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Abstract: Suture anchors are extensively used in rotator cuff tear surgery. With the advancement
of three-dimensional printing technology, biodegradable metal has been developed for orthopedic
applications. This study adopted three-dimensional-printed biodegradable Fe suture anchors with
double-helical threads and commercialized non-vented screw-type Ti suture anchors with a tapered
tip in the experimental and control groups, respectively. The in vitro study showed that the Fe and
Ti suture anchors exhibited a similar ultimate failure load in 20-pound-per-cubic-foot polyurethane
foam blocks and rabbit bone. In static immersion tests, the corrosion rate of Fe suture anchors was
0.049 ± 0.002 mm/year. The in vivo study was performed on New Zealand white rabbits and SAs
were employed to reattach the ruptured supraspinatus tendon. The in vivo ultimate failure load
of the Fe suture anchors was superior to that of the Ti suture anchors at 6 weeks. Micro-computed
tomography showed that the bone volume fraction and bone surface density in the Fe suture anchors
group 2 and 6 weeks after surgery were superior, and the histology confirmed that the increased bone
volume around the anchor was attributable to mineralized osteocytes. The three-dimensional-printed
Fe suture anchors outperformed the currently used Ti suture anchors.

Keywords: 3D printing; biodegradable metal; iron; suture anchor; rabbit; rotator cuff

1. Introduction

Rotator cuff repair is one of the most common surgeries in the upper extremities [1].
The current trend in rotator cuff repairs is the use of suture anchors (SAs), such as metallic
SAs and nondegradable or biodegradable polymer SAs [2,3]. The two most commonly
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used metal SAs are stainless steel and titanium SAs [4]. Stainless steel SAs are encapsu-
lated by an inflammatory cell-rich fibrous membrane, which impedes the osteoblasts from
binding to the surface [4], whereas Ti forms a layer of Ca and phosphate, which facilitate
osteointegration [5]. Although metallic SAs provide a rigid fixation and have been used for
a long time, they have the disadvantage of permanent metal artifact interference with diag-
nostic imaging [6]. Biodegradable SAs, such as poly-L-lactic acid, is radiolucent; however,
inflammatory reactions can develop, leading to osteolysis [7], interosseous cyst formation,
and the bone not being replaced after the implants degrade [2]. These complications have
led to the use of biologically inert and nondegradable materials, such as polyether ether
ketone (PEEK), as popular biomaterials for use in SAs [8].

Biodegradable metallics are promising biomaterials due to their combination of a
temporarily high mechanical load-bearing capacity and gradual degradation [9,10]. Three
metals, namely, Mg [11,12], Fe [13], and Zn [14], have been developed as biodegradable
implants [15]. Magnesium-based implants have been the focus of biodegradable metal
implants and extensive data from basic to translational research is available [16–18]. The
drawback of Mg-based implants is their fast biodegradation and generation of H gas [19].
Iron-based implants exhibit a slow in vivo degradation rate as compared to Mg-based
implants [20]. Zinc-based alloys were introduced more recently, and the corrosion rate
falls between that of Mg- and Fe-based biodegradable metals [21]. Pure Zn has relatively
poor strength; however, Zn and its alloys are favorable materials for biodegradable im-
plants for osteosynthesis [22]. Fe-based biodegradable materials have been demonstrated
to have similar mechanical properties to natural bone and satisfactory cytocompatibil-
ity [20,23,24]. To overcome the slow degradation rate of Fe-based implants, porous-based
implants fabricated with additive manufacturing technology have been used for Fe-based
SAs, showing satisfactory in vivo cytotoxicity and cytocompatibility, biological perfor-
mance, and biomechanical properties as compared to commercial biodegradable SAs in our
previous rabbit shinbone study [25]. Considering the corrosion rate, biocompatibility, and
mechanical strength, Fe-based materials for orthopedic applications have been vigorously
developed [26].

Even with the advancements in biodegradable metal materials, there is still a scarcity
of Fe-based biodegradable SA data in an animal model. The rotator cuff muscle architecture
of rabbits is more similar to that of humans than any other large mammal, such as dogs,
sheep, pigs, and cows [27]. The novelty of this study is that we adopted a rabbit model,
creating a supraspinatus tendon (SST) tear and repairing the SST tear with two kinds of
SA. The experimental group comprised a three-dimensional (3D)-printed 3.5 mm open-
construct coil-type biodegradable Fe SA. It is easier to manufacture helical structures
with high porosity using 3D printing technology. To overcome the slow degradation
property of Fe, we designed the open architecture of the SA to increase the surface area and
accelerate the corrosion rate. In addition, the double-helical and high-porosity architecture
provides better structural stiffness and bone osteointegration with the SA. The control
group comprised a 3.5 mm non-vented screw-type Ti SA [28]. The aim of this study was to
evaluate the in vitro and in vivo biomechanical performance, micro-computed tomography
(micro-CT) results, and histopathological analysis findings of Fe SAs and compare them
with those of the Ti SA by using a rabbit SST model. The objective of this study was
to compare the biomechanical, radiographic, and histopathological performance of 3D-
printed open-construct double-helical biodegradable Fe SA and Ti SA as prospective SAs
in osteointegration.

