated [16]. Cabitza et al. 
proposed a system that uses machine learning algorithms as an alter-
native to RT-PCR testing. They analysed the results with routine blood 
tests, such as haematological and coagulation tests. The AUC was 
0.75–0.78, and the specificity was 0.92–0.96 [17]. 

A number of deep learning-based methodologies have recently been 
proposed to automate the detection of COVID-19 from CT scans and to 
assist doctors. In addition to the known deep learning models in these 
studies [18–20], ensemble deep learning [21], multitask deep learning 
[22], weakly supervised deep active learning [23], and bidirectional 
long short-term memory [24] models have also been used. 

Ardakani et al. proposed a decision support system for the diagnosis 
of COVID-19 from CT imagery using 10 different deep learning tech-
niques. The AUC value with Xception and ResNet-101, where the best 
performance was obtained, was 0.994 (specificity, 99.02%; accuracy, 
99.51%; sensitivity, 100%), and 0.994 (specificity, 100%; accuracy, 
99%; sensitivity, 98.04%). As a result, they suggested that the decision 
support system as a high-precision model can be used as an auxiliary tool 
in radiology departments [25]. Khan et al. proposed a deep learning 
framework to distinguish COVID-19 from pneumonia. In the proposed 
model, an extreme learning machine classifier was used, together with a 
15-layer CNN that extracts deep features. The average accuracy, 

Fig. 2. COVID-19 and non-COVID-19 scattergram images.  
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sensitivity, specificity and precision values were 95.1%, 95.1%, 95% 
and 94%, respectively [26]. Amyar et al. proposed a multi-task deep 
learning architecture to both detect and classify COVID-19 lesions in CT 
scans. Dice and accuracy were achieved at 88% and 94.67%, respec-
tively [22]. Aslan et al. classified COVID-19 with 98.70% accuracy with 
a hybrid model based on bidirectional long short-term memory. 
Although COVID-19 is diagnosed with high accuracy in the aforemen-
tioned studies, there are cases where COVID-19 could not be detected in 
either RT-PCR or CT scans. The underlying reason for this finding is that 
RT-PCR has a false negative rate of approximately 15–20% [24]. 

The most important disadvantage in the diagnosis of COVID-19 from 
CT images is that the result is negative if the COVID-19 virus has not yet 
infected the lungs. Complementary studies and methods are needed to 
eliminate the shortcomings of both RT-PCR and CT tests and to increase 
the sensitivity of the first test of COVID-19 patients. Therefore, in this 
article, a CNN-based Scat-NET model was developed to determine 
COVID-19 from scattergram images obtained from WBC tests. 

3. Data 

In this study, a total of 335 patients with suspected COVID-19 who 
did not have any chronic diseases before entering Elazig City Hospital 
between 01.10.2020 and 01.01.2021 were asked for RT-PCR, CBC and 
CT scanning at the time of application. A total of 135 of 335 patients 
were determined to be COVID-19 patients. The PCR test of 121 of these 
patients was positive, and the PCR tests of other patients were recorded 
as negative. CT scans of 14 patients with negative PCR tests were per-
formed, and these patients were identified as positive. COVID-19 

findings were not found as a result of CT scans in 50 of 135 patients. Both 
RT-PCR and CT scans of the remaining 200 patients were negative. For 
each patient, CBC-DIFF(Complete Blood Count with Differential) scat-
tergrams and WBC subgroup values (Neu, Lym, Mon, Bazo, Eos) were 
obtained with a DXH-800 (Beckman Coulter, Inc., Miami, FL, USA) de-
vice. The DXH-800 analyser uses the volume, conductivity, and scatter 
parameters for controlled flow cytometric analysis of WBC differential 
detection. In addition, other laboratory data of the patients were 
controlled by CT scans, CRP, D-Dim and ferritin values, and RT-PCR (±) 
test results were recorded. A few examples of the data used are given in 
Fig. 2. Fig. 2a and 2.b shows scattergram images with positive and 
negative COVID-19 diagnoses, respectively. 

