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ABSTRACT

Introduction: Improvement of health in
human immunodeficiency virus/acquired
immunodeficiency syndrome (HIV/AIDS)
patients on antiretroviral therapy (ART) is
characterised by an increase in CD4 cell counts
and a decrease in viral load to unde-
tectable levels. In modelling HIV/AIDS pro-
gression in patients, researchers mostly deal
with either viral load levels only or CD4 cell
counts only, as they expect these two variables
to be collinear. In this study, both variables will
be in one model.
Methods: Principal component variables are
created by fitting a regression model of CD4 cell
counts on viral load levels to improve the effi-
ciency of the model. The new orthogonal
covariate is included to represent the CD4 cell
counts covariate for the continuous time-ho-
mogeneous Markov model defined. Viral load

levels are categorised to define the states for the
Markov model.
Results: The likelihood ratio test and the esti-
mated AICs show that the model with the
orthogonal CD4 cell counts covariate gives a
better prediction of mortality than the model in
which the covariate is excluded. The study fur-
ther revealed high accelerated mortality rates
from undetectable viral load levels as well as
accelerated risks of viral rebound from unde-
tectable viral level for patients with lower CD4
cell counts than expected.
Conclusion: Inclusion of both viral load levels
and CD4 cell counts, monitoring and manage-
ment in time homogeneous Markov models
help in the prediction of mortality in HIV/AIDS
patients on ART. Higher CD4 cell counts
improve the health and consequently survival
of HIV/AIDS patients.

Keywords: Continuous-time Markov model;
HIV progression; Orthogonal CD4; Principal
component analysis

INTRODUCTION

The development of highly active antiretroviral
therapy (HAART) has substantially reduced
morbidity and mortality in the human
immunodeficiency virus/acquired immunodefi-
ciency syndrome (HIV/AIDS) population [1].
HAART reduces the viral load of circulating HIV

Enhanced Digital Features To view enhanced digital
features for this article go to https://doi.org/10.6084/
m9.figshare.7172264.

C. Shoko (&) � D. Chikobvu
Department of Mathematical Statistics and Actuarial
Sciences, University of the Free State, Bloemfontein,
South Africa
e-mail: claris.shoko@gmail.com

P. O. Bessong
Department of Microbiology, University of Venda,
Thohoyandou, South Africa

Infect Dis Ther (2018) 7:457–471

https://doi.org/10.1007/s40121-018-0217-y

http://orcid.org/0000-0002-0896-4387
http://dx.doi.org/10.6084/m9.figshare.7172264
http://dx.doi.org/10.6084/m9.figshare.7172264
http://dx.doi.org/10.6084/m9.figshare.7172264
http://dx.doi.org/10.6084/m9.figshare.7172264
https://doi.org/10.1007/s40121-018-0217-y
http://crossmark.crossref.org/dialog/?doi=10.1007/s40121-018-0217-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40121-018-0217-y&amp;domain=pdf


by blocking replication at multiple points in the
virus life cycle [2], resulting in an increase in
CD4 cell counts and increased life expectancy of
individuals infected with HIV. Thus, making
CD4 cell counts and viral load the fundamental
laboratory markers regularly used for patient
monitoring and management [3], in addition to
predicting HIV/AIDS disease progression or
treatment outcomes [4].

However, although the primary predictor of
HIV transmission is HIV viral load, relatively
fewer HIV modelling studies include a detailed
description of the dynamics of HIV viral load
along stages of HIV disease progression. This
could be due to the unavailability of data on viral
load, particularly from low- and middle-income
countries that have historically relied on moni-
toring CD4 cell counts for patients on ART
because of higher costs of viral load testing [5].
However, sometimes, both CD4 cell counts and
viral load covariates information is available.

Estill et al. [6] investigated the benefits of viral
load routine monitoring for reducing HIV trans-
mission.Theydevelopeda stochasticmathematical
model representing 1000 simulations for bothCD4
cell counts monitoring and viral load routine
monitoring. Their findings revealed that viral load
routine monitoring and managing in patients
reduce both cohort viral load and transmissions by
31%. Rose et al. [7] investigated frameworks for the
analysis of viral load. They came up with two
frameworks: the single measure viral load and the
repeated measure viral load. Their findings indi-
cated that the repeatedmeasure viral loadhasmore
precision than the singlemeasureviral loadbecause
it utilises all available viral load data, has more
statistical power, and also avoids subjectivity of
defining a ‘‘window’’. Thus, in this study, we pro-
pose a repeatedmeasure viral loadmonitoring and
management using a Markov stochastic model.

