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Abstract: The most frequent cancer in women is breast cancer, which is a major cause of death.
Currently, there are many pharmacological therapies that have made possible the cure and resolution
of this tumor. However, these therapies are accompanied by numerous collateral effects that influence
the quality of life (QoL) of the patients to varying degrees. For this reason, attention is turning
to the use of complementary medicine to improve QoL. In particular, there are increased trials of
intravenous injection of vitamin C at high doses to enhance the antitumor activity of drugs and/or
decrease their side effects. This review intends to underline the anticancer mechanisms of vitamin C
that could explain its efficacy for treating breast cancer, and why the use of vitamin C at high doses
could help patients with breast cancer to enhance the efficacy of pharmacological therapies and/or
decrease their side effects.
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1. Introduction

Worldwide, breast cancer continues to be the most frequent cancer in women. The annual global
incidence is over 2 million cases per year, and it causes one of the highest numbers of deaths related to
cancer among women as reported by the World Health Organization (WHO) in 2018. In the European
Union (EU), breast cancer is the second most frequent cause of death for cancer in women, in spite of
the positive trend of mortality from the 1990s [1].

Breast cancer is a multifactorial pathology involving genetic mutations, hormonal disturbances,
lifestyle, and family background of breast and ovarian cancer [2]. Having a mother, sister, or daughter
(first degree relative) with breast cancer approximately doubles the risk of developing the same type of
cancer, and having two first degree relatives increases the risk five-fold. In addition, women with a
family background of breast cancer in the male component of the family present an increased risk of
breast cancer [2].

Breast cancer is the common term for a set of breast tumor subtypes (most of these are epithelial
tumors of ductal or lobular origin), with distinct molecular and cellular origins, defined by distinct
pathology, sensitivity to therapy, and molecular characteristics. Breast tumors have been classified into
four different subtypes on the basis of the condition of receptors, in particular progesterone receptor
(PR), estrogen receptor (ER), and human epidermal growth factor 2 (HER2). The first subtype is
luminal A, which is ER and/or PR receptor positive and HER2 negative. The second subtype is luminal
B, which is ER and/or PR receptor positive and HER2 positive. The third subtype is HER2 positive,
which is ER/PR negative and HER2 positive; and last one is basal-type tumors, with all the receptors
negative [3].
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Tumor heterogeneity has become an important clinical feature for diagnosis and therapeutic
decision-making. In the EU, the mortality for breast cancer has declined, thanks to early detection
and efficient systemic therapies. Recently, there has been an increase in the number of therapies able
to save the life of patients affected by breast cancer. Indeed, there are different treatments that can
destroy the cancerogenic cells. Unfortunately, each of these treatments is accompanied by a series of
collateral effects both in the early and late stages of the disease. These collateral effects are different and
depend on the particular drug and its dose and time of treatment [4]. The adoption of complementary
medicine to increase the quality of life (QoL) can be considered an important adjunct during treatment.
These complementary therapies should be used in women with a lower QoL and with an early stage
of cancer [5]. In this case the results of these complementary therapies could give a better QoL to
these patients [6]. In this review, the use of vitamin C as a complementary remedy in breast cancers
is analyzed.

2. Chemistry and Biochemistry of Vitamin C

Ascorbic acid is a water-soluble carbohydrate similar to glucose. However, unlike glucose,
it contains the highly reactive “ene-diol” group. This group transforms a relatively inactive sugar to a
powerful reducing agent in aqueous solution, which readily donates one or two electrons to radicals
and oxidants, generating the relatively stable monodehydroascorbate (MDHA) radical, and the fully
oxidized dehydroascorbic acid (DHA). Both DHA and MDHA can be reversibly reduced to ascorbate,
as shown in Figure 1 [7,8].
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Figure 1. The three redox states of vitamin C (ascorbate, fully reduced form; mono dehydroascorbate,
(MDHA), mono-oxidized form; dehydroascorbic acid (DHA), fully oxidized form). Ascorbate can
donate one or two electrons to radicals and oxidant agents, forming MDHA and DHA, thus acting as a
reducing agent. In the presence of metal ions such as iron, ascorbate can also reduce them and exert
pro oxidant effects leading to formation of the superoxide radical (O2

•−), hydrogen peroxide (H2O2),
and hydroxyl radicals (HO•).
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DHA is transported inside the cell by sodium vitamin C transporters 1 and 2 (SVCT1 and SVTC2,
respectively) [9]. Inside the cell, DHA can be degraded to 2,3-diketogulonate, oxalate, and L-threonate
that can be discarded by the kidney [10].

