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Abstract: The crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM)
microenvironment is critical for homeostasis and hematopoietic regeneration in response to blood
formation emergencies after injury, and has been associated with leukemia transformation and
progression. Intercellular signals by the BM stromal cells in the form of cell-bound or secreted
factors, or by physical interaction, regulate HSC localization, maintenance, and differentiation within
increasingly defined BM HSC niches. Gap junctions (GJ) are comprised of arrays of membrane
embedded channels formed by connexin proteins, and control crucial signaling functions, including
the transfer of ions, small metabolites, and organelles to adjacent cells which affect intracellular
mechanisms of signaling and autophagy. This review will discuss the role of GJ in both normal
and leukemic hematopoiesis, and highlight some of the most novel approaches that may improve
the efficacy of cytotoxic drugs. Connexin GJ channels exert both cell-intrinsic and cell-extrinsic
effects on HSC and BM stromal cells, involved in regenerative hematopoiesis after myelosuppression,
and represent an alternative system of cell communication through a combination of electrical and
metabolic coupling as well as organelle transfer in the HSC niche. GJ intercellular communication
(GJIC) in the HSC niche improves cellular bioenergetics, and rejuvenates damaged recipient cells.
Unfortunately, they can also support leukemia proliferation and survival by creating leukemic
niches that provide GJIC dependent energy sources and facilitate chemoresistance and relapse.
The emergence of new strategies to disrupt self-reinforcing malignant niches and intercellular
organelle exchange in leukemic niches, while at the same time conserving normal hematopoietic GJIC
function, could synergize the effect of chemotherapy drugs in eradicating minimal residual disease.
An improved understanding of the molecular basis of connexin regulation in normal and leukemic
hematopoiesis is warranted for the re-establishment of normal hematopoiesis after chemotherapy.

Keywords: gap junction; connexin; hematopoietic stem cells and progenitors; stromal cells; niche;
leukemia; mitochondria; reactive oxygen species; tunneling nanotubes

1. Introduction

Lifelong production of blood cells and the robust regenerative capacity of lympho-hematopoiesis
depend on hematopoietic stem cell (HSC) self-renewal, proliferation, and differentiation. HSC reside
in a highly specialized bone marrow (BM) microenvironment (BMME), also called “niche”, that helps
in maintaining HSC quiescence and long-term repopulating activity. In steady-state or stress-adapted
hematopoiesis, long-term HSC (LT-HSC), capable of long-term self-renewal and multipotential
differentiation ability, can differentiate into short-term HSC (ST-HSC) followed by multi-potent
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progenitors (MPP), which generate a series of uni- or oligo-potent lineage-committed progenitors,
and give rise to all mature blood cells [1–3] (Figure 1). The fate of HSC is tightly regulated by
a combination of cell-intrinsic (transcriptional and epigenetic regulators) and cell-extrinsic factors
(soluble growth factors, cytokines, microbial ligands, and adhesive interactions) [4,5]. Several studies
have demonstrated cell-to-cell interactions between HSC and the surrounding niche cells (endothelial
cells, stromal cells, and osteoblasts), which are essential for HSC localization, maintenance, and
differentiation [6–9]. Gap junctions (GJ) are complexes of intercellular channels formed between the
juxtaposed membranes of two adjacent cells which allow the intercellular transfer of ions, metabolites,
soluble factors, and secondary messenger molecules smaller than 1200 Da [10–13]. A growing body of
work has detailed the importance of GJ mediated intercellular communication (GJIC) in the regulation
of signaling pathways required for HSC survival, proliferation, and fate decisions [8,14–18].

Figure 1. Hematopoietic stem cells hierarchy. The hematopoietic stem cells (HSC) pool is
highly heterogeneous, containing long-term hematopoietic stem cell (LT-HSC), intermediate-term
hematopoietic stem cells (IT-HSC), and short-term hematopoietic stem cells (ST-HSC/MPP1). These
cells are multipotent with differing self-renewal abilities. HSC differentiate into MPP2, MPP3,
and MPP4/LMPP subpopulations. MPP2 and MPP3 cells are myeloid biased, and give rise to
common myeloid progenitors (CMP), which can further differentiate into mature hematopoietic
cells via megakaryocyte-erythrocyte progenitors (MEP) and granulocyte-macrophage progenitors
(GMP) stages. MPP4 primarily differentiate into the common lymphoid progenitor (CLP), followed
by mature T, B, and NK cells. In the myeloid bypass model, loss of HSC self-renewal generates
myeloid-restricted repopulating progenitors, which can be megakaryocyte repopulating progenitors
(MkRP), megakaryocyte-erythrocyte repopulating progenitors (MERP), and common myeloid
repopulating progenitors (CMRP), and give rise to erythrocytes, platelets, neutrophils, and monocytes.
MPP-Multi potent progenitors, LMPP-lymphoid-primed multipotent progenitors, EoBP—eosinophil
basophil progenitors, MKP—megakaryocyte progenitors, MK-megakaryocytes.

Niche environment regulates both normal and malignant hematopoiesis by offering needed
nutrients. Leukemia cells, however, modify their surrounding niche into an abnormal but favorable
environment, which outcompetes with the native niches for HSC cell localization, and fails to preserve
the normal HSC pool size by impeding the differentiation at the HSC-progenitor transition [19,20].
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A large cohort of experimental studies suggest that cancer cells consume high levels of glucose and
largely depend on aerobic glycolysis to generate adenosine triphosphate (ATP), however, leukemic cells
display a metabolic shift and are primarily dependent on mitochondrial oxidative phosphorylation
for survival [21,22]. The metabolic reprogramming in leukemia cells is influenced by crosstalk with
surrounding BMME, and cumulative evidence suggests that the BM stromal cells (BMSC) either
indirectly through secreted factors, or directly by cell-to-cell interactions via GJ-mediated channels,
regulate leukemia initiation, progression, and relapse [23,24]. This review intends to discuss the role of
GJ in both normal and leukemic hematopoiesis, and highlight some of the most novel approaches that
may improve the efficacy of cytotoxic drugs. We also highlight possible directions for the development
of successful tumor targeting strategies.

2. Gap Junctions, Connexons, and Connexins

GJ consist of aggregates of transmembrane hemichannels or connexons that adjoin head-to-head
with the connexon of adjacent cells. Each hemichannel consists of six connexins (Cx), which contain
four transmembrane domain (M1, M2, M3, and M4), two extracellular loops (E1 and E2), and
three intercellular domains, including the amino-terminal (NT), the cytoplasmic loop (CL), and the
carboxy-terminal (CT) domains [10–13] (Figure 2A). Connexins are highly conserved chordate proteins
of about 200–500 amino acids, and 21 different connexins in humans and 20 different connexins in
mice have been identified [10–13]. Additionally, based on the similarity of amino acid sequences,
connexins are subdivided into five different subfamilies (α, β, γ, δ, and ε) [10]. Most mammalian
cells express connexins, and there exists strong evidence that many cells simultaneously express more
than one connexin [25–27]. Although many connexins are expressed at the mRNA level, the protein
expression may not reach functional levels in specific types of cells. This is especially important in BM
hematopoiesis where the state of activation and/or differentiation of cell subtypes is highly dependent
on the level of expression and/or function of connexins [15,17,28–32].