Mathematical models have been extensively
used in research into the epidemiology of HIV/
AIDS, because they play an important role in
improving our understanding of major factors
contributing to the spread of this virus. It has
also been argued that multi-state stochastic
models are useful tools for studying complex
dynamics such as chronic disease and also in
determining factors associated with the pro-
gression between different stages of the disease

[8, 9]. A Markov process is defined as a type of
stochastic process in which a system changes in
a random manner between different states.
However, for most of these studies, states of the
Markov processes are based on CD4 cell counts.
For example, Titus analysed HIV dynamics
using a discrete-time Markov chain mathemat-
ical model based on simulated CD4 states [10].
Dessie [9] used a CD4-based Markov model to
determine the factors associated with the pro-
gression between different stages of the disease
for individuals on antiretroviral therapy (ART).

In this study, a continuous-time-homoge-
neous Markov process is used to model the
progression of HIV/AIDS patients. We define
HIV/AIDS progression based on five viral load
states, measured in copies/lL, followed by the
end point, death. More importantly, among the
determinants of HIV/AIDS, both the viral load
counts and CD4 cell counts are included in the
same model, thus making this research different
from previous studies. The CD4 cell count
covariate is included and the effect of
collinearity with viral load is corrected for using
the principal component approach. In addition
to that, effects of non-adherence to treatment,
viral load baseline (VLBL), age and gender on
transition intensities is assessed. Transitions
between the viral load states is considered to be
bi-directional using data recorded from a cohort
of 320 HIV? patients from a wellness clinic in
Bela Bela, South Africa.

Continuous-Time Markov Processes

Transitions between states are assumed to fol-
low a stochastic Markov process, that is, transi-
tions to the next state depend only on the
current state occupied by a patient. The previ-
ous states occupied by an individual do not
matter; that is, the memoryless property of the
Markov models. These transitions are described
using the transition probabilities (pijðtÞ), transi-
tion intensities (aij), from state i to state j. The

functions pijðtÞ are continuously differentiable

and are subject to the initial condition:

pij 0ð Þ ¼ dij ¼
1; if i ¼ j
0; if i 6¼ j

�
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where dij is a kronecker delta, pij 0ð Þ ¼ 1; i ¼ j

means the patient’s state definitely does not
change when no time elapses and pij 0ð Þ ¼
0; i 6¼ j means that, when no time elapses, we
are sure that the patient’s state cannot change
with certainty. The transition intensity is
defined as;

aij ¼
dðpijðtÞÞ

dt

����
t¼0

¼ lim
Dt!0

pij Dtð Þ � aij
Dt

; i; j 2 C; j 6¼ i

and aiiðtÞ ¼ �
P

j 6¼i aijðtÞ for each i 2 C. In this

study, transition probabilities depend only on
the elapsed time and not on the chronological
time. Thus, the Markov process is time-homo-
geneous, implying that pij t; t þ sð Þ ¼ pij sð Þ and

aij tð Þ ¼ aij.
The effect of the above explanatory variables

(covariates) on the transition intensities is
modelled using the proportional intensities:

aijðZÞ ¼ að0Þij expðb0ijZÞ; i 6¼ j; ð1Þ

where Z is a k-dimensional vector of explana-
tory variables, bij is a vector of k regression

parameters relating to the instantaneous rate of
transitions from state i to state j to the covari-

ates Z; and að0Þij is the baseline transition inten-

sities with covariates set to their means.

METHODS

Data Description

The model is applied to data from a heterosex-
ual group of 320 HIV patients on HAART from a
Wellness clinic in Bela Bela, South Africa, from
2005 to 2010. These patients were observed
after 3 months of treatment uptake and every
6 months thereafter. This yielded 2259 obser-
vations. Of these patients, 224 were females and
96 were males, 172 were aged between 15 and
45 years and 72 were over 45 years. The mean
age of the patients at enrolment was
40.62 years. A total of 267 had a VLBL above
10,000 copies/lL and 49 had a VLBL below
10,000 copies/lL. At enrolment, the mean viral

load was 138 208 copies/lL with a maximum of
818,600 copies/lL. A total of 226 patients had a
CD4 baseline below 200 cells/mm3 and 96 had a
CD4 baseline above 200 cells/mm3. During the
course of treatment, a number of factors were
considered. These include non-adherence to
treatment therapy, treatment change, treat-
ment line and resistance to treatment, with 36
showing some signs of non-adherence to treat-
ment which influenced the need for treatment
change.