2. Materials and Methods
2.1. Production and In Vitro Tests of Double-Helical Biodegradable Fe SAs

The open-construct coil-type Fe SA was produced using additive-manufactured selec-
tive laser sintering (SLM) technology (SLM EOSINT M 270 model; EOS GambH-Electro
Optical Systems, Krailling, Germany). The 3.5 mm open-construct SAs were designed to
have a circular cross-section with a double-helical threaded cylindrical shape to increase
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the surface area (Figure 1A,C). Its tip had a crossbar for the suture to loop over it. The
SAs were prepared using biodegradable spherical Fe powder with a purity of >99.5%.
For comparison, screw-type titanium SAs (TWINFIX Ti 3.5 mm Suture Anchor, Smith &
Nephew, London, UK) were used as the controls (Figure 1B).
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Figure 1. Specifications of the (A) open-construct double-helical Fe suture anchor (SA) and
(B) screw-type Ti SA. (C) Illustration of the open-construct double-helical Fe SA.

In vitro mechanical tests were conducted to evaluate the mechanical characteristics
of the SAs. The tests were performed using a 20-pound-per-cubic-foot (pcf) polyurethane
foam block (part# 1522-03; Sawbone, Pacific Research Laboratories, Vashon, WA, USA). A
No. 2 ultra-high molecular weight polyethylene fiber suture (Ultrabraid, Smith & Nephew,
London, UK) with equal limbs was threaded through the suture eyelet, looped, and fixed
over a post on the adapter before mechanical testing (Figure 2). The static ultimate pullout
strength was determined at a displacement rate of 1 mm/s. The mechanical tests were
performed using an Instron E3000 (ElectroPuls, Instron, MA, USA).
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Figure 2. (A) The dimensions of the Fe SA were 11.0 × 3.5 mm. (B) An inserter handle was
designed to hold the Fe SA, which was inserted into a predrilled hole on the polyurethane foam block.
(C) After inserting the SA and removing the inserter handle, the suture exited the core of the iron
SA. (D) The control group: the non-vented screw-type Ti SA had a tapered tip portion with sutures
through the proximal eyelet. The suture was passed through the eyelet at the top of the SA. The Ti SA
was pulled out of the polyurethane foam block during the mechanical test.

2.2. Corrosion Rate of Pure Fe SAs Using Static Immersion Tests

Static immersion tests were performed to evaluate the weight loss of the Fe SA. Six
samples were weighed to obtain their initial weights (g) and surface areas (mm2). The
experimental specimens were immersed in 10 mL of Hanks’ solution for 3 months and the
temperature was maintained at 37 ◦C using a heating mantle. The samples were removed
from the solution after every 30 days of treatment, ultrasonically cleaned, air dried, and
weighed. The mass changes were used to calculate the corrosion rate (mm/year) using
Equation (1), which is based on the ASTM G31 standard [29]:

CR = k∆m/(ρAt) (1)

where CR is the corrosion rate, K is a constant (8.76 × 104), ∆m (g) is the weight loss of
the sample, ρ (g/cm3) is the density of the object, A (cm2) is the initial surface area of the
sample, and t (h) is the immersion time of the sample in the solution.

2.3. In Vivo Animal Study Design

All animal experiments were approved by the Ethics Committee of the Biomedi-
cal Technology and Device Research Laboratories of the Industrial Technology Research
Institute in accordance with national animal welfare legislation (approval no.: ITRI-IACUC-
2020-050), and the study protocol conformed to the National Institute of Health guidelines
for the use of laboratory animals. A total of 24 New Zealand white rabbits (Animal
Health Research Institute of the Council of Agriculture) with a mean body weight of
4.0 ± 0.4 kg at the age of 6 months were selected. Each rabbit shoulder joint was random-
ized into experimental and control groups by using a computer-generated randomization
method. In the control group, Ti SAs were implanted in the greater tuberosity of the
humerus. In the experimental group, Fe SAs were implanted using the same surgical
procedure as that in the control group. Four rabbits were euthanized immediately after SA



Materials 2022, 15, 2801 5 of 18

implantation and frozen for biomechanical testing. The other rabbits were further divided
into two subcategories based on implantation periods of 2 weeks and 6 weeks after surgery
(10 rabbits in each group). Micro-CT and biochemical tests were performed 2 and 6 weeks after
the surgery. Subsequently, the specimens were frozen for use in further biomechanical tests.