Docking of the hemichannels between two neighboring cells is a quick and highly regulated
process, and essential for the formation of a complete GJ channel, providing an intercellular route for
the passage of small ions and metabolites between communicating cells. Hemichannels which are
composed of identical Cx isoforms are known as homomeric connexons, and hemichannels containing
different types of Cx isoforms are referred to as heteromeric connexons. The association of two identical
homomeric or heteromeric connexons forms a homotypic GJ, while the docking of two different
homomeric hexamers, or a homomeric and a heteromeric hexamer, or two different heteromeric
hexamers form heterotypic GJ channels (Figure 2A).
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Figure 2. Cell biology and structure of connexins. (A) Structural organization of a connexin, a connexon,
and a gap junction channel. (1) Connexins contain four transmembrane domains (M1, M2, M3, and
M4), two extracellular loops (E1 and E2), and three intercellular domains i.e., amino-terminal (NT),
the cytoplasmic loop (CL), and the carboxy-terminal (CT) domains. (2) Connexins form hexamers
called hemichannel/connexon. Connexons formed by identical connexin isoforms form homomeric
connexons, whereas connexons composed of two or more different types of connexin isoforms form
heteromeric connexons. (3) Connexons form functional gap junction (GJ) channels by interacting with
either identical homomeric or heteromeric connexons of adjacent cells, forming homotypic GJ channels,
or with different homomeric or heteromeric connexons, forming heterotypic GJ channels. C-Cysteine,
EXT—Extracellular, INT—Intracellular, TM—Transmembrane. (B) Schematic representation of the
steps of connexin gap junction channel synthesis, assembly, and degradation. Biosynthesis of connexin
polypeptides starts at endoplasmic reticulum (ER) membranes, and depending on the type of connexin
(Type 1 or Type 2), hexameric oligomerization occurs either in the ER-Golgi intermediate compartment
(ERGIC) or the trans-Golgi network (TGN). Hemichannels are subsequently transported to the plasma
membrane along microtubules, where they pair with the hemichannels of adjacent cells to form
a complete intercellular GJ channels. Individual GJ channels at the plasma membrane aggregate
to form the GJ plaques, which may contain homomeric and heteromeric GJ channels. Connexin
binding proteins zonula occludens-1 (ZO-1) play a role in regulating GJ assembly and plaque size.
GJ or fragments of GJ are internalized as unique double-membrane connexosomes, and degraded by
lysosomes, ubiquitin-dependent proteasomes, or both.

Connexin Biosynthesis and Turnover

GJ intercellular communication (GJIC) is regulated by connexin biosynthesis, transport, and
assembly, as well as their internalization and degradation. The half-life of connexins is relatively
short, ranging from 1.5 to 5 h [33], however, certain connexins may survive longer e.g., Cx46,
which may survive throughout the lifetime of expressing cells, or Cx30, which survives during the
process of differentiation of some non-hematopoietic cell types [34,35]. Connexins are formed on
the membrane of the endoplasmic reticulum (ER), where they undergo hexameric oligomerization
and intramolecular disulfide bond formation, critical for the docking and functional assembly of the
GJ channel [36–38]. However, substantial evidence suggests that the oligomerization of Cx43, and
possibly Cx46, does not occur within the ER but mainly occurs in the trans-Golgi network (TGN) [39]
(Figure 2B). The post-translational processing of Cx43 and Cx46 might be associated with the ER
quality-control pathways and prevent the premature opening of connexons in the ER membrane.
The completely processed connexin hemichannels finally move to the cell membrane through interaction
with microtubules [40,41]. Many GJIC cluster to form a tightly packed semi-crystalline arrays referred
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as GJ plaques. The outer edges of the GJ plaque are composed of newly synthesized connexons, while
the older GJ channels are found in the center of the plaque, where they get internalized and destined
for degradation [42–44]. The degradation of GJ plaques occurs via the formation of connexosomes
(annular junction), where an entire GJ or a fragment of GJ are removed by lysosomal, phago-lysosomal,
autophagy, or ubiquitin dependent proteasomal pathways [33,45]. Post-translational modifications,
such as phosphorylation, may trigger the internalization and proteasomal degradation of GJ in
different cells. In addition, the tight junction-associated protein, zonula occludens-1 (ZO-1) binds
connexins, including Cx43 and Cx45, via a PDZ domain and regulates GJ assembly and the size of
plaques [46–48] (Figure 2B). While we have advanced our understanding of the life-cycle of connexins
and GJ, there is consensus that certain processes are especially relevant in specific cell types where
the subcellular localization of connexins and GJIC may result in function specialization and specific
secondary messenger gating, cell adhesion, scaffolding, or activation of context-dependent signalomes,
that are relevant in health and disease.

3. Involvement of GJIC in Hematopoiesis

In the 1980s and 1990s, a number of reports identified the presence of GJ in BM and in in vitro
hematopoietic model systems of cell-to-cell interaction [49–53]. The existence of GJ in hematopoietic
cells collected directly from mouse BM was first demonstrated by Campbell, who used a tannic acid
and glutaraldehyde fixative and electronic microscopy techniques to identify GJ between macrophages
and stem cells, monocytes, erythroblasts, and neutrophilic precursors, including promyelocytes,
myelocytes, and metamyelocytes [54]. Yamazaki et al. provided elegant ultrastructural studies on
the microanatomical location of GJ and the effect of hematopoietic Kit mutations on the upregulation
of GJ [55–59]. Rosendaal and colleagues further described anatomical and functional details of
the expression and role of GJ and Cx43 in lympho-hematopoietic tissues [18,60–69] and Evans and
colleagues identified the expression and function of connexins in lymphocytes [70–75]. The existence
of functional GJ channels in BMSC, and in between hematopoietic stem and progenitor cells (HSPC)
and BMSC in both normal and stress hematopoiesis [18,63,68], strongly supported a role for GJIC
in hematopoietic homeostasis and regeneration, but as of 2010, there was no clear mechanistic
understanding of how connexins control HSC activity in the BM.