Oxidation of ascorbate by free radicals or reactive oxygen species (ROS) can be performed inside
or outside the cell. Therefore, the antioxidant action of ascorbate can decrease the concentration of
ROS [11]. On the other hand, when injected intravenously, ascorbate can reach millimolar concentrations,
which lead to its action as a pro oxidant [12]. The pro oxidant activity is due to an association with metal
ions such as Fe3+ and Cu2+ that can be chelated by ascorbate [13]. In the presence of oxygen-reduced
iron, ions react with hydrogen peroxide (H2O2) to develop reactive hydroxyl radicals (HO•) or peroxide
ions (O2

•−) by stimulating the reaction of Fenton (Figure 1) and Haber–Weiss chemistry [14,15].
Vitamin C is an crucial cofactor for many iron- and copper-containing enzymes due to its ability

to maintain these transition metals in the reduced state in which the activity of these enzymes is
optimized [16].

Vitamin C-dependent enzymes are classified into two groups: copper-containing monooxygenases
and iron-containing and α-ketoglutarate-dependent dioxygenases (αKGDDs). αKGDDs uses oxygen
and α-ketoglutarate as co-substrates while producing CO2 and succinate. Among the reactions
catalyzed by αKGDDs are a wide range of hydroxylation reactions such as those involved in collagen
synthesis, carnitine synthesis, noradrenaline synthesis, demethylation of protein, DNA and RNA,
and hypoxia-inducible factor lα (HIF1α) stability. Thus, vitamin C regulates a variety of fundamental
biological processes [13].

In nearly all mammals, ascorbic acid is synthesized in the kidney or liver using glucose from
the blood by a number of reactions, as shown in Figure 2. Each reaction, with exclusion of the last
one, is regulated by a specific enzyme. In the last reaction, the 2-keto-L-gulonolactone after being
synthesized is transformed into ascorbic acid.
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Figure 2. Vitamin C synthesis. The enzyme L-gulono-1,4-lactone oxidase is missing in humans and
prevents them from producing ascorbic acid from glucose.

In humans, mutations dating from millions of years ago have destroyed the ability to
synthesize L-gulonolactone oxidase, which is an enzyme necessary to transform L-gulonolactone into
2-keto-L-gulonolactone [12]. This is a clear example of a genetic disease that has previously been
considered an avitaminosis.

Since humans are unable to synthesize vitamin C, this is required as an essential dietary
supplement [17]. The recommended supplementary dose for an adult is about 100 mg per day in order
to generate a 50 micromolar concentration of vitamin C in the plasma. Nonetheless, the concentration
of vitamin C is different in different tissues. Circulating leucocytes, pituitary gland, adrenal glands,
liver, brain, and skeletal muscle accumulate higher levels of vitamin C than plasma [18]. An elevated
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concentration of vitamin C in cells seems to indicate the need of ascorbate as a cofactor or to decrease
the levels of ROS [19].

3. Anticancer Mechanisms of Vitamin C

The increased understanding of the role of ascorbate in the cell together with the molecular
mechanisms of cancer development has led to a number of interesting hypotheses regarding the
mechanism of vitamin C anti-cancer activity.