4. The proposed system 

As mentioned earlier in this article, we focus on developing a CNN- 
based model to detect COVID-19 from scattergram images. We chose a 
model that could lead us to obtain the best benefit in terms of the 
classification performance. 

If the RT-PCR test was negative, CT scans were requested from sus-
pected patients. In addition to the cost of CT scans, erroneous results can 
be obtained if the virus has not yet infected the lungs. To avoid this 
disadvantageous situation, we propose a Scat-NET model that can di-
agnose COVID-19 from scattergram images. The model is a 25-depth 
CNN architecture for the classification of scattergram images, which 
can be easily obtained from WBC tests requested from almost every 
patient. The structure of the proposed model is shown in Fig. 3. 

CNN is the most commonly used model among deep learning models. 

Fig. 3. The proposed method.  

Fig. 4. Obtaining the scattergram images.  
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This architecture has been widely used in medical image processing 
applications, especially in recent years. A CNN is created by using one or 
more of the convolutional, activation function, pooling, dropout, and 
fully connected layers. CNNs are usually designed to follow each other 
and provide feature models from deep-level features to high-level fea-
tures of images. In our proposed model, there are 5 layers of convolu-
tion, normalization, ReLU and pooling. Additionally, to classify the 
feature vectors in the last pooling, the CNN contains fully connected, 
softmax and classification layers. The process of determining COVID-19 
with Scat-NET is as follows:  

Step 1 : Scattergram images containing COVID-19 (− ) and COVID-19 
(+) cases obtained from the WBC blood test were obtained. 

Scattergram images are obtained from patients. A DXH-800 device 
was used to obtain neutrophils, eosinophils, lymphocytes and mono-
cytes from WBCs in the 2D plane. This device includes a light emitting 
diode (LED) or laser, as shown in Fig. 4. With the use of LEDs, light cells 
pass through; as a result, the light is perceived at a zero angle. As the 
scattered light passes through the cells, the cell structure is reflected by 
the absorbed light. Changes in impedance indicate the cell size. The 
representation of the obtained cell dimensions in the 2D plane is called a 
scattergram. Scattergram images obtained from patient WBC samples 
constitute the input of the proposed system. Fig. 4 shows the scattergram 
image obtained from the WBC blood sample.  

Step 2 : Give data as an input to the model and train the proposed 
model. In CNN models, a set of convolution, normalization, ReLu 
and pooling layers are applied on each image. Due to these steps, 
the feature vectors of each image are obtained. The classification 
process is completed by applying dropout, fully connected and 
softmax operations to the feature vectors. The basic layer prop-
erties of the Scat-NET architecture are given in Fig. 5. 

Convolution Layer: This layer is the main building block of the 
CNN. This layer, which is responsible for perceiving the properties of the 
picture, is the most important component of the CNN. This layer applies 
some filters to the image to extract low- and high-level features in the 
image. Filters can be of different sizes, such as 3 × 3, 2 × 2. Due to the 
filters, the output data are created by applying the convolution process 
to the images from the previous layer. As a result of the convolution 
process, an activation map of the image is formed. The activation map 
gives the regions where features specific to each filter are discovered. In 
other words, it determines which parts of the image are important. 

Normalization: In this layer, which is used to reduce the CNN 

training time, each element is normalized by the expression in Eq. (1). 
The normalization process is performed using a certain number of 
neighbouring channels. In Eq. (1), x’ is the normalized value, and x is the 
input element. 

x
′

=
x

(

K + α.ss
windowChannelSize

)β (1) 

K, α, and β are the hyperparameters in the normalization, and ss is 
the sum of squares of the elements in the normalization window. 