For each and every assessment time point,
blood samples were obtained from each patient,
and the plasma HIV RNA was measured using
an Amplicor HIV-1 monitor assay kit which has
a lower limit of sensitivity of 50 copies/lL. Thus,
HIV RNA below 50 copies/lL is undetectable.

At t ¼ 0, the regimens that were mostly
administered to patients were the triple combi-
nation therapy, d4T-3TC-EFV (208 patients) and
d4T-3TC-NVP (92 patients). d4T and 3TC rep-
resent Stavudine and Lamivudine, respectively,
which fall into the nucleoside reverse tran-
scriptase inhibitors (NRTI) class. EFV and NVP
stand for Efavirenz and Nevirapine, respec-
tively, and are from the non-nucleoside reverse
transcriptase inhibitors (NNRTI) class.

In patients who showed some signs of non-
adherence, d4T was substituted by AZT (Zi-
dovudine). A switch from d4T-3TC-EFV to AZT-
3TC-EFV was most common, rising from 10
patients in the first 6 months to 92 patients at
30 months. During the same period, the num-
ber of patients who switched from d4T-3TC-
NVP to AZT-3TC-NVP rose from 6 to 45. After 1
year of treatment uptake, 1 patient was intro-
duced to FTC-TDF-EFV and, after 3.5 years, the
frequency increased to 10 patients. Another
combination of FTC-TDF-NVP was also intro-
duced to 3 patients after 2 years, and the num-
ber rose to 7 after 3 years. AZT-3TC-LPV/r was
also administered, and at t = 0, 2 patients were
administered with this triple combination.
Other treatment combinations that were
administered include FTC-TDF-NVP, AZT-ddI-
LPV/r, d4T-3TC-LPV/r, ddI-d4T-3TC, and FTC-
TDF-LPV/r. However, these were not adminis-
tered frequently.
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Compliance with Ethics Guidelines

The procedures used in this study were approved
by the Research Ethics Committee of the Univer-
sity of Venda, South Africa (Protocol number
SMNS/13/MBY/01/0625), in accordance with the
1964 Helsinki declaration and its subsequent
amendments. Additionally, permission to access
health facilities was obtained from the Limpopo
Provincial Department of Health, South Africa,
and the collaborating health facilities. Informed
consent was obtained from the study participants
prior to their involvement, and the data obtained
were stripped of personal identifiers to ensure the
confidentiality of the participants.

Principal Component Analysis

Principal component analysis is a technique
used to combine highly correlated factors into
principal components that are much less highly
correlated with each other, which improves the
efficiency of the model.

In this study, the predictive power of viral
load values (I1) and CD4 values (I2) is explored.
Two new, uncorrelated factors, I�1 and I�2, can be

constructed as follows:

Let I�1 ¼ I1

Then, we carry out a linear regression
analysis to determine the parameters c1 and c2
in the equation:

I2 ¼ c1 þ c2I
�
1 þ e1

c1 and c2 are the intercept and slope parameters
of the regression model, respectively, and e1 is
the ‘error’ term or residual, which by definition
is independent of I�1 ¼ I1.

We then set:

I�2 ¼ e1 ¼ I2 � ðc1 þ c2I
�
1Þ

By construction, I�2 is uncorrelated with the

viral load values (I1), since I�2 ¼ e1, the residual

term in the equation. I�2 in the model explains

the component of mortality or HIV/AIDS
progression that cannot be explained by the
viral load values alone (or in the absence of CD4
cell counts).

The residuals (I�2) from the fitted model are

included with the original HIV data as the new
orthogonal variable, the orthogonal CD4 cell
counts covariate (residuals). These residuals are
coded as ‘‘1’’ for negative residuals and ‘‘0’’ for
positive residuals. A continuous-time Markov
model for the effects of age, gender, VLBL, non-
adherence (NA), and orthogonal CD4 cell
counts (I�2) on HIV progression based on the

viral load is fitted using the ‘‘msm’’ package for
multistate modelling in R. The variables in the
model are coded as follows:

Age ¼
1; �45 years

0; [45 years

�
;

orthogonal CD4 covariate ðI�2Þ

¼
1; if CD4 residual is negative

0; if CD4 residual is positive;

�

Non-adherence NAð Þ ¼
1; Yes

0; No

�
;

Gender ¼
1; male

0; female;

�

Viral load baseline VLBLð Þ

¼
1; [10;000 copies=lL

0; �10;000 copies=lL;

�

Viral load levels ðVÞ

¼

1; VL\50

2; 50�VL\10;000

3; 10;000�VL\100;000

4; 100;000�VL\500;000

5; VL�500;000

6; Dead

8>>>>>>>><
>>>>>>>>:

A negative CD4 cell count residual implies
that the observed CD4 cell count is lower than
the expected CD4 cell count, given the viral
load levels of the patient, and a positive residual
means having a higher CD4 cell count than
expected.