2.4. Surgical Methods

All surgical procedures were performed under general anesthesia by administering
an intramuscular injection of a Zoletil–Rompun mixture (Zoletil 15 mg/kg; Rompun
0.05 mL/kg; Zoletil, Virbac Taiwan, Taipei, Taiwan; Rompun, Bayer Taiwan, Taipei, Taiwan).
To induce analgesia, the rabbits were given intramuscular ketoprofen (2 mg/kg, ASTAR,
Hsinchu, Taiwan) 24 h preoperation, and for 7 consecutive days following the surgery. For
the prophylaxis of infection, the rabbits were given intramuscular Gentamycin (5 mg/kg,
Standard Chem. & Pharm, Tainan, Taiwan) 24 h preoperation and for 7 consecutive days
following the surgery.

Surgical procedures were performed following the method reported by Louati et al.
with some modifications [30]. The supraspinatus insertion was sharply detached from the
greater tuberosity, simulating a complete tear. A scalpel blade was used to decorticate the
SSP footprint. A hole was predrilled on the lateral and distal to the footprint in the cortical
bone with a 1.5 mm drill bit. In the experimental group, Fe SAs with No. 2 Ultrabraid
sutures were inserted into the predrilled hole. The tendon was repositioned to the footprint
using a modified Mason–Allen stitch. In the control group, Ti SAs with No. 2 Ultrabraid
sutures were used. The tendon was repositioned to the footprint with the same technique
as the experimental group (Figure 3). The deltoid was closed, followed by skin closure.
The position of the SAs was confirmed postoperatively using X-ray imaging (Figure 4).
All animals were euthanized after the experiments were completed by administering an
intravenous overdose of pentobarbital.
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Figure 3. (A) The SST of the rabbit was identified. (B) The SST was sharply dissected with a scalpel
blade and (C) the SST was detached from the insertion of the humerus. (D) A drill bit was used to
predrill a hole in the humerus insertion of the SST. (E) After inserting the SA, the two ends of the
suture exited from the SST insertion. (F) The SST was repositioned to the footprint using a modified
Mason–Allen stitch.
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Figure 4. The radiograph shows that the Ti SA (left shoulder) and Fe SA (right shoulder) were
inserted into the proximal humerus greater tuberosity.

2.5. Micro-CT Analysis

After the rabbits were euthanized, 10 specimens were retrieved from each group,
and multi-scale nano-CT (Skyscan 2211, Bruker Micro-CT, Kontich, Belgium) was used
for 30 µm voxel resolution. A voltage of 155 kVp, an 80 µA current, and a 6 W output in
micro-focus mode with a 360◦ scan was used for the Ti implants. A voltage of 180 kVp, a
100 µA current, and an 18 W output in high-power mode with a 360◦ scan was used for the
Fe implants.

InstaRecon xCBR (version 2.0.4.6, InstaRecon, Champaign, IL, USA) and NRecon
(Bruker Micro-CT, Kontich, Belgium) were used for image reconstruction. Finally, NRecon
was used for ring artifact and beam hardening correction.

To reposition the reconstructed cross-section and select the region of interest (ROI),
the 3.5 mm implant column was isolated. Three mm (100 slices) images were used for
the analysis. CTAn software was used for automatic Ostu thresholding and bone growth
analysis. A 200–1000 µm region around the implant was defined as the ROI for bone
growth analysis (Figure 5). The bone and metal structures could be separated according
to the differences in X-ray absorption. CTAn software with a shrink-wrap algorithm
was employed to identify the border of the metallic structure. The tissue volume (TV,
mm3), bone volume (BV, mm3), and bone surface area (BS, mm2) were measured for the
200–1000 µm ROI surrounding the metallic implant in the bone. To determine the BV
percentage, the BV/TV ratio (BV/TS, %) was calculated. The BS area per total volume
(BS/TV, 1/mm) in the 3D analysis was used for characterizing the bone to implant contact.
Subsequently, a “sphere-fitting” measurement method was used to analyze the entire
object volume (OV, mm3), object surface (OS, mm2), and object thickness (OT, mm) [31–33].
Bone formation and implant degradation curve analyses were performed. Avizo software
(Thermo Fisher Scientific, MA, USA) and CTVox (Bruker Micro-CT, Kontich, Belgium) were
used for the 3D visualization.
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Figure 5. The reconstructed cross-sections were re-orientated, and the region of interest (ROI) was
further selected. The 3.5 mm implant column was isolated. (A) The analysis was performed with
3 mm images (100 slices, 3–6 mm from the end of the implant). Automatic Ostu thresholding and bone
ingrowth analysis were performed using CTAn software. (B) The ROI was defined as a 200–1000 µm
region around the implant.