3.1. Connexins in HSC

The expression of GJ protein in a hematopoietic compartment is indispensable for both steady-state
and stress hematopoiesis [15,28,29]. Transcript analysis has identified the presence of Cx43, Cx45, Cx31,
Cx31.1, Cx32, Cx37, and Cx50 in the primitive stem cell compartment, primarily in LT-HSC [15,28,29],
while their expression was downregulated during differentiation to progenitors [28]. In normal
hematopoiesis, Cx32 is expressed solely in the primitive HSC compartment (LSK and LK cells),
where it maintains HSC quiescence and stemness [29], and protects them from chemical abrasion and
leukemogenic impacts [76]. Deficiency of Cx32 is associated with decreased leukocytes and platelets
in peripheral blood, with increased cell proliferation and content of hematopoietic progenitors in
the BM [29,76] (Table 1). By contrast, inhibition of Cx32 by mimetic peptides did not phenocopy the
HSPC proliferation seen in Cx32 deficient mice. This could be because Cx32 regulates hematopoietic
progenitor proliferation through cell-intrinsic intracellular signaling, and is independent of functional
Cx32 GJ channel or hemichannels.

The GJ protein Cx43 is highly expressed in LT-HSC. Cx43 is dispensable for the steady-state
hematopoiesis and its deficiency in HSC had no impact on steady-state HSPC differentiation and
peripheral blood counts. Deficiency of p53 however results in the loss of HSC quiescence and a
significant upregulation of Cx43 expression [77]. In contrast, expression of HSPC Cx43 is critical for
hematopoietic reconstitution under stress hematopoiesis, and Cx43-/+ mice treated with cytotoxic
drug, 5-FU (5-fluorouracil) show a delayed and ineffective hematopoietic response with an attenuated
recovery of blood cells [14,15]. HSC are highly quiescent and preserve a low metabolic state to
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protect genomic integrity and retain functional capacity. Quiescent HSCs maintain low levels of
reactive oxygen species (ROS), which supports their self-renewal and long-term repopulation ability.
In contrast, a sustained and abnormal increase in ROS production during genotoxic stress and aging is
associated with HSC differentiation and senescence. LT-HSC are more sensitive to oxidative stress
than progenitors and differentiated cells [15,78,79]. Previously, our group has demonstrated that
hematopoietic regeneration after 5-FU critically depends on HSPC Cx43 function (Figure 3A) [15].
Mechanistically, hematopoietic Cx43 regulates stress-induced hematopoietic regeneration following
the transfer of 5-FU induced ROS from HSPC to the BMME, and prevents ROS-p38-p16/INK4a
mediated HSPC senescence [15]. Interestingly, the deficiency of Cx43 in the BMME phenocopies the
hematopoietic defect associated with Cx43 deficiency in the HSPC compartment. Cx43 GJ also mediate
the communication between primary human CD34+ HSPC and BMSC [80], and engraftment of BM
Cx43+/- HSC is impaired in competitive transplantation models [14]. These findings suggest that
BMME Cx43 expression is equally important for hematopoietic regeneration, and suggests that in stress
hematopoiesis, heterocellular interactions between HSPC and BMME Cx43 are required for an adequate
regenerative response. Expression of Cx43 is linked with constitutive inhibition of autophagy via
direct interaction with autophagy related protein Atg16 and components of the phosphatidyl-inositide
3′-kinase (PI3K) autophagy initiation complex (Vps34, Beclin-1, and Vps15), while its elimination
upregulates autophagosome biogenesis, even in nutrient-rich conditions [81]. In addition, functional
Cx43 regulates mitochondrial integrity and metabolic activity in adipose tissue [82]. A large cohort of
experimental data suggests that enhanced clearance of damaged mitochondria is a key mechanism
in maintaining HSC stemness [83–86]. These findings raise the question of whether Cx43-deficiency
mediated inhibition of hematopoietic regeneration depends on its effect on mitochondrial dynamics
and fate, and warrant further investigation.

3.2. Gap Junctions in the HSC Niche

Stem cell niches are specialized microenvironments that critically regulate HSC maintenance
and function. Considerable evidence has demonstrated the existence of functional GJIC in BMSC,
osteoblasts, mesenchymal stem cells, and endothelial cells [16,17,54,87–89]. In addition, bidirectional
traffic of cytosolic content through GJ was also observed between osteoblasts and BMSC, HSC and
stromal cells, and between endothelial cells and lymphocytes/osteoprogenitors [71,80,90–92]. GJIC
between stromal cells and HSC regulates the proliferation of HSC, while inhibition of transmembrane
communication between HSC and stroma by amphotericin B reduces the ability of HSPC to form
cobblestone-area forming cells and colony-forming units in culture [68]. Interestingly, Cx43 deficiency
in BMSC results in a reduction of functional HSC and progenitor cells in the fetal liver, and impairs
BM HSC proliferation and ST-HSC regeneration upon myeloablation, suggesting that stromal Cx43
acts as a critical regulator of hematopoiesis [16,17]. Analysis of transcript and protein expressions
has demonstrated the presence of Cx30.3, Cx31, Cx31.1, Cx37, Cx40, Cx43, and Cx45 in different
types of hematopoietic-supporting BM and fetal liver niche cells, with Cx43 being the most widely
expressed and the major contributor to GJ communication in the BM microenvironment [17,93] (Table 1).
Expression of Cx43 is 80-100 fold higher in neonatal BM as compared to normal adult mouse BM, and
its expression upregulated in the endosteal space of the BM after 5-FU-treatment [18].
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Figure 3. Schematic representation of normal and leukemic hematopoiesis. (A) Connexin (Cx) is
expressed by hematopoietic stem and progenitor cells (HSPC) and bone marrow (BM) stromal cells.
Gap junctions comprised of Cx43/45 between osteoblasts regulates CXCL12 secretion and HSC behavior
within the niche. During myeloablation, Cx43 protects HSC from reactive oxygen species (ROS)
induced damage by ROS scavenging through pseudosyncytial coupling of BM stromal cells. Cx43
mediated mitochondria transfer from BM stromal cells to HSPC regulates the emergency granulopoiesis
and alleviates inflammation. Angiopoietin-1(Ang-1)/Tie2 and thrombopoietin (TPO)/MPL signaling
maintains HSC quiescence. (B) Expression of Cx43 increased in leukemia initiating cells (LIC)/blast
cells as well as in the surrounding BM niche cells. Leukemic cells receive signals from the BM
microenvironment through diffusible paracrine factors (cytokines, chemokines, and metabolites) and/or
by plasma-membrane fusion with tunneling nanotubes (TNT) or extracellular vesicles (EV). The higher
expression of Cx43 in the leukemic environment by promoting the exchange of survival factors
facilitates the proliferation and survival of malignant cells. High oxidative stress in leukemic cells
further increases ROS levels in BM stromal cells and induces the transfer of mitochondria from stromal
cells to LIC cells/blast cells through TNT and/or EV, while tumor cell CD38 promotes TNT formation.
Transferred functional mitochondria regulate leukemic cells’ bioenergetics and metabolism, and are
associated with leukemogenesis and chemoresistance. Although expression of connexins regulates TNT
formation, their role in TNT assembly and organelle trafficking in the leukemic environment remains
to be determined. BM stromal cells by modulating the TPO/MPL, Ang-1/Tie2, and CXCR4-CXCL12
pathways protect leukemic cells from chemotherapy. Blue arrow indicates increased expression in
leukemia as compared to normal hematopoiesis. EC-endothelial cells. HSC:-Hematopoietic stem cells.
MSC:-Mesenchymal stem cells, OXPHOS: Oxidative phosphorylation.