Model Formulation

Consider a stochastic process fV tð Þ; t 2
½0;5Þyearsg defined on a finite state space V ¼
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f1;2;3;4;5;6g based on viral load states as
defined above. V tð Þ represents the viral load
state of an HIV/AIDS patient at time t. This
process represents a Markov process if 8s; t�0
and for every i; j 2 V

P V t þ sð Þ ¼ jjV tð Þ ¼ i;V uð Þ ¼ v uð Þ;0� u\sð Þ
¼ PðV t þ sð Þ ¼ jjV tð Þ ¼ iÞ

The above equation implies that a Markov
process is memoryless, that is, the future
transitions depend on the entire history only
through the present state.

HIV/AIDS progression is based on viral load
states, and possible transitions between these
states are shown in Fig. 1. The transition
between states is assumed to be bi-directional,
that is, movement from state i to state i� 2 is
always via state i� 1; where i ¼ 1;2;3;4;5
define the live states based on viral load. The
model allows for reverse transition due to the
efficacy of treatment and forward due to non-
adherence to treatment. Transitions between
states are shown by the arrows.

Based on Fig. 1, the transition rates are
defined as follows:

Q is a 696 matrix and its elements aij are the

instantaneous rates of transition from one state
to another subject to the conditions that aij ¼
0; i 6¼ j and

P6
j¼1 aij ¼ 0 so that

aii ¼ �
P

i 6¼j aij; i 2 Vn6. aij is independent of

time because the process is assumed to be
homogeneous with respect to time. In the next
section, the parameters of our models are esti-
mated including the transition rates.

The effect of the above explanatory variables
(covariates) on the transition intensities is
modelled using the proportional intensities:

aij Zð Þ ¼ að0Þij exp b0ijZ
� �

; i 6¼ j; ð2Þ

where Z is a k ¼ 5-dimensional vector of
explanatory variables VLBL;Gender; Age; Non-
adherence;CD4orthogonal ðI�2Þ. Thus, the tran-

sition intensity for a patient h in this study is
given by the model:

aij ¼ að0Þij expðb Ageð Þ
ij Ageh þ b Genderð Þ

ij Genderh

þ b CD4BLð Þ
ij VLBLh þ b NAð Þ

ij NAh þ b
I�
2
Þð Þ

ij I�2hÞ

For this model, að0Þij are the baseline

transition intensities that refer to a patient
with age category 0 (over 45 years old),
gender = 0 (female), VLBL = 0 (below 10,000
copies/lL, adherence to treatment and positive
I�2, bij is a vector of k regression parameters

relating the instantaneous rate of transitions
from state i to state j to the covariates Z. The
transition intensities,aij, are presented in rates

per year. aij are the elements of a 6� 6

transition intensity matrix Q from a
continuous time-homogeneous Markov
process.

An important aspect is the inclusion of both
VLBLh and I�2 (the orthogonal CD4 covariate)

derived after allowing for collinearity.

Assessment of the Fitted Models

Based on Eq. (1), two nested models are fitted:
one of the models excludes the effect of the

Q ¼

�ða12 þ a16Þ a12 0 0 0 a16
a21 �ða21 þ a23 þ a26Þ a23 0 0 a26
0 a32 �ða32 þ a34 þ a36Þ 0 0 a36
0 0 a43 �ða43 þ a45 þ a46Þ a46 a46
0 0 0 a54 �ða54 þ a56Þ a56
0 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
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orthogonal CD4 cell counts covariate (nested
model) and the other includes all covariates
including the orthogonal CD4 cell counts
covariate. These models are compared using
their Akaike information criteria (AICs) defined
as follows:

AIC ¼ �2� Log likelihoodð Þ þ 2k;

where �2� Log likelihoodð Þ represents the bias,
2k represents the variance and k is the number
of estimated parameters in the fitted model. The
model with the minimum AIC is considered as
the better model. Further assessment of the fit-
ted nested models is carried out using the like-
lihood ratio test (LRT). The value of the

LRT ¼ �2 loge
LsðĥÞ
Lf ðĥÞ

� �
, where LsðĥÞ is the simple

model (no CD4 cell count orthogonal) and Lf ðĥÞ
is the full model (with CD4 cell count
orthogonal).