The importance of vitamin C in curbing the development of cancer metastasis has been related to
its role in collagen synthesis, which is decreased when there is a lack of vitamin C [20]. Indeed, it has
been observed that the changes of the stroma surrounding a tumor are identical to those observed
in scurvy. Thus, a dense stromal consistency may represent a physical barrier against the spread of
neoplastic cells encapsulating them with a dense fibrous tissue. This result can be achieved by high
doses of vitamin C. Moreover, vitamin C enhances intercellular ground substance resistance to local
infiltration. Hence, it is important to maintain the synthesis of collagen at the right levels by using
vitamin C to contrast the development of metastasis [21]. This hypothesis was also supported by the
work of Ewan Cameron and Rotman, who suggested that vitamin C inhibits the enzyme hyaluronidase,
which decreases the disruption of the tissue and proliferation of cancer cells [22].

It has also been proposed that vitamin C is capable of inhibiting the synthesis of series 2
prostaglandins in cancer cells [23]. These bioactive lipids are known to stimulate cell proliferation,
migration, and angiogenesis. Among them, prostaglandin E2 (PGE2) is highly expressed in many solid
tumors [24]. In addition, vitamin C counteracts cell proliferation by stabilizing transcription factor
protein 53 (P53) [25]. Kim et al. claim that the presence of p53 may represent one of the reasons for
differing ascorbate cytotoxicity among cancer cell lines [26].

The structural similarity between vitamin C and glucose facilitates the entry of vitamin C
through glucose transporters 1 (GLUT1). Normally, cancer cells have increased expression of GLUT1
transporters due to their increased glucose requirement. The increase in GLUT1 transporters favors
the internalization of vitamin C into the cancer cell and promotes its action as a selective, nontoxic
drug [12].

In the 2000s, experiments performed in cell culture showed that millimolar vitamin C plasma
concentration can kill cancer cells via the pro-oxidative activity of ascorbate, which produces H2O2

and OH• [27,28].
Iron ions are important for the pro-oxidative activity of vitamin C, and, interestingly,

the concentration of labile iron is increased in the microenvironment of tumor cells, which leads to a
higher level of labile iron in tumor cells compared to control cells [29].

Furthermore, extracellular H2O2 can contribute to increase the level of extracellular DHA that
after entering the cell can increase the intracellular oxidative microenvironment. DHA is internalized
in tumor cells that express high amounts of GLUT1 and generates intracellular oxidative stress due to
the reduction of DHA back to ascorbate. This reaction reduces the concentration of antioxidants inside
the cells and increases the levels of endogenous ROS causing oxidative cell damage [30].

The anti-tumor effects of vitamin C are not only confined to the stimulation of ROS. It has been
suggest that vitamin C enhances the activity of ten–eleven translocation (TET) enzymes through which
it can play a role in reprogramming the cells and in the regulation of cell growth. TET enzymes catalyze
the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC),
and 5-carboxylcytosine (5caC) with the consequence of methylating the DNA and increasing the
expression of tumor suppressor genes [31,32]. Vitamin C, as a cofactor, can bind directly to TET
enzymes, producing Fe2+ from Fe3+, which is necessary for TET activity. Compared to other reducing
agents able to increase the TET activity, vitamin C is the most efficient one [33].

Therefore, the restoration of TET activity by vitamin C underlines its role in cancer epigenetic
reprogramming that includes DNA hypermethylation, which mainly occurs in the promoter regions,
and in particular in the CpG island [34].
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Another anticancer mechanism of vitamin C occurs through the down-regulation of HIF-1α. Solid
tumors are often characterized by low levels of oxygen and high expression levels of hypoxia-inducible
factor 1 (HIF1). HIF1 is a transcription factor found in many types of cancers and is composed of
HIF-1α and HIF-1β subunits. HIF-1β is a constitutive subunit, whereas the HIF-1α subunit is regulated
by O2 concentration. O2 regulates HIF-1α activity through HIF hydroxylases that require ascorbate
as a cofactor. Thus, vitamin C, through the regulation of the HIF-1α subunit, down-regulates HIF1
and the expression of HIF1-dependent genes that are important to activate angiogenesis, glycolysis,
resistance to chemotherapy, and the stimulation of a stem cell phenotype, with the consequence of
activating metastasis and the growth of a tumor [35–37].