3.2.1. Osteoblasts

Cells of the osteoblastic lineage are the predominant cells along the endosteum, and function as a
critical regulator of HSC function in the BM [94,95]. In vitro experiments suggest that the osteoblast
cells by modulating secretion of G-CSF and hepatocyte growth factor support the CD34+ human
BM cells in long term culture [96,97]. Interestingly, osteoblasts co-transplanted with BMSC facilitate
the engraftment of HSPC in an allogeneic environment [98]. Osteoblasts produce a wide array of
molecules that are implicated in the maintenance of HSC, including (but not exclusively), osteopontin,
which participates in HSC location and negatively regulates HSC expansion [99,100]; angiopoietin-1
(Ang-1), which regulates HSC quiescence through binding with Tie2 receptors [101]; and CXCL12
and vascular cell adhesion molecule 1 (VCAM-1), both of which are critical for the retention of HSPC
within the BM [102,103] (Figure 3A). Enforced signaling through parathyroid hormone increases the
number of osteoblastic cells and leads to Notch receptor ligand, Jagged 1, mediated increase in HSC
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numbers [94]. However, conditional ablation of osteoblast lineage after treatment with ganciclovir in
Col2.3 Delta thymidine kinase transgenic mice (truncated form of the herpes virus thymidine kinase
gene under the control of a 2.3 kb fragment of the rat α1 type I collagen promoter) shows profound
alterations in hematopoiesis, including decreased number of HSC, lymphoid, myeloid, and erythroid
progenitors in the BM, and progressive bone loss [104]. Cx43 is the most ubiquitous GJ protein in the
BM mesenchymal lineage. It is expressed by chondrocytes, osteoblasts, osteocytes, and osteoclasts, and
regulates osteoblastic differentiation and bone resorption and remodeling [105,106]. The loss of Cx43 in
osteoblast lineage results in cortical thinning, increased marrow cavity area, and bone resorption due to
abnormal osteoblast differentiation [107–109]. In a recent study, Lin et al. observed that the expression
of Cx43 markedly increases during osteogenic differentiation [110]. BMSC Cx43 by upregulating
the GSK-3β/β-catenin signaling pathways positively modulates the osteogenic differentiation, and
plays a critical role in determining bone mass and bone mineral density [110]. Interestingly, Cx43,
via ERK1/2 dependent recruitment of Sp1, regulates osteoprotegerin and restrains osteoclastogenesis
and bone resorption [111]. The carboxy terminal domain of Cx43 serves as a docking platform for
these signaling proteins (ERK1/2 and β-catenin) and is required for efficient bone remodeling. Of note,
osteoblastic Cx43 is indispensable for the maintenance of the cellular content of the BM osteogenic
microenvironment, and by modulating the content of CXCL12 in BM, it regulates the homing of HSC
and progenitors in myeloablative recipients [112] (Figure 3A).

3.2.2. Mesenchymal Stem Cells

Mesenchymal stem cells (MSC) constitute an essential HSC niche component and are able to
self-renew and differentiate into bone, fat, and cartilage. BMSC wrap tightly around arterioles and more
loosely around the sinusoidal blood vessels [95,113,114]. Expression profiling, lineage tracing, and
in vivo passage analyses indicated that nestin+ perivascular cells were bona-fide MSC (nestin+ MSC),
and were tightly associated with BM Lin-/CD48-/CD150+/CD41- HSC and sympathetic nerve fibers in the
close proximity of sinusoids [88,115]. Nestin+ MSC are a major contributor in the cellular niche involved
in HSC maintenance, and they express and/or secrete cytokines and chemokines such as CXCL12, stem
cell factor (SCF), IL-7, osteopontin, angiopoietin-1, and VCAM-1 [113,114,116,117]. The expression
of both Cx43 and Cx45 is higher in nestin+ BM-MSC, and cooperatively regulates the secretion of
CXCL12, which is essential for HSC retention in the BM, quiescence, and survival [8,88]. Schajnovitz
et al. demonstrated the dual regulatory role of connexins in CXCL12 production, and suggested
that (1) both Cx43 and Cx45 regulate the transcription of CXCL12 by nuclear Sp1 transcriptional
activity, and (2) secretion of CXCL12 is cell contact-dependent and requires functional GJIC, while
non-contacting BMSC can produce, but are unable to secrete CXCL12 because of a lack of intercellular
communication [8]. In vivo inhibition of intercellular GJ formation by mimetic peptide without
altering the expression of Cx43 and Cx45 attenuates the secretion of CXCL12 by blocking the calcium
transmittance in neighboring BMSC, resulting in defective hematopoiesis and reduced homing of
transplanted HSPC to the BM. Concomitantly, stress or G-CSF induced mobilization of HSPC is
associated with the downregulation of Cx43 and Cx45 GJIC, which is accompanied by a lower secretion
of CXCL12 in the BM [8] (Figure 3A).

3.2.3. Endothelial Cells

BM endothelial cells (EC) line the interior of all blood vessels and regulate HSC expansion and
the reconstitution of hematopoiesis after myeloablation [6,7,95,118]. EC expresses Cx37, Cx40, Cx43,
and Cx45, which contribute to the regulation of blood flow, leukocyte adhesion and extravasation,
vasomotor activity, angiogenesis, and the functional maintenance of vasculature [119,120]. The GJ
protein, Cx43 is the major connexin expressed by EC and maintains the normal vascular function,
and EC specific deletion of Cx43 in mice (EC-Cx43∆/∆ mice) results in hypotension, bradycardia, and
compensatory hyperreninemia and hyperangiotensinemia [121]. Previous studies from our group
have demonstrated the presence of an increased number of LT-HSC, ST-HSC, and progenitors in



Int. J. Mol. Sci. 2020, 21, 796 9 of 26

the peripheral blood of EC-Cx43∆/∆ mice secondary to hyperangiotensinemia, mostly angiotensin-II
(Ang-II) [9]. Ang-II signals are mediated by two types of receptors, angiotensin type 1 receptor (AT1R)
and type 2 receptor (AT2R). Ang-II, through both AT1R and AT2R in HSPC, and through AT2R in the
EC, synchronously modulates cytoskeletal rearrangement and RhoA activity in HSPC and BM EC,
which is associated with downregulation of active membrane β1-integrin expression, and results in
HSPC de-adhesion and mobilization in the circulation [9]. Concomitantly, chronic Ang-II infusion
increases HSPC and LT-HSC in the BM, augments myeloid differentiation, and attenuates the homing
and engraftment potential of donor HSC [122].