Convergence of a Time-Homogeneous
Markov Model

If a Markov model fails to converge, optimisa-
tion criteria result in a failure to calculate stan-
dard errors leading to the exclusion in the
calculation of confidence intervals for the esti-
mated parameters. After running the analysis
using the ‘msm’ package in R, the statistical
package warns if ‘optimisation has probably not
converged to the maximum likelihood—Hes-
sian matrix not positive definite.’ To ensure that

the model converges, a scaling factor is used to
normalise the likelihood and to prevent the
overflow within the optimisation process.

RESULTS

In this section, the combined effect of viral load
and CD4 cell counts in the progression of HIV
in patients on treatment is analysed. This is
carried out by first fitting a time-homogeneous
Markov model for the effects of the covariates,
VLBL and NA, on HIV/AIDS progression based
on viral load states. Secondly, a time-homoge-
neous Markov model for the effects of covari-
ates, VLBL, NA, age and the orthogonal CD4 cell
counts covariate is fitted. Comparison of these
models is based on their -2 9 Log-likelihood,
AIC, likelihood ratio tests and also the per-
centage prevalence plots. The results are shown
in the following subsections.

Time-Homogeneous Markov Model
with the Effects of Orthogonal CD4 Cell
Counts Covariate Excluded

A time-homogeneous Markov model is fitted for
HIV/AIDS progression defined by viral load
states. In this model, the effects of the covari-
ates VLBL and NA, to the progression of HIV are
considered. The relationship between these
covariates and the transition intensities is
defined by the following equation:

aij Zð Þ ¼ að0Þij exp b0ijZ
� �

; i 6¼ j;

where Z¼½VLBL;Gender;Age;Non-adherence	 is
a k¼4-dimensional vector of covariates and bij is

a vector of k regression parameters relating the
instantaneous rate of transitions from state i to
state j to the covariates Z and baseline intensi-

ties að0Þij relating to the baseline transition from

state i to state j.
When fitting the time-homogeneous Markov

model, the gender and age of HIV patients have
no significant effects to HIV progression, hence
their exclusion from the results (Table 1), in
which the first column represents possible
transitions from state i to state j, where

Fig. 1 State diagram for the possible transitions between
the first five viral load defined states and the absorbing
state 6 (death)
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i = 1,…,5 and j = 1,…,6. The second column
represents the baseline transition intensities
(with confidence intervals), the third column
gives coefficients (with confidence intervals) to
represents the effects of non-adherence to HIV
progression, and the fourth column gives coef-
ficients (with confidence intervals) to represent
the effects of having a VLBL above 10,000
copies/lL to HIV progression. The results are
given in Table 1.

The results from Table 1 show that, when a
patient’s viral load is above 10,000 copies/lL
(states 3, 4 and 5), rates of viral load suppression
are higher than rates of viral load rebound.
However, from state 2 (viral load between 50
and 10,000 copies/lL), the rates of viral rebound
are higher than the rates of viral suppression.
The rates of viral rebound are increased for
patients who had problems in adhering to
treatment therapy regardless of the original
state.

Patients who started therapy with VLBL
above 10,000 copies/lL experienced higher
rates of viral rebound than patients who started

therapy with VLBL below 10,000 copies/lL.
Having a viral load above 10,000 copies/lL also
accelerates the rates of transition to death from
the undetectable viral load (state 1). The same
group also experienced high risks of transition
from state 2 and state 3, although the risk is
lower than when the patients are in state 1.

The results from Table 1 also show a signifi-
cant reduction in the rate of attaining an
undetectable viral load for patients who were
non-adherent to treatment (state 2-1). This is
indicated by the exclusion of zero in the confi-
dence interval of the estimated parameter.
Although not significant, transitions to death
for patients who were non-adherent are higher
compared to that of adherent patients.