Ascorbate can also stimulate the immune system to increase resistance against pathogens. Recently,
Wang-Jae Lee reported that ascorbate suppresses the synthesis of interleukin 18 (IL-18), which is a
regulator for various type of tumors [38]. The expression of IL-18 is correlated positively with different
types of tumors [39]. IL-18 can increase the synthesis of interferon-gamma (IFN-γ) in natural killer
(NK) cells, T cells, and activated macrophages [40]. Thus, ascorbate may be efficacious against cancer
by decreasing the expression of IL-18, which is able to regulate the escape of different tumor cells,
including breast cancer cells, from the immune system.

Finally, yet importantly, vitamin C exhibits anti-inflammatory functions via the modulation
of cytokine levels [41]. For example, a concentration of 20 mM ascorbate inhibited the synthesis of
interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in monocytes without changing the levels of
interleukin 1 (IL-1) nor interleukin 8 (IL-8) [42]. The same concentration of ascorbate reduced interleukin
2 (IL-2) production in lymphocytes with no changes in the levels of TNF-α and IFN-γ. In cancer
patients, ascorbate at millimolar concentrations has been shown to decrease inflammation through
suppression of cyclooxygenase 2 (COX-2) and activation of nuclear factor κ-light-chain-enhancer
of activated B cells (NF-κB) in endothelial cells [43]. NF-κB is a transcription factor that regulates
gene expression in inflammation processes. A low concentration of ascorbate (0.2 mM) increases the
expression of NF-κB in Jurkat T-cells [44]. In human cells, ascorbate inhibits TNF-α activation of
NF-κB in a dose-dependent manner and can also decrease the synthesis of granulocyte-macrophage
colony-stimulating factor (GM-CSF), interleukin 3 (IL-3), and interleukin 5 (IL-5) [45]. It is known that
inflammation can regulate angiogenesis, tumor development, tumor proliferation, metastasis, and
resistance to therapy [46]. The main vitamin C anticancer mechanisms are summarized in Figure 3.
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4. Vitamin C Effects in Breast Cancer Cell Lines and Human Mammary Tumor Xenografts

Although data are limited for breast cancer in vivo, in human breast cancer cell lines, vitamin
C has been frequently reported to induce apoptosis without having a significant impact on normal
cells [47]. Additional data are available regarding the synergistic effect of vitamin C with chemotherapy
drugs. Kurbacher et al. investigated the possible synergistic effect between vitamin C and some
chemotherapeutics used in breast cancer therapy. They treated two human breast cancer cell lines,
MCF-7 and MDA-MB-231, with 1µM and 100µM of ascorbate and with the chemotherapics doxorubicin,
cisplatin, and paclitaxel. Even if the concentrations of ascorbate were in a normal range, the effect
was synergistic with doxorubicin at 1 µM and 100µM concentrations in MCF-7 and MDA-MB-231.
Moreover, in the MDA-MB-231 cells, the effect was dose-dependent. In MCF-7 cells, ascorbate was
also synergistic with cisplatin at 1 µM and 100µM concentrations, while in MDA-MB-231 cells, only
100µM was effective. Neither concentration of vitamin C improved the activity of paclitaxel in MCF-7
cells, although the lower concentration had a synergistic effect and the higher concentration had an
additive effect in MDA-MB-231 cells [48].