ReLU: ReLU is the most commonly used activation function in 
models developed based on deep neural networks. One of the most 
important features of this layer is that it pulls the negative values in the 
input data to zero. Thus, faster learning of the network is provided. The 
ReLu function used after the convolution and normalization layers is 
given in Eq. (2). 

f (x)=
{

x x ≥ 0
0 x < 0 (2) 

Pooling: The purpose of using the pooling layer after the ReLU layer 
is to reduce the number of parameters and dimensions of the network. 
There are two types of pooling methods. The first is the average pooling 
method, which takes the average of the values in the pixels the filter is 
applied to, and the second is the maximum pooling method, which takes 
the maximum value in the pixels. The maximum pooling method is often 
used because of its better performance. 

Dropout: The dropout layer is used during training to eliminate 
some of the neurons to prevent overfitting. If the network enters an 
excessive learning process, it loses its ability to learn. The drop layer 
randomly sets the input items to zero with a given probability. Thus, the 
network is prevented from memorizing. 

Fully Connected: The fully connected layer (FC) operates on an 
input where each input is connected to all neurons. FC layers are often 
found towards the end of the CNN architecture and are used to optimize 
goals such as class scores. 

Softmax and Classification Layers: For classification problems, a 
softmax layer followed by a classification layer follows the last fully 
connected layer. The output unit activation function is given in Eq. (3). 

yr(x)=
ear(x)

∑k
j=1ear (x)

(3)  

where 0 ≤ yr ≤ 1 and. 
∑k

j=1
eaj(x)

Fig. 5. Layer properties of the Scat-NET.  
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Step 3 : Train the Scat-NET model based on optimized hyper-
parameters. The hyperparameters used for training the network 
are shown in Table 1.  

Step 4 : Apply the k-fold validation model to prevent over-fitting. Cross- 
validation is applied to fix the overfitting problem to provide a 
check on the errors. Thus, healthier classification results are 
obtained, and it is checked whether the classification has been 
made correctly. Fig. 6 shows the change in the loss function and 
accuracy for each value of k. The loss function is calculated as 
given in Eq. (4). K indicates the number of classes, and N in-
dicates the number of samples. Here, tij indicates that the ith 
instance belongs to the jth class, and yij denotes the output of the 
ith instance for the jth class. 

Loss= −
∑N

i=1

∑K

j=1
tijlnyij (4)    

Step 5 : Evaluation of the results. The proposed model uses a system 
with 8 GB RAM, an i7 9750H processor, and a GeForce GTX 
1050 PC and was implemented with the MATLAB package pro-
gram. The performance parameters are the sensitivity (S), spec-
ificity (Sp), F1-score, Matthews correlation coefficient (M), area 
under curve (AUC) and accuracy (A), calculated from the 
confusion matrix obtained in the experimental results. True 
positive (TP), false positive (FP), true negative (TN) and false 
negative (FN) values were used to calculate the measurements. 
The metrics calculated with these values are given in Table 2. 

5. Experimental results 

In this section, we present the performance of alexnet, googlenet, 
Resnet18 and Scat-NET in classifying scattergram images. 

In experimental studies, 30% of the 335 scattergram images were 
used for testing, 10% for validation and 60% for training. First, the 
Alexnet, Googlenet and Resnet18 models were used to classify COVID- 

19 cases using scattergram images. The performance parameters ob-
tained are shown in Table 3. 

The classification success of the proposed Scat-NET was determined 
by applying k-cross validation to the data. Cross validation was con-
ducted 5 times. The performance parameters and their average values 
are given in Table 4. Confusion matrices for each iteration are given in 
Fig. 7. 

6. Discussion 

The female (age mean = 41.25) and male (age mean = 42.62) 
numbers of 135 COVID-19 patients (age mean ± SD = 41,9 ± 10,6) were 
67 and 68, respectively. The RT-PCR results of 13 of these patients 
(9.63%) were negative, and the diagnosis of COVID-19 was made by CT 
scans. In 50 patients (37%), although the PCR results were positive, 
there was no lung finding. The non-COVID-19 group consisted of 200 
individuals (age mean ± SD = 40.12 ± 10,25). One hundred of them 
were female (age mean = 41.51), and 100 of them were male (age mean 
= 38.75). To evaluate the scattergram images obtained from all 

Table 1 
Hyperparameters used in the training process of the Scat-NET.  