BM sinusoid EC (SEC), defined as VEGFR3+/Sca1-/VE-cadherin+/VEGFR2+ constitute the cellular
component extending through the largest surface area of the BM vascular niche, and play an essential
role after chemo/radiotherapy by producing various factors such as Notch ligands, CXCL12, SCF,
and pleiotrophin, that promote hematopoietic regeneration [6,123–125]. Of note, transplantation of
SEC alone in irradiated mice rescues in vivo hematopoiesis and increases the frequency of surviving
mice [126]. The regenerative potential of SEC is contact-dependent, and the angiocrine factors released
by BM SEC through direct cell-to-cell contact with HSPC activate Notch signaling in HSPC and
promote long-term ex vivo expansion of repopulating LT-HSC and in vivo reconstitution of the
LT-HSC pool following myeloablation [6,7]. Similarly, human BM CD34+ progenitors exposed to
irradiation and co-culture with EC show recovered reconstitution potential, while irradiated CD34+

progenitors cultured with cytokines alone are unable to reconstitute, which further highlights EC
contact-mediated regulation of HSC regeneration [127]. Guo et al. have shown that the deletion of
the Notch ligand, Jagged 2, using endothelial cell-specific Cre strain (VE-cadherin) is dispensable for
steady-state hematopoiesis, while it promotes hematopoietic recovery in myelosuppressive conditions
by activating Notch2/Hey1 signaling in HSPC [128]. In a recent study, Chen et al. demonstrated that
Apelin-expressing (Apln+) EC, representing ≈0.003% of all BM cells, mainly express Cx43 and Cx45
GJ proteins, Notch ligands, and pleiotrophin, and are indispensable for physiological homeostasis
and hematopoietic reconstitution after myeloablation [129]. Apln+ EC substantially increases after
irradiation, and in response to VEGF-A provided by transplanted BM cells, in particular by HSPC and
LSK cells, promotes vascular generation and BM transplantation [129]. Interestingly, the permeability
of different vessels (arterioles and sinusoids) affects the localization of HSC in the BM. BM arteriolar
EC are less permeable and maintain HSC in a ROSlow quiescent state, whereas, HSC in the vicinity of
leaky SEC have increased ROS levels, leading to their activation and augmenting their differentiation
and migration capacity [130].

3.2.4. Bone Marrow Macrophages

Besides stromal niche cells, BM resident macrophages, defined as Gr-1-CD115intF4/80+CD169+,
representing ≈2.6% of total BM cells also promote the retention of HSPC in the endosteal niche through
interaction with osteolineage cells and nestin+ MSC [131,132]. These cells are anatomically juxtaposed
with endosteal osteoblasts and likely to play an important role in bone mineralization [133]. Expression
of Cx43 and Cx37 has been observed in macrophages stimulated with receptor activator of NFκB
ligand (RANKL), lipopolysaccharide (LPS), and pro-inflammatory cytokines TNFα and IFNγ [134–136].
The GJ protein, Cx43 regulates RANKL dependent osteoclastogenesis and genes critical for bone
formation, while blocking of Cx43 GJ channel during osteoclastogenesis results in decreased osteoclast
counts in the BM [136,137]. Expression of Cx37, also noted in osteoblasts, osteocytes, and osteoclasts,
albeit at lower levels than Cx43, is critically involved in the regulation of osteoclast differentiation
and fusion. However, Cx37 deficiency in mice is associated with arrest of osteoclast maturation and
sustained increased in bone mass [138]. In addition, Cx37 GJ present on macrophages/monocytes
inhibits leukocyte adhesion to the endothelium through the release of ATP into the extracellular space,
resulting in inhibition of atherosclerotic plaque formation [139]. Previously, our lab has demonstrated
that autophagy regulator p62, through regulation of IKK/NFκB/CCL4 pathways, plays an important
role in the maintenance of the macrophage-osteoblast niche, which is indispensable for the retention of
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short-term repopulating and myeloid progenitor cells in BM [79,140]. Furthermore, direct cell-to-cell
interaction between osteoblasts and BM macrophages is necessary for the osteoblast differentiation
and the expression of the chemokine CCL4, which modulates CXCL12 dependent HSPC traffic in the
BM [140]. The BM CD169+ M1 macrophages, but not the M0 and M2 macrophages, induce stromal
CXCL12 production by acting specifically on the nestin+ niche cells, and promotes HSPC retention in the
BM [132]. The crosstalk between macrophages and nestin+ MSC is mediated by macrophage-derived
soluble factor oncostatin M, which through the MEK-p38-STAT3 pathway stimulates the expression
of CXCL12 by nestin+ MSC [141]. In vivo depletion of macrophages either by using macrophage
Fas-induced apoptosis transgenic mice, or by the administration of clodronate-loaded liposomes,
resulted in reduced CXCL12 production in the BM and consequent mobilization of HSPC to the
peripheral blood circulation [131].

Cx43 also represents an alternative system of cell communication in the stem cell niche and allows
the exchange of small molecules and organelles between HSC and the BMME. In a recent study, Mistry
et al. demonstrated that in response to emergency granulopoiesis, ROS-induced oxidative stress
opens the Cx43 GJ channel via PI3K-Akt activation and enables mitochondria transfer from BMSC to
HSC [142]. Our unpublished findings further suggest that the Cx43 in HSC, through transfer of healthy
mitochondria from HSC to stromal cells, maintains the energetic balance of BMSC, and positively
regulates BM mesenchymal and hematopoietic regeneration in myeloablative recipients [143], however
further investigations are required to identify the trigger signal(s) involved in the mitochondria
trafficking and whether cells with the transferred mitochondria intrinsically reprogram myeloablative
hematopoiesis, or if it depends on cues from the surrounding microenvironment. The presence
of undocked Cx43 hemichannels in BMSC is also relevant and mediates the transfer of different
metabolites within the extracellular medium [12]. The release of extracellular nucleotides like ATP
through Cx43 hemichannels subsequently activates purinergic receptors, which upon activation
increase HSC expansion and engraftment [32,144,145].

In the last decade, there has been a significant qualitative change in our understanding of the role
of connexins and GJ in blood formation. From merely descriptive reports in the 1990s and 2000s, to a
renewed interest in understanding how GJ control specific functions of HSC in relation with redox
control and associated senescence, proliferation and survival. GJ directly (in hematopoietic cells) or
indirectly (in the hematopoietic microenvironment) seem to participate in crucial activities and be
exquisitely required for hematopoietic regeneration upon stress. Ongoing studies are being focused on
understanding the cellular and molecular mechanisms that control the communication mediated by GJ
between HSC and progenitors and their surrounding microenvironment.