Interestingly, Lee et al. showed that a high-dose of vitamin C mediated anti-proliferative
effects on various anticancer drug-resistant breast cell lines, including tamoxifen-resistant (TAM-R)
MCF-7, long-term estrogen-deprived (LTED) MCF-7, docetaxel-resistant MCF-7, docetaxel-resistant
MDA-MB-231, doxorubicin-resistant MCF-7, and doxorubicin-resistant MDA-MB-231 cells. Elevated
amounts of vitamin C significantly decreased the cell growth of TAM-R, doxorubicin-resistant MCF-7,
and LTED MCF-7, as observed in the MCF-7 cells. Moreover, vitamin C only exerted a slight effect
on the normal breast epithelial cells, MCF10A. In addition, anti-proliferative effects were observed at
high-doses of vitamin C in doxorubicin-resistant MDA-MB-231 cells and docetaxel-resistant MCF-7
cells, as effectively as in MDAMB-231 cells. Furthermore, the catalase activity of TAM-R MCF-7,
LTED MCF-7, docetaxel-resistant MCF7 and MDA-MB-231, and doxorubicin-resistant MCF-7 cells was
decreased significantly in comparison to that of MCF10A cells. Therefore, these results indicate that
vitamin C at a high dose has a selective anti-proliferative effect on chemotherapy-resistant breast cancer
cells. Furthermore, an additive anti-cancer effect when combined with conventional agents was also
observed. This provided important evidence that high-dose vitamin C is a promising therapeutic drug,
especially when considering that patients with advanced breast cancer ultimately develop resistance to
conventional agents [49].

It has been found that an auranofin/vitamin C combination exerted a synergistic and
H2O2-mediated cytotoxicity toward MDA-MB-231 cells and other breast cancer cell lines. The anticancer
potential of auranofin/vitamin C combinations was confirmed in vivo using MDA-MB-231 xenografts
in mice without notable side effects [50].

Zeng et al. showed that high doses of vitamin C injected intraperitoneally inhibits metastasis of
human breast cancer xenografts in nude mice by inhibiting the epithelial–mesenchymal transition [51].

The level of vitamin C at 100 µM in the plasma can be obtained by oral administration. This
concentration is able to inhibit triple-negative breast cancer (TNBC) xenograft metastasis in vivo and
TNBC cell invasion in vitro [52]. An epigenetic hallmark of breast cancer and other cancers is the loss
of 5-hydroxymethylcytosine (5hmC) [53]. Vitamin C at concentration of 100 µM can bring a 5hmC
level in TNBC cells similar to those of non-cancerous epithelial breast cells [54].

Although few studies of vitamin C and breast cancer metastasis have been performed in human
patients, in vivo animal models support the inhibition of metastasis by administration of vitamin C.
For example, vitamin C administrated orally stops the metastasis of murine breast cancer in Gulo
knockout mice, which, similarly to humans, cannot synthesize vitamin C [55].

Park S et al. showed that IL-18 promotes the expression of transferrin, which positively regulates
cell growth and proliferation in breast cancer cells. This suggest that ascorbate can act against breast
cancer, decreasing the expression of IL-18. One of the physiological roles of IL8 is to regulate the escape
of various cancer cells, including breast cancer cells, from the immune system [56].
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De Francesco et al. reported a synergic effect between vitamin C and dodecyl-tri-phenyl-
phophonium (d-TPP) on eradicating breast cancer stem cells (CSCs). In that research, MCF-7 and
MB-231 breast cancer cells were treated with d-TPP, an inhibitor of mitochondrial respiration and ATP
production. It has been observed that this TPP derivative not only switches the energy pathway towards
the glycolytic pathway in these cancer cells but also increases their sensitivity to other metabolic
inhibitors like vitamin C and 2-deoxy-D-glucose (2-DG) (glycolysis inhibitors), and doxycycline,
niclosamide, and berberine (OXPHOS inhibitors). Therefore, that research has shown that vitamin C
can present a synergic effect with that of other glycolytic and OX-PHOS inhibitors on the propagation
of CSCs. Furthermore, it has been demonstrated that vitamin C is a potential molecule to target the
pathway of glycolysis for the effect on CSCs [57]. Tsao C. analyzed the effect in mice of vitamin C on
the growth of a human mammary tumor. The addition of ascorbic acid in the drinking water resulted
in a significant reduction in the growth of the implanted tumor. The same result was obtained with
oral or intraperitoneally administration of a mixture of ascorbic acid and cupric sulfate. No effects
were obtained if ascorbic acid and cupric sulfate were administrated individually [58].