Parameter Value 

Initial Learn Rate 0.001 
Execution Environment Cpu 
Max Epoch 15 
Validation Frequency 3 
Mini Batch Size 3 
Optimizer Stochastic Gradient Descent (SGDM)  

Fig. 6. Loss function and accuracy change.  

Table 2 
Performance parameters.  

S = TP/(TP + FN) 

SP = TN/(FP + TN) 
P = TP/(TP + FP) 
NPV = TN/(TN + FN) 
FPR = FP/(FP + TN) 
FDR = FP/(FP + TP) 
FNR = FN/(FN + TP) 
A = (TP + TN)/(P + N) 
F1 = 2TP/(2 TP + FP + FN) 
M = TP*TN-FP*FN/sqrt((TP + FP)*(TP + FN)*(TN + FP)*(TN + FN)) 
AUC = 1/2 ((TP/(TP + FN))+(TN/(TN + FP))) 

S: sensitivity, SP: specificity, P: precision, NPV: negative predictive value. 
FPR: false positive rate, FDR: false discovery rate, FNR: false negative rate. 
A: accuracy, F1: F1 Score, M: Matthews correlation coefficient, AUC: area under 
curve. 
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Table 4 
Performance parameters.   

The proposed method performance parameters (%) 

Iteration S SP P NPV FPR FDR FNR A F1 M AUC 

1 92.31 93.44 90 95 6.56 10 7.69 93 91.14 85.37 92.88 
2 91.89 90.48 85 95 9.52 15 8.11 91 88.31 81.18 91.18 
3 94.74 93.55 90 96.67 6.45 10 5.26 94 92.31 87.47 94.15 
4 91.89 90.48 85 95 9.52 15 8.11 91 88.31 81.18 91.18 
5 90.48 96.55 95 93.33 3.45 5 9.52 94 92.68 87.68 93.52 
Average 92.26 92.9 89 95 7.1 11 7.74 92.4 90.55 84.58 92.58  

Fig. 7. Confusion matrices obtained by applying k-cross validation.  

Table 5 
Demographic properties and laboratory values of the dataset.   

COVID-19, n = 135 Non-COVID-19 n = 200 

Min Max Interquartiles (25%–75%) Min Max Interquartiles (25%–75%) 

AGE 21 62 35–50 7 59 32–49 
WBC 3.3 11.2 4.7–6.8 4 13.5 6.7–9.2 
NEU 1.09 8.42 2.53–4.47 2 9.16 3.61–5.72 
LENF 0.33 4.08 1.06–1.81 0.85 4.68 1.97–2.82 
MON 0.1 1.96 0.44–0.8 0.064 1.2 0.47–0.71 
EOS 0.001 0.33 0.01–0.09 0.001 0.87 0.09–0.23 
BAS 0.01 0.1 0.02–0.04 0.001 0.13 0.03–0.06 
PLT 106 413 176–244 143 435 220–292 
CRP 1.1 237 4.02–15.2 1.1 19.7 1.63–5.35 
D-Dim 0.1 3.03 0.25–0.58 0.1 0.93 0.16–0.36 
Ferr 6 1151 30–139 7 378 18–81  

Table 3 
Pretrained model performance parameters.   

S SP P NPV FPR FDR FNR A F1 M AUC 

Alexnet 89.47 90.32 85 93.33 9.68 15 10.53 90 87.18 79.06 89.89 
Googlenet 86.84 88.71 82.5 91.67 11.29 17.50 13.16 88 84.62 74.86 87.77 
Resnet18 85.37 91.53 87.50 90 8.47 12.5 14.63 89 86.42 77.20 88.45  
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individuals with and without COVID-19, patients without chronic dis-
eases were included in the study. The demographic properties and lab-
oratory values of the data set are given in Table 5. 