4. Role of Gap Junctions in Leukemic Hematopoiesis

Leukemia usually arises from the malignant transformation of one or several HSC or progenitors.
A subpopulation of leukemic cells, able to initiate and/or propagate leukemia and associated
with leukemia resistance and/or relapse has been called leukemia-initiating cells (LIC). During
leukemogenesis, outcompeting clones of leukemic cells with pathogenic mutations develop and result
in clinical disease.

LIC usually represent a rare subpopulation within the oligoclonal expansion of leukemias and
are characterized by sharing some stem cell properties, like self-renewal, increased proliferation, and
survival capabilities, while usually failing to allow a normal pattern of differentiation, resulting in
differentiation arrest and accumulation in lympho-hematopoietic tissues. In general, proliferating
leukemic progenitors do express high levels of Cx43 [62] probably due to their high proliferation rate
and perhaps related to the frequent presence of p53 loss-of-function mutations [77].

In recent years, significant interest has arisen for the level of expression and function of connexins
in the leukemic BMME/niches. The BMSC including fibroblasts, osteoblasts, MSC, and endothelial cells
play a vital role in the development and progression of hematological malignancies and contribute to
chemotherapy resistance [146]. Increasing evidence demonstrates that LIC physically interact with their
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surrounding BMME, and that intercellular communication with BMSC has a direct impact on leukemic
hematopoiesis, and regulates leukemic stem/progenitor cell survival, proliferation, differentiation, and
self-renewal [24,32,147–149] (Figure 3B). Interestingly, a strong expansion of leukemic CD34+ cells and
leukemic cobblestone-area formation was observed ex vivo after culture on BMSC [150–152], suggesting
that in addition to communication via cytokines and extracellular matrix proteins, the expansion of
leukemic cells is also influenced by cues provided through cell-to-cell contact with the BMME. Of note,
disruption of GJ by carbenoxolone (CBX, a glycyrrhetinic acid derivative) in the co-culture of acute
myelogenous leukemia (AML) cells with BMSC reduces the chemoresistance favored by the leukemic
niche and enhances apoptosis [153]. Although CBX is not a GJ specific inhibitor, it has been proposed
that by intercalating into the plasma membrane and binding to the GJ connexons, CBX induces a
conformational change that results in closure of GJIC channels [136,154]. Weber and Tykocinski
observed that the direct contact of AML cell lines HL-60 and PBL-985 with KM-102 stromal cells inhibits
leukemic cell differentiation, and this effect was mediated by a functional GJ channel [155]. Similarly,
GJIC between stroma and leukemic lymphoblasts inhibits leukemic cell proliferation by retaining its
quiescence, thus favoring chemoresistance [147]. Of note, in vitro studies using OCI-AML3 and OCIM2
AML cell lines suggest that the higher expression of Cx43 in OCI-AML3 cells acts as a tumor promoter,
which exerts its effect by promoting the exchange of growth factors; or by facilitating malignant cell
proliferation and survival signal [156]. In contrast, others have reported that reduced Cx43 expression
or deterioration of GJIC in BMSC is associated with leukemogenesis, while the upregulation of Cx43
GJIC in BMSC after chemotherapy or transfection with the Cx43 gene induces caspase 3 and 7 mediated
apoptosis, and enhances the efficacy of therapies in hematologic malignancies [157–161]. In a minimal
residual disease mouse model, the relapse of leukemia was delayed when mice were transplanted
with human umbilical cord blood progenitors overexpressing Cx43 [160]. An antiproliferative effect of
Cx43 was also observed in the U937 AML cell line expressing the AML1-ETO fusion protein, and it
was mediated by the accumulation of p27kip1 protein [162]. Notably, all-trans retinoic acid (ATRA),
a natural derivative of vitamin A, by upregulating Cx43 expression and enhancing GJIC in leukemic
niche derived BMSC, arrests leukemic cell proliferation and induces apoptosis [157].

The transcript of several connexins including Cx26, Cx32, Cx37, Cx43, and Cx45 has been
observed in primary human AML blasts, and the higher surface expression of Cx43 and Cx45 was
found in most differentiated FAB M4 and M5 cells [163]. Higher expression of Cx45 associated with
the altered regulation of the mitogen-activated protein kinase (MAPK) pathway and the release of
pro-inflammatory cytokines IL-17, TNFα, and IFNγ, resulted in a pro-tumorigenic environment and
protected AML cells from chemotherapy. Conversely, expression of Cx32 and Cx35 was comparable in
both undifferentiated (FAB M0, M1, and M2) and differentiated (FAB M4 and M5) AML cells [163].
Furthermore, higher expression of Cx25 and Cx40 in acute lymphoblastic leukemia (ALL) and AML
cell lines, as well as in AML patient’s cells play an important role in leukemia cell communication
and chemoresistance. Inhibition of Cx25, however, decreases leukemic cell proliferation and sensitizes
the cells to chemotherapy [153,161]. In a recent study, Kouzi et al. delineate a higher expression of
Cx25, Cx31.9, and Cx59 in AML blasts and BM CD34+ cells, while the differential expression of these
connexins was independent of the cytogenetic or molecular status of AML cells. Of note, a higher level
of transcription of Cx25, Cx26, Cx30, Cx31, Cx32, Cx36, Cx37, Cx40, Cx46, and Cx62 was observed in
AML BMSC [153]. Likewise, a higher expression of Cx43 was detected in multiple myeloma (MM)
cell lines (RPMI8226, U266, and XG7), primary cell as well as in BMSC. The upregulation of Cx43 in
BMSC plays a crucial role in the adhesion and migration of MM cells [164]. Functional Cx43 GJIC
between MM cells and BMSC induces the release of IL-6, stromal cell derived factor (SDF)-1α, and
IL-10, and associated with tumor cell proliferation and chemoresistance [165]. Inhibition of Cx43 GJIC
by the non-specific GJIC inhibitors heptanol or 18α-glycyrrhetinic acid significantly attenuates CXCL12
secretion by BMSC, and augments bortezomib induced MM cell apoptosis [164,165] (Table 1). These
findings, while not confirmed by genetic studies, may suggest a specialized GJ interaction (homo or
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heterotypic) between leukemia cells and BMSC in the leukemic microenvironment, and a potential role
for GJIC in leukemic cell expansion and chemoresistance.