5. Vitamin C Effects In Vivo Treatment of Cancer in Human

The use of vitamin C for the treatment of cancer was first reported in the 1950s; its involvement in
collagen synthesis was the basis to hypothesize that ascorbate replenishment would protect normal
tissue to develop cancers and metastasis [59]. In addition, cancer patients show low levels of vitamin
C, and administration of vitamin C can improve the immune system [60].

In 1976, Pauling and Cameron published the results of a trial conducted on 100 terminal cancer
patients who were given 10 g/day of intravenous vitamin C (IVC) for about 10 days, followed by oral
administration of 10 g/day of vitamin C thereafter. A control group of about 1000 cancer patients did
not receive vitamin C in any form. Their work showed a 4.2-fold enhanced survival time in the vitamin
C treated patients compared with the control group.

Two years later, a retrospective analysis of this study demonstrated that 22% of patients pronounced
as terminal patients had a survival time greater than 1 year compared with 0.4% in the control group [4].

Several clinical studies have investigated the effect of vitamin C on QoL in patients affected by
breast cancer [61,62].

In a Korean study, IVC therapy significantly ameliorated global QoL scores, with a reduction of
nausea and vomiting, fatigue, and an increased appetite [63]. A German study compared patients with
breast cancer undergoing IVC therapy with a control group that only received standard therapy. Patients
receiving IVC therapy showed an improvement in many clinical symptoms. No collateral effects
caused by ascorbate were noticed, with no modifications in tumor status compared to controls [64].

Hoffer et al. described a phase I clinical trial in patients with advanced cancer, receiving up to
1.5 g/kg body weight of IV ascorbate every week, 3 times per week. No adverse effects were observed
at any dose, and in two patients the disease was stabilized [65].

Several patients treated with IVC for more than a year have shown substantially reduced grade
1 and 2 side-effects as compared to the control group [66]. Later, Riordan et al. demonstrated that a
therapy with 150–710 mg/kg/day ascorbate for up to eight weeks is safe as long as the patient has no
history of kidney stone formation [67].

Hoffer et al. described a study in which patients with different cancer types were treated with
IVC and chemotherapy. Vitamin C (1.5 g/kg) was administered three times a week during the weeks in
which chemotherapy was given, and with at least one day off during the weeks when chemotherapy
was not given. Increased energy, functional improvement, and transient stable disease were observed
in patients [68].

Some authors have raised fears that vitamin C supplementation might compromise the efficacy
of standard therapies because of its antioxidant properties and its accumulation in tumors [69,
70]. However, many studies show that, at high concentrations, vitamin C does not interfere with
standard therapies and may increase efficacy in some situations [38,71–73]. This result is sustained by
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meta-analyses of clinical studies that show no interference between antioxidant supplementation and
efficacy of chemotherapic drugs [74,75].

6. Why Should Vitamin C be Used in Breast Cancer Therapy?

Several publications indicate the role of vitamin C as a therapeutic compound in cancer patients,
including breast cancer. In particular, the effects of vitamin C treatment were effective in reducing pain,
increasing QoL, and increasing appetite [76]. Furthermore, some patients increased their survival time,
and vitamin C was an alternative therapeutic strategy for those suffering from chemotherapy. Vitamin C
seems to act by reducing oxidative stress, which is one of the most relevant side-effects of chemotherapy
and radiotherapy. In fact, the metabolism of tumor cells, radiotherapy, and chemotherapy increase
the level of ROS, inducing oxidative stress [64]. The level of vitamin C is related to the stage of the
disease; patients with an higher stage of disease showed a lower level of vitamin C, whereas patients
with a lower stage of disease showed a higher level of vitamin C [77,78]. An interesting study was
performed to evaluate the effects of IVC on patients with primary non-metastasized breast cancer
treated with antineoplastic drugs. The efficacy of IVC treatment was equivalent to those obtained with
chemotherapy and radiotherapy, but with no side-effects [66]. As reported previously, the patients
treated with IVC had a better QoL that could improve the immune system.