The results show wide confidence intervals
for transitions to death from each of the live
states. This indicates a relatively poor prediction
of mortality by the fitted model. To obtain a
better picture of how the fitted model predicts
mortality, percentage prevalence in each state
are plotted to compare the observed data from

Table 1 Estimated parameters (with 95% confidence intervals) for the time homogeneous model that excludes the effects of
CD4 cell counts

Baseline intensities (að0Þij ) Viral load baseline Non-adherence

State 2–1 3.395 (2.928, 3.935) - 0.209 (- 0.631, 0.213) - 1.002 (- 1.422,- 0.583)

State 1–2 0.495 (0.401, 0.609) 0.020 (- 0.609, 0.649) 0.418 (- 0.167, 1.003)

State 3–2 238.6 (0.079, 71,270) 2.759 (- 4.952, 10.470) - 2.092 (- 6.001, 1.817)

State 2–3 31.57 (0.0097, 10,230) 3.884 (- 3.652, 11.42) - 0.853 (- 4.788, 3.082)

State 4–3 21.34 (3.485, 130.7) - 1.597 (- 12.506, 9.311) 0.337 (- 2.255, 2.930)

State 3–4 2.691 (0.335, 21.61) - 1.930 (- 13.240, 9.379) 0.966 (- 2.010, 3.942)

State 5–4 15.06 (2.413, 93.99) - 0.457 (- 4.413, 3.500) 2.038 (- 11.574, 15.651)

State 4–5 2.495 (0.110, 56.49) 2.393 (- 12.574, 17.360) 2.263 (- 11.646, 16.173)

State 1–6 0.001 (0.00008, 5.306) 5.109 (- 7.984, 18.204) 5.469 (- 4.508, 15.447)

State 2–6 0.249 (0.049, 1.263) 0.961 (- 0.223, 2.145) - 4.618 (- 17.757, 8.522)

State 3–6 0.007 (0.000002, 189,000,000) 0.603 (- 40.234, 41.441) - 0.667 (- 40.809, 39.475)

State 4–6 0.002 (0.000005, 84,440) - 0.295 (- 75.482, 74.893) - 0.055 (- 55.779, 55.669)

State 5–6 0.006 (0.000001, 2,880,000) - 0.344 (- 91.100, 90.411) - 0.143 (- 61.439, 61.152)

-2Log-Likelihood: 2508.101
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the expected data. The percentage prevalence
plots are shown in Fig. 2.

Figure 2 shows that the expected percentage
prevalence give a good fit of the observed per-
centage prevalence only for the live states, that
is states 2, 3, 4 and 5. However, the expected
percentage prevalence underestimates the
observed prevalence for the death state and
overestimates the observed prevalence for state
1. The other anomaly is that of experiencing
more than 40% deaths towards the end of the

study. This is a cause for concern since these
patients were receiving antiretroviral therapy.
This is a further confirmation that the model
does not give a good prediction of mortality. A
decision to include the orthogonal CD4 cell
counts covariate in our model was made and is
discussed in the next subsection.

Fig. 2 Percentage prevalence viral load defined state and the effects of non-adherence and age excluding CD4 orthogonal
variable
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Time-Homogeneous Markov Model
with the Effects of Orthogonal CD4 Cell
Counts Covariate Included

The orthogonal components for this model are
obtained by regressing CD4 cell count on viral
load as discussed earlier. The residuals from this
model are then used to represent the orthogo-
nal covariate, CD4 cell counts, and is now
incorporated in the continuous-time Markov
model.

The results from Table 2 show a significant
model confirming correlation between CD4 cell
counts and the viral load. After regressing CD4
cell counts on viral load, the residuals from the
model are taken to represent the orthogonal
CD4 cell counts covariate. These residuals are
included with the original covariates and then
coded as ‘‘1’’ for negative residuals and ‘‘0’’ for
positive residuals. A negative CD4 residual
implies having lower CD4 cell count than the
expected given the viral load levels. A positive
residual means having a higher CD4 cell count
than the expected. The orthogonal covariate is
then used together with the other covariates to
determine the progression of HIV/AIDS based
on the viral load states.

The relationship between these covariates
and the transition intensities is defined by the
following equation:

aijðZÞ ¼ að0Þij expðb0ijZÞ; i 6¼ j;

where Z ¼ ½VLBL;Gender; Age;Non-adherence;
orthogonal CD4cell counts covariate 	 is a
k ¼ 5-dimensional vector of the covariates and
bij is a vector of k regression parameters relating

the instantaneous rate of transitions from state i
to state j to the covariates Z and baseline

intensities að0Þij relating to the baseline transition

from state i to state j. The inclusion of the
orthogonal CD4 cell counts covariate has
resulted in the significant effects of age on the
progression of HIV, hence its inclusion in
Table 3. However, the covariate gender is still
not significant. The inclusion of the gender
covariate together with the use of a scaling
factor of 4000 resulted in a failure of conver-
gence to a maximum likelihood and a non-
positive Hessian matrix. The adjustment of the
scaling factor to 5000 resulted in normalising
the likelihood, leading to the convergence of
the Markov model. Thus, the gender covariate is
included after adjusting the scaling factor. The
results are shown in Table 3.