The BMME plays a critical role in the maintenance and retention of leukemic cells, and studies from
our group have demonstrated that HSPC Cx43 GJ plays a protective role during stressful conditions
and facilitates the transfer of potentially lethal ROS to the hematopoietic microenvironment following
myeloablation, and prevents ROS mediated HSPC damage [15,79]. Interestingly, the ex vivo co-culture
of AML cells with BMSC modifies cellular energy metabolism and increases the apoptotic threshold
(chemoresistance) in leukemia cells, which was accompanied by the upregulation of anti-apoptotic
protein, BCL2 and mitochondrial uncoupling protein, UCP2 [23,24]. Although the cancer cells largely
depend on glycolytic metabolism to generate ATP, others emphasize the importance of oxidative
phosphorylation in the tumor environment. The metabolism of LIC and AML blasts largely depends
on mitochondrial oxidative phosphorylation to generate ATP for leukemic cell proliferation and
survival [21]. Leukemia cells without mitochondrial DNA (ρ0 cells) show decreased tumor progression
as compared to their parental counterparts. Co-culture of ρ0 cells with BMSC, however, shows increased
tumor progression, which might be associated with the acquisition/transfer of mitochondrial DNA
from the stromal cells [166]. Interestingly, CBX induced disruption of functional GJ in the leukemic
niche results in decreased oxidative phosphorylation in AML cells, revealing a major perturbation
in mitochondrial function, and in increased chemosensitivity and apoptosis of leukemic cells. Its
pro-apoptotic effect was synergized with chemotherapy drug cytarabine (AraC) [153]. These findings
suggest a link between efficient tumor formation and recovery of mitochondrial respiration, and GJ
participation in the protective effect offered by the leukemic niche via trafficking of whole functional
mitochondria, facilitating leukemogenesis. Since CBX is not a GJ specific inhibitor [154], further
analyses of existing and to-be-generated genetic mouse knockout and knockin models modifying Cx
expression are required to specify the role of Cx in leukemia progression and relapse.

Mitochondria Trafficking Mediated by Connexins in Leukemia

Mitochondria are the key regulators of cellular bioenergetics and metabolism, and recent lines
of evidence indicate that BMSC can rejuvenate damaged cells by mitochondrial transfer [166–168].
In the nonmalignant setting, BM-derived MSC protects against acute lung injury by restituting
alveolar oxidative phosphorylation and ATP production through Cx43 dependent alveolar attachment
and mitochondrial transfer [169]. Importantly, calcium-binding mitochondrial Rho-GTPase, Miro1,
and Miro2, which coordinate microtubule and actin-based mitochondrial movement and/or Cx43
mediated tunneling nanotube (TNT) formation associated with the mitochondrial donation from MSC to
epithelial cells, alveolar cell bioenergetic improvement and amelioration of the epithelial injury [170,171].
Furthermore, Cx43 regulates TNT formation in HeLa cells [172] and induced pluripotent (iP)SC derived
mesenchymal progenitors [171]. In a recent study, Mahrouf et al. elegantly describe the bidirectional
exchanges of mitochondria between damaged cells and MSC [173]. In particular, mitochondria
released from the damaged cells were engulfed and degraded by MSC, leading to the induction of
heme oxygenase-1 (HO-1), which by enhancing the MSC mitochondrial biogenesis donates more
functional mitochondria to injured cells, and improves the effectiveness of MSC based therapies [173].
Interestingly, mitochondrial transfer from iPSC derived MSC to epithelial cells via TNT alleviated
airway inflammation in a mouse model of asthma, and Cx43 plays an important role in the regulation
of TNT formation and mitochondrial transfer [171].

Transplants of mitochondrial DNA deleted murine B16 melanoma and 4T1 breast carcinoma cells
(ρ0 tumor cells) in WT C57BL/6 mice recover respiratory function and tumorigenicity after in vivo
acquisition of mitochondrial DNA from host stromal cells [167]. The use of transgenic mice expressing
the red fluorescent protein in their mitochondria further provides the functional evidence of intact
mitochondria transfer from the host tissues to ρ0 tumor cells [168]. Seminal work in ρ0 A549 lung
cancer cells, demonstrated recovery in aerobic respiration after the transfer of active mitochondria
from BMSC [166]. It has been shown that leukemic cells have a higher mitochondrial level compared
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to non-malignant HSC, and the mitochondrial DNA was strongly amplified during the transformation
from the chronic phase [174,175]. Remarkably, horizontal transfer of mitochondria between the
BMME and leukemic cells requires cell-to-cell contact and proceeds through TNT and/or endocytosis
(Figure 2B). These transferred mitochondria are fully functional and capable of boosting mitochondrial
metabolism in leukemic cells and provide a survival advantage following chemotherapy [146,176–178].

AML progression is enabled by the transfer of functional mitochondria from BMSC to AML
blasts through tumor-derived TNT. This process was stimulated by the superoxide generated from
NADPH oxidase-2 (NOX2) on the AML blast, which in turn stimulates ROS generation in BMSC,
and induces pro-tumoral mitochondrial transfer from the stroma [176]. Chemotherapy further
increases the already high oxidative stress of the leukemic microenvironment, enhances the transfer of
mitochondria from BMSC to leukemic cells, and promotes AML proliferation and relapse [146,176].
While the donation of functional mitochondria had no apparent adverse effect on the metabolic
health of BMSC, AML blasts develop an increase in mitochondrial mass which is further enhanced
by increased mitochondrial biogenesis in BMSC through peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α), which is essential for sustained mitochondrial transfer to AML
cells [179]. Concomitantly, the depletion of TNT formation by cytochalasin B or inhibition of ROS
by N-acetyl cysteine (NAC), glutathione, and diphenyleneiodonium (DPI) in leukemic cells shows a
significant decrease in AML blasts [176]. These findings suggest that strategies targeting mitochondrial
transfer from BMSC through NOX2 and PGC-1α inhibition may emerge as an intriguing approach
in the context of minimal residual disease after chemotherapy treatment. Increased mitochondrial
bioenergetics and ATP production in MM is also associated with mitochondria transfer from BMSC
via tumor-derived TNT, and tumor cell CD38 supports the formation of TNT [178]. Notably, TNT
signaling between B-cell precursor ALL (B-ALL) and surrounding BMSC cells induces the secretion of
pro-survival cytokines including IP10/CXCL10, IL-8, and MCP-1/CCL2, and protects leukemic cells from
chemotherapeutic drugs [177,180]. MSC isolated from ALL patient BM specimens adopt an activated,
cancer-associated fibroblast-like phenotype with cytoskeletal and gene expression changes and a
high-level of pro-inflammatory cytokine secretion [177]. The activity of these activated MSC may be at
the root of leukemia relapse by promoting leukemogenesis by transfer of mitochondria through TNT and
prevent the rise of intracellular levels of ROS associated with chemotherapy with AraC and daunorubicin
(DNR). Interestingly, reduction of mitochondria transfer by a microtubule-damaging drug, vincristine,
or prevention of cancer-associated fibroblast activation by corticosteroids (a potent anti-inflammatory
agent used for ALL therapy) selectively diminished the leukemia burden and improved survival, these
were synergistic with AraC and DNR [177]. Of note, in a disseminated mouse model of ALL, AraC
treatment induces activation of MSC, increases mitochondrial mass and mitotransfer, wherein the
association of human CD19+ cells with a nestin+ BMSC was observed [177]. A higher number of
nestin+ MSC was also found in AML patient’s BM, and they represent cell-to-cell contact-dependent
ROS detoxifying mechanism and mitochondria transfer, to allow the chemoresistance in AML cells.
Combining nestin+ MSC depletion and chemotherapy, however, exaggerated the elimination of BM
leukemic cells, and could be used as an effective approach to eradicate the residual disease after
chemotherapy treatment [181].
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Table 1. Expression of different connexins and their function in normal and leukemic hematopoiesis.