2.6. Biomechanical Analysis

Two rabbits were euthanized immediately postimplantation, and ten rabbits (20 shoul-
ders) were euthanized 2 and 6 weeks postoperation. Ten shoulders were retrieved and
used for biomechanical analyses to investigate the failure load and the site of failure [30],
which could explain the in vivo failure load and failure site of the repairs of SST using SAs.
The SST and proximal humerus were isolated to ensure that only the SST attached to the
humerus head contributed to the mechanical evaluation. The biomechanical testing was
performed at room temperature (25 ◦C). After removing the redundant tissue, the humerus
was embedded into a custom-made metallic clamp at the bottom of the testing machine
(Instron E3343; ElectroPuls, Instron, MA, USA). The tendons were positioned along their
anatomic direction of pull, at an angle of 45◦ to the longitudinal axis of the humeral shaft.
This was followed by tensile loading to failure at 1 mm/s, where a 50% drop in tensile
strength was defined as the breaking point. The load and displacement data were collected,
and the mode of failure was noted. The load at failure was determined using Bluehill LE
v3.71.4609 (Instron, Norwood, MA, USA). The failure modes were defined as failure at the
tendon–suture junction, failure at the suture–anchor junction, and SA pullout.

2.7. Histological Analysis

Ten specimens were retrieved from each group for histological analysis. All the
harvested samples were fixed in 10% formalin for 14 days and sequentially dehydrated
with increasing concentrations of ethanol (70, 95, and 100%) for at least 1 d and infiltrated
for 5 d by using polymethylmethacrylate [34,35]. After embedding, the samples were
cut vertically, perpendicular to the long axis of the SA, at the level of the bone–implant
interfaces. The sections were cut to approximately 150 µm in thickness by using a low-
speed saw (IsoMet, Buehler, Lake Bluff, IL, USA) and ground to 60 µm by using a grinding
and polishing machine [36]. The ground sections were stained with Sanderson’s rapid
bone stain (Dorn & Hart Microedge Inc., Loxley, AL, USA) and then counterstained with
acid fuchsin. All bone–implant interfaces were examined using a light microscope (Nikon
Eclipse Ti-series, Melville, NY, USA).
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2.8. Biochemical Analysis

Blood samples were obtained before surgery and 2 weeks and 6 weeks after surgery.
The blood serum was processed in an ISO 15189:2012 [37] accreditation of medical labora-
tories using an automated spectrophotometer (ADVIA Chemistry XPT System, Siemens
Healthineers, Germany) for analysis of the following parameters: blood urea nitrogen
(BUN), creatinine (Cr), alanine transaminase (ALT), and albumin (Alb).

2.9. Statistical Analysis

All experimental data are presented as the mean ± standard deviation. The Wilcoxon
rank-sum test was used for the nonparametric analysis. A p-value of <0.05 was considered
statistically significant. Statistical analysis was performed using SPSS statistics (version 26,
Chicago, IL, USA).

3. Results
3.1. In Vitro Mechanical Analyses of the Bioabsorbable Fe SA

The ultimate in vitro pullout strength of the Fe SA (188.03 ± 13.56 N) was similar to
that of the Ti SA (177.00 ± 20.04 N, p = 0.157) in 20 pcf polyurethane foam blocks. The
ultimate pullout strength of the Fe SA (132.55 ± 44.92 N) was similar to that of the Ti SA
(110.35 ± 25.09 N, p = 0.827) in the rabbit humeri (Figure 6).
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Figure 6. In vitro biomechanical ultimate pullout strength assessment for the different SAs in
20-pound-per-cubic-foot (pcf) polyurethane foam blocks and rabbit humeri. Mean ± standard
error of the mean (SEM).

3.2. Static Immersion Test

The mean weight loss at 30, 60, and 90 d were 1.99 ± 0.52, 4.76 ± 0.72, and
6.91 ± 0.22% respectively. The corrosion rate was 0.049 ± 0.002 mm/year (Figure 7).
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Figure 7. In vitro corrosion characteristics of the Fe SA. Mean ± SEM.