The results from Table 3 show that, when the
patient’s viral load is above 10,000 copies/lL,
represented by states 3, 4 and 5, the rates of viral
suppression are higher than the rates of viral
rebound. However, once the viral load is below
10,000 copies/lL (states 2 and 1), patients
experience higher rates of viral rebound than
rates of viral suppression. This is a cause for
concern, since state 1 represents the unde-
tectable viral load level.

Table 3 shows that the risk of viral rebound
from states 1 and 2 is higher in patients who
initiated therapy with a VLBL above 10,000
copies/lL than in patients who initiated ther-
apy with lower viral loads. Other factors that
accelerate viral rebound from state 1 are nega-
tive CD4 residuals and non-adherence to treat-
ment. From state 2, males experience higher
risks of viral rebound than their female coun-
terparts. However, when viral load is above
10,000 copies/lL, males have increased rates of
transitions to good states and reduced rates of
transition to bad states than females.

Table 2 Estimated parameters for the regression model for CD4 cell counts on the viral load

Estimate SE t value Pr(> |t|)

c1 (intercept) 419.8 7.000 59.98 \ 2e-16 ***

c2(slope) - 0.0008477 0.00007415 - 11.43 \ 2e-16 ***

Multiple R-squared: 0.06015; VIF = 1.06015
F-statistic: 130.7 on 1 and 2042 DF, p value:\ 2.2e-16
***Significant at p\ 0.001
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The results also show increased rates of
transitions to death (state 6) from state 1. This is
mainly caused by non-adherence to treatment
followed by having a viral load above 10,000
copies/lL, age and then orthogonal CD4 cell
counts covariate. Thus, younger patients, below
the age of 45 years, and patients with CD4 cell
counts lower than expected have accelerated
risks of death from state 1.

The estimated parameters in Table 3 have
narrow confidence intervals for transitions that
took place between live states: transitions from
i toj, where j is not an absorbing state.

Transitions to death have wider confidence
intervals. For transitions between live states, the
estimated parameters for the variable CD4 cell
counts orthogonal have narrow confidence
intervals, indicating that the inclusion of the
orthogonal CD4 cell counts covariate gives rise
to more precise estimates than the first model.
The model with the orthogonal CD4 cell counts
covariate has a lower - 2 9 Log-likelihood than
the model without the covariate.

Figure 3 shows the percentage prevalence
plots for each of the states given that CD4
residual is included in the model. Figure 3 helps

Fig. 3 Percentage prevalence plots for continuous-time-homogeneous Markov model in which the CD4 cell counts
orthogonal component is included as a covariate
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in assessing whether the expected percentage
prevalence gives a better fit of the observed
prevalence in the death state (state 6) compared
to the results in Fig. 2.

The results from Fig. 3 show that, if HIV
progression is defined by viral load states with
the inclusion of the orthogonal CD4 cell counts
covariate, this results in a better fit of the
observed prevalence. As a result, for the death
state, the expected percentage prevalence state
explains the observed percentage prevalence
better than the model without the orthogonal
CD4 cell counts covariate .

Assessment of the fitted models

The fitted models were assessed to identify the
model that best describes the data. Assessment
of the fitted models is carried using the likeli-
hood ratio test and estimates of AICs. The
model with the lowest AIC is considered as the
best model for the observed data. Table 4 shows
the results.

The likelihood ratio tests from Table 4 show
that the continuous-time-homogeneous Mar-
kov model defined by viral load states with the
orthogonal CD4 cell counts covariate, and
including the gender variable, gives the best fit
to the data. However, since the interest is in the
lowest AIC for our model, the model with the
orthogonal CD4 cell counts covariate, while
excluding the gender variable, is the best model.
Thus, a gender difference was not a good pre-
dictor of HIV progression based on viral load
states together with the orthogonal CD4 cell
counts covariate.