While the blood parameters specified in Table 5 were taken from 
each patient, scattergram images were obtained from the WBC. First, 
scattergram images were classified using well-known CNN methods. In 
these models, the highest accuracy was determined to be 90% with the 
Alexnet model. In the Alexnet architecture, where the highest results 
were obtained, the F1 score was 87.18%, and the AUC was 89.89%. In 
addition, Matthews’ correlation coefficient, which indicates the classi-
fication success, was 79.06%, and the sensitivity and specificity values 
were 89.47% and 90.32%, respectively. The percentage of healthy in-
dividuals (NPV) was 93.33%, and FPR, FDR, FNR values that should be 
close to zero were 9.68%, 15% and 10.53%, respectively. 

A 25-depth Scat-NET architecture was developed to distinguish 
COVID-19 patients with higher accuracy. The results were obtained 
using fivefold cross validation. As can be seen from Table 4, the accu-
racy, Matthews’ correlation coefficient and AUC values are 92.4%, 
84.58% and 92.58%, respectively. The patient detection ability (sensi-
tivity) and specificity to find healthy individuals were 92.26% and 
92.9%, respectively. The percentage of healthy individuals (NPV) was 
95%. The FPR, FDR, and FNR values were 7.1%, 11% and 7.74%, 

respectively. The CT scans of 50 of 135 COVID-19 patients were negative 
according to the doctor. In the Scat-NET using scattergram images, all of 
the patients with positive RT-PCR tests and negative CT scans were 
found to be positive. In addition, as shown in Fig. 7, the number of cases 
in which COVID-19 patients were negative was 4, 6, 4, 6 and 2. On 
average, 4.2 COVID-19 patients were positive. When these results are 
compared with the doctor’s controls, the proposed method has higher 
accuracy than the CT scans. A literature comparison is shown in Table 6 
for a better evaluation of Scat-NET and a better comparison of the results 
obtained. 

Table shows similar trends to those shown by Brinati et al. (2020) 
and Cabitza et al. (2020), in that changes in the CBC and WBC blood 
parameters could be a symptom of COVID-19. Using machine learning- 
based algorithms, COVID-19 patients were determined to have 92%– 
95% sensitivity and 92%–96% specificity. In Osman’s study on the 
diagnosis of COVID-19 from scattergram images, COVID-19 was diag-
nosed with statistical tests [8]. The use of CT images for suspected pa-
tients with negative RT-PCR testing is now the standard. Therefore, 
many researchers have developed decision support systems that assist 
doctors’ decisions. In addition to the known CNN architectures, special 
CNN architectures have been designed for the diagnosis of COVID-19 
disease. With these architectures, COVID-19 disease was diagnosed 
with over 90% accuracy from CT images. As can be seen in Table 6, there 
are studies where high accuracy levels of 98%–99% were obtained [24, 
25] as well as studies where accuracy at levels of 90–95% were obtained 
[19,22,23,26–29]. The results obtained with the 25-depth Scat-NET 
architecture proposed in this article were successful. Parameters such 
as the accuracy, AUC, F1 score, sensitivity and specificity are in parallel 
with the literature. It can be said that a CNN model that works with a 
small number of images and gives good results can often give better 
results when it works with large data. Therefore, operations such as data 
augmentation are not preferred in this paper. 

The results of this study showed that COVID-19 can be successfully 
diagnosed with the proposed Scat-NET architecture. The results show 
that scattergram images can be used in the diagnosis of COVID-19, and 
the proposed architecture can be a helpful model for expert radiologists 
in the diagnosis of COVID-19. We anticipate that more scattergram 
images will be used and that different CNN algorithms can be developed 
to improve the results. 