A meta-analysis study of vitamin C and survival among women with breast cancer concluded
that post-diagnosis therapy with vitamin C may be related to a reduced risk of mortality. Vitamin C
administration can significantly reduce the risk of mortality, including the mortality specifically caused
by breast cancer [79].

Breast cancer progression is increased by tumor hypoxia that affects angiogenesis, metastatic
activity, and cell proliferation [80]. HIF-1α that is responsible for the observed effects is a target of
antitumor action of vitamin C. HIF-1-alfa regulates cancer cell metastasis that is the major cause of
death for patients with breast cancer [81]. Vitamin C is a cofactor of the enzyme HIF prolylhydroxylase,
which is necessary for the degradation of HIF-1α [82].

By studying the molecular mechanisms behind breast cancer development, it has been realized
that many of the anticancer mechanisms of vitamin C can be useful for this type of cancer. For example,
breast cancer cells are sensitive to hydrogen peroxide generated from pharmacological ascorbate.

As described above, vitamin C regulates the activity of TET enzymes, which is physiologically
important to reprogram cells and to control cellular growth. Furthermore, it has been reported that
the levels of TET enzymes are significantly reduced in breast cancer, in particular the levels of TET1.
In addition, it was demonstrated that 5hmC levels are reduced in several tissues and are related to
breast cancers tumorigenesis [83].

It has also been demonstrated in vivo that TET1 inhibits of the progression of breast cancer cells,
whereas the reduced expression of TET1 in patients with breast cancer correlates with poor survival [49].
As mentioned above, vitamin C can activate TETs as a cofactor, and it is required for the optimal
activity of TETs.

Moreover, GLUT1 expression is increased in breast cancers with higher grade and proliferative
activity, allowing the entry of DHA and its indirect anticancer activity [84].

Finally, vitamin C exerts a powerful anti-inflammatory activity and a immune system stimulation
counteracting tumor proliferation, angiogenesis, metastasis, and resistance to therapy [41].

7. Conclusions

There are numerous advantages in giving IVC to patients affected by breast cancer, which make it
an ideal additional therapy. Cancer patients often have low levels of vitamin C, and IVC provides
an efficient strategy to restore the physiological concentrations. Moreover, IVC has been shown to
improve QoL in cancer patients. Indeed, both pre-clinical and clinical studies indicate that IVC is able
to decrease the toxic side-effects of chemotherapeutic agents without interfering with their anticancer
activity, most likely through the antioxidant and anti-inflammatory activities of IVC.
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αKGDDs α-ketoglutarate-dependent dioxygenases
5caC 5-carboxyl-cytosine
5fC 5-formyl-cytosine
5hmC 5-hydroxy-methyl-cytosine
5mC 5-methyl-cytosine
COX-2 Cyclooxygenase 2
CSC Cancer stem cell
2-DG 2-deoxy-D-glucose
DHA Dehydroascorbate
DHA Dehydroascorbic acid
d-TPP Dodecyl-tri-phenyl-phosphonium
ER Estrogen receptor
EU European Union
GLUT Glucose transporter
GM-CSF Granulocyte-macrophage colony-stimulating factor
H2O2 Hydrogen peroxide
HER2 Human epidermal growth factor 2
HIF Hypoxia-inducible factor
HIF-1α Hypoxia-inducible factor 1 alpha
HIF-1β Hypoxia-inducible factor 1 beta
HO• Hydroxyl radicals
IFN-γ Interferon gamma
IL Interleukin
IVC Intravenous vitamin C
LTED Long term estrogen deprived
MDHA Monodehydroascorbate
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NK Natural killer
O2•− Peroxide ions
P53 Protein 53
PGE2 Prostaglandin E2
PR Progesterone receptor
QoL Quality of life
ROS Reactive oxygen species
SVCT Sodium dependent vitamin C transporters
TAM-R Tamoxifen-resistant
TET Ten eleven translocation proteins
TNBC Triple negative breast cancer
TNF-α Tumor necrosis factor alfa
WHO World Health Organization
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