Cell Type Connexin Type Function Ref.

Normal HSC and BM Stromal Cells

LT-HSC and progenitors Cx43, Cx45, Cx31, Cx31.1, Cx32, Cx37, and
Cx50 Expression [15,28]

LSK and LK cells Cx32 Maintain HSPC quiescence and stemness [29]

HSPC Cx43 Reduces HSC senescence via ROS transfer to BMSC during
stress induced hematopoietic regeneration [14,15]

BM stromal cells
(Osteoblasts, MSC and endothelial cells) Cx31 Expression [93]

BM stromal cells
(Osteoblasts, MSC and endothelial cells) Cx43 and Cx45 Regulates CXCL12 secretion, HSC growth, differentiation

and homing [8,17,112,142]

BM stromal cells Cx43

1) Determine bone mass and bone mineral density by
modulating osteogenesis

[16,110,142,182]2) Mitochondria transfer from BMSC to HSC and
emergency granulopoiesis

3) HSPC proliferation and differentiation of myeloid blood
cell precursor

4) Hematopoietic regeneration after chemotherapy

BM Endothelial cells Cx43 Normal vascular function, leukocyte adhesion and
transmigration [9,183]

Leukemia Cell Lines, Primary Cells, and Leukemic BM Stromal Cells

OCIM2 and OCI-AML3 cells Cx43 and Cx32 ↑Cell proliferation [156]

CCRF-CEM lymphoblast cells Cx33, Cx40, Cx43, Cx45, Cx46, and Cx50
↑ Chemoresistance

[147]↓Apoptosis
↓Differentiation

HL-60 and PBL-985 cells GJ ↓Differentiation [155]

U937 AML cells expressing AML1-ETO fusion protein Cx43 ↓Cell proliferation [162]

KG-1, KG-1a, HL-60, OCI-AML3, MV4-11, MoLM-13
Jurkat, and THP1 cells

Cx25, Cx31.9, Cx40, Cx43, Cx45, and Cx59 ↑Cell proliferation [161]
↑Chemoresistance

Primary AML cells Cx26, Cx32, Cx37, Cx43, and Cx45 ↑ Chemoresistance [163]
↓Apoptosis

AML-blasts and BM CD34+ cells Cx43, Cx45, Cx25, Cx31.9, and Cx59 ↑Cell proliferation [153,163]
↑Chemoresistance
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Table 1. Cont.

Cell Type Connexin Type Function Ref.

Leukemia Cell Lines, Primary Cells, and Leukemic BM Stromal Cells

AML BM-stromal cells
Cx25, Cx26, Cx30, Cx31, Cx32, Cx36, Cx37,

Cx40, Cx46, and Cx62
↑Cell proliferation [153]
↑Chemoresistance

Primary Multiple Myeloma (MM) cells and cell lines
(RPMI 8226, U266, and XG-7) Cx43

Adhesion and migration of MM cells
[164,165]↑Cell proliferation

↑Chemoresistance

Multiple Myeloma BM-stromal cells Cx43
Adhesion and migration of MM cells

[164,165]↑Cell proliferation
↑Chemoresistance

Cx32-KO mice ↑Leukemia incidence [76]



Int. J. Mol. Sci. 2020, 21, 796 16 of 26

5. Conclusions and Future Perspectives

The contribution of the BMME has gained increasing attention and the role of mitochondria
transfer in leukemia progression and chemoresistance is being highlighted. However, the differential
role of the BMME cellular component in mitochondrial transfer, and the fate of transferred mitochondria
in leukemic cells remains unclear. The emergence of new pharmacological and molecular approaches
targeting the depletion of intercellular organelle exchange could be of particular clinical interest in
leukemia treatment, and they could synergize the effect of chemotherapy drugs in eradicating minimal
residual disease after chemotherapy. However, the key challenge is the dual role of the BMME in
regulating normal and malignant hematopoiesis, since inhibiting the leukemic cell’s development
must be followed by the re-establishment of normal hematopoiesis. Connexin plays a significant role
in leukemia pathophysiology, and the niche-induced chemoresistance depends on cell-to-cell contact
and functional GJ communication. Cx43 mediated mitochondria transfer exerts a protective effect
in a nonmalignant setting but the mechanisms controlling this effect are not understood. Further
studies are required to evaluate the connexin dependent regulatory mechanism involved in leukemia
relapses and identify whether the protective effect of connexins associated with mitochondria transfer
derives from specific leukemic microenvironment(s) and can be inhibited to prevent leukemia growth.
On the other hand, enhanced connexin activity may result in increased hematopoietic engraftment in
the setting of stem cell transplantation or post-chemotherapy recovery, suggesting that the activation
and/or inhibition of connexin activity may provide complementary roles in the therapy of patients with
hematological malignancies. Since different connexin isoforms have diverse GJ channel-dependent and
-independent functions, and their expressions are modified in different stages of leukemia development,
the focus for new strategies should be to identify stage-specific regulation of connexins during leukemic
clonal evolution and their involvement in leukemia physiology.

Acknowledgments: The authors want to thank Margaret O’Leary for her editorial assistance and the American
Society of Hematology for fellowship support (AKS).

Conflicts of Interest: The authors declare no relevant conflict of interest.

Abbreviations

Atg16 Autophagy related protein 16
Akt Protein kinase B
CCL4 Chemokine C-C motif ligand 4
CXCL12 C-X-C motif chemokine 12
CXCR C-X-C chemokine receptor
ERK Extracellular Signal-regulated Kinase
FAB French-American-British classification
G-CSF Granulocyte colony stimulating factor
GSK-3β Gycogene Synthase Kinase-3-beta
IFNγ Interferon gamma
IKK Inhibitory kappa B kinase
IL-7 Interleukin 7
iPSC Induced Pluripotent Stem Cells
LSK Lin-/cKit+/Sca1+

MEK Mitogen-activated protein kinase kinase 1
NADPH Nicotine adenine dinucleotide phosphate, reduced form
NFκB Nuclear factor kappa B

PDZ
domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor
suppressor (DlgA), and zonula occludens-1 protein (ZO-1)

Sp1 Specificity protein 1
STAT3 Signal Transducer And Activator Of Transcription 3
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TNFα Tumor Necrosis Factor alpha
TPO/MPL Thrombopoietin/Myeloproliferative Leukemia protein (TPO receptor)
VEGFR Vascular Endothelial Growth Factor Receptor
Vps34 Vacuolar Protein Sorting 34
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