One of the limitations of our study is the relatively small number of 
data compared to the literature. In addition, we cannot check how to 
treat our models in case of a large class number. In this case, overfitting 
may be a problem. 

7. Conclusions 

In this paper, CBC-DIFF parameters and scattergram images of pa-
tients admitted to the hospital with suspicion of COVID-19 were ob-
tained. A 25-depth Scat-NET architecture is proposed to show that 
COVID-19 can be detected from scattergram images. This study is the 
first to use scattergrams and CNNs in the detection of COVID-19. The 
results showed that scattergram images could be used instead of costly 
CT scans of patients with negative suspected RT-PCR results. With our 
CNN model, which uses scattergram images, a different approach to 
COVID-19 diagnosis has been offered, and an early diagnosis and less 
costly solution have been developed. The model is a useful tool as a 
clinical decision support system to ease the burden on healthcare 
professionals. 

Ethical approval 

Ethics approval for the study protocol was obtained from the local 
area heath ethics committee. It is approved by the Ministry of Health of 
the Republic of Turkey with the form number 2021-01-13T13_56_35. 

Table 6 
Literature comparison.  

Ref. Dataset Model Performance 

Osman 
et al. 
(2020) 

381 scattergram 
images (COVID-19) 

Index test and 
reference test 

S: 85.9%, Sp:83.5 

Brinati 
et al. 

WBC, 177 COVID- 
19. 102 Non- 
COVID-19 

Extremely 
randomized trees, 
DT, naive Bayes 
(NB), random forest 
(RF), SVM 

S: 92%–95% 
Sp: 82%–86% 

Cabitza 
et al. 
(2020) 

CBC, 1624 patient, 
845 COVID-19 

RF, NB, logistic 
regression (LR), 
SVM, and k-NN 

AUC: 0.75–0.78, Sp: 
92%–96%. 

Ardakani 
et al. 
(2020) 

194 images CT (108 
COVID-19 and 86 
Non-COVID-19 l) 

Resnet101, 
Xception 

AUC:0.994, 
A:99.51% 

Khan et al. 
(2020) 

2800 CT images, 
1500 COVID-19, 
1300 normal 

CNN and extreme 
learning machine 

A: 95.1%, S: 95.1%, 
Sp: 95%, P: 94% 

Amyar 
et al. 
(2021) 

1369 CT images 
(449 COVID-19, 425 
normal, 98 lung 
cancer, 397 other 
patients 

Multi-task deep 
learning 

A:94.67% 

Aslan et al. 
(2020) 

219 COVID-19, 
1345 pneumonia, 
1341 normal 

BiLSTM A: 98.70% 

Wu et al. 
(2020) 

300 CT images (150 
COVID-19 and 150 
Non-COVID-19 l) 

Weakly supervised 
deep learning 

S:0.833, Sp:0.956, 
A:90.06%, AUC: 
0.943 

Pathak 
et al. 
(2020) 

852 CT images (413 
COVID-19 and 439 
non-COVID-19) 

ResNet-50 and New 
CNN 

S: 0.9146, Sp: 
0.9478, A: 93.02% 

Zhang 
et al. 
(2021) 

640 CT images (320 
COVID-19 and 320 
non-COVID-19) 

CNN S:93.28%, Sp:94% 
A:93.64% 

Song et al. 
(2020) 

1485 CT images 
(777 COVID-19 and 
708 non-COVID-19) 

DRE-Net A:86% 

Zheng 
et al. 
(2020) 

542 CT images (313 
COVID-19 and 229 
non-COVID-19) 

UNetþ3D deep 
network 

A:90.8% 

Scat-NET 335 scattergram 
images (135 COVID- 
19, 200 Non- 
COVID-19 

CNN A:92.4%, F1: %90.55 
M:84.58%, AUC: 
92.58% S:92.26%, 
Sp:92.9% P:89%, 
NPV:95%, FPR: 7.1% 
FDR: 11%, FNR: 
7.74%  
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