DISCUSSION

In this study, a time-homogeneous Markov
model has been developed to explain and pre-
dict the probability of death for HIV/AIDS
patients. The states of the Markov model are
based on viral load levels. A model for HIV/AIDS
progression for the effects of VLBL, NA, gender
and age is fitted first. From this model, the
covariates age and gender were excluded, since
they failed to predict HIV/AIDS progression
based on viral load levels since their coefficients
were insignificant. Next, we used a time-ho-
mogeneous model for the effects of the same
covariates with the orthogonal CD4 covariate
included. This resulted in the variable age con-
tributing significantly to the HIV/AIDS pro-
gression. The variable gender had significant
effects after adjusting the scaling factor from
4000 to 5000 to ensure convergence of the
optimisation process. Randarajan et al. [11], in
their study, also revealed the non-significant
effects of the variable gender in viral suppres-
sion. However, this may not be comparable to
our studies because they used a logistic regres-
sion model, while our findings are based on a
continuous-time-homogeneous Markov model.
Construction of the orthogonal CD4 cell counts
covariate used the principal component
approach to address the issue of collinearity of
the viral load and the CD4 cell counts covari-
ates. Most researchers deal with either of the
two variables when developing models

The results from the analysis showed that, if
HIV progression is defined by viral load states
and the variable CD4 cell count is excluded

Table 4 Likelihood ratio test for the fitted models

Likelihood ratio test for the models Preferred model 2 2 log
LR

df p

Without CD4 orthogonal covariate versus with CD4 orthogonal

covariate

With CD4 orthogonal

covariate

934.425 26 10-4

With CD4 orthogonal covariate versus with CD4 orthogonal

covariate including gender

With CD4 orthogonal

covariate including gender

951.803 39 10-4

AIC for the Markov model without CD4 orthogonal covariate = 2586.101. AIC for the Markov model with CD4
orthogonal covariate = 1703.676. AIC for the Markov model with CD4 orthogonal covariate and gender
variable = 1712.298
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from the model, the expected percentage
prevalence underestimates mortality from a
period of 0.5 years of treatment uptake. This
resulted in a death prevalence of over 40%
which is unrealistic considering patients were
on ART.

The orthogonal CD4 cell counts covariate
was included in the continuous-time Markov
model defined by viral load levels so that HIV
mortality is explained and predicted in a better
way. The results from the fitted model showed
an improvement in the – 2 Log-likelihood
compared to the model without the orthogonal
CD4 cell counts covariate. The model also had
the lowest AIC. The death prevalence from this
model was lower than 20%.

The results also show high risks of viral
rebound from undetectable viral load levels
which was mainly caused by non-adherence to
treatment, having negative CD4 residuals and
starting therapy when the VLBL was above
10,000 copies/lL. Having CD4 cell counts that
are lower than expected increases the rates of
viral rebound from undetectable levels. These
findings are also corroborated by the studies of
Silveira et al. [12] which showed that a higher
prevalence of undetectable viral load levels have
been associated with lower levels of VLBL at the
beginning of treatment. This supports the issues
raised by Chesney [13] that, without proper
adherence, antiretroviral agents are not main-
tained at a sufficient concentration to suppress
HIV replication. Pasternak et al. [14], in their
study, also demonstrated that incomplete ART
adherence is associated with increased levels of
cell-associated HIV-1 RNA.

Our findings also showed high risks of mor-
tality from the undetectable viral load for non-
adherent patients, patients who initiated ther-
apy with a viral load level above 10,000 copies/
lL, younger patients below the age of 45 years
and patients whose CD4 cell counts were lower
than expected. This could be due to the findings
by Mujugira et al. [15], whose study revealed
delayed ART initiation, failure to achieve viral
suppression, and virologic rebound among
young patients.

Continuous-time-homogeneous Markov
models have the ability to handle multiple
outcomes compared to the Kaplan–Meier and

Cox proportional hazards models. However, its
memoryless property places limitations on the
disease history behaviour, especially when
dealing with HIV patients on ART whose
adherence to treatment is likely to improve with
time.

The other limitation is that the study was
limited to one centre.

CONCLUSIONS

In conclusion, the findings reveal the impor-
tance of Principal components approach in
treating collinearity of the viral load and CD4
cell counts covariates when both are in the one
model. As a result, we have discovered that
having lower CD4 cell counts than expected
results in accelerated risks of viral rebound from
undetectable viral load levels,and also acceler-
ated deaths from undetectable viral load levels.
Thus, higher CD4 cell counts improve the
health and consequently the survival of HIV/
AIDS patients. The inclusion of both viral load
and CD4 cell count in the one model give a
better prediction of mortality.
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