3.3. In Vivo Biomechanical Analysis

The biomechanical analysis results revealed no difference between the ultimate failure
load of the Fe SA and that of the Ti SA (60.60 ± 15.28 N, p = 1.000) at 0 weeks (60.22 ± 28.73 N).
At 2 weeks, there was no significant difference between the ultimate failure load of the Fe
SA and Ti SA (69.94 ± 16.18 N and 53.36 ± 15.74 N, p = 0.093, respectively). At 6 weeks,
there was a significant difference between the ultimate failure load of the Fe SA and Ti SA
(116.64 ± 33.80 N and 52.14 ± 28.20 N, p = 0.043, respectively) (Figure 8).
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Figure 8. In vivo biomechanical ultimate pullout strength assessment for different SAs at 0, 2, and
6 weeks after surgery. Mean ± SEM. * p < 0.05.

3.4. Failure Sites

At week 0, all repaired tendons failed at the tendon–suture junction in both the Fe and
Ti SA groups. At week 2, there were five out of six (83.3%) failures at the tendon-suture
junction, one out of six (16.7%) failures at the suture–anchor junction, and no SA was pulled
out in the Fe SA group. In the control group, there were three out of six (50%) failures at
the tendon–suture junction, two out of six (33.3%) failures at the suture–anchor junction,
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and one SA (16.7%) was pulled out from the bone. At week 6, there were four out of six
(66.7%) failures at the tendon–suture junction (Figure 9A), two out of six (33.3%) failures at
the suture–anchor junction, and no SA was pulled out in the Fe SA group (Figure 9B). In
the control group, there were five out of six (83.3%) failures at the tendon–suture junction,
and one SA (16.7%) was pulled out of the bone (Figure 9C).
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Figure 9. Three different modes of failure after the ultimate pullout strength assessment. (A) Failure
at the tendon–suture junction (arrow). (B) Failure at the suture–anchor junction. That is, the end of
the suture ruptured from the anchor (arrowhead). (C) The SA was pulled out. T, tendon; S, suture;
A, anchor.

3.5. Micro-CT Analysis

Micro-CT was performed to evaluate the bone formation between the implant and
bone tissue. The Fe SA exhibited a higher postoperative BV/TV at 2 weeks (35.84 ± 3.80 vs.
27.18 ± 4.46, p = 0.003) and 6 weeks (33.47 ± 3.78 vs. 27.46 ± 2.14, p = 0.001) as compared
to the Ti SA (Figure 10A). The Fe SA exhibited a higher postoperative BS/TV at 2 weeks
(5.66 ± 0.76 vs. 4.47 ± 0.53, p = 0.005) and 6 weeks (5.58 ± 0.89 vs. 4.36 ± 0.56, p = 0.005)
as compared to the Ti SA (Figure 10B). There was no difference in the BV/TV intra-group
analysis between the 2- and 6-week samples in the Ti SA group (p = 0.453) and in the Fe
group SA (p = 0.294). There was no difference in the BS/TV intra-group analysis between
the 2- and 6-week samples in the Ti SA group (p = 0.860) and in the Fe group SA (p = 0.793).
Figures 11 and 12 show examples of the Ti SA and Fe SA at 2 and 6 weeks, respectively,
after the SA implantation.
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Figure 10. Micro-computed tomography (micro-CT) analysis. Quantitative evaluation of the bone
volume (BV) between the bone and SAs. The tissue volume (TV, mm3), BV (mm3), and BS (mm2)
were examined in a region of interest (ROI) of 200–1000 µm around the implant. (A) BV fraction
(BV/TV, %) and (B) BS density (BS/TV, mm−1) represent the BV rate and bone tissue surface rate,
respectively. Mean ± SEM. * p < 0.05.
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Figure 11. Micro-CT analysis. (A) Titanium SA 2 weeks after implantation. The BV fraction was
27.77% and the bone surface (BS) density was 4.52 mm−1. (B) Iron SA 2 weeks after implantation.
The BV fraction was 38.20% and the BS density was 6.05 mm−1.
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Figure 12. Micro-CT analysis. (A) Ti SA 6 weeks after implantation. The BV fraction was 29.59% and
the BS density was 4.57 mm−1. (B) Fe SA 6 weeks after implantation. The BV fraction was 39.78%
and the BS density was 6.31 mm−1.
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The Fe SA degradation analysis showed an OV increase at 6 weeks as compared to
that at 2 weeks (27.42 ± 0.81 vs. 26.71 ± 0.41, p = 0.021); however, the OS and OT at 2 and
6 weeks exhibited no significant difference (157.13 ± 1.20 vs. 156.89 ± 2.66, p = 0.173 and
0.64 ± 0.02 vs. 0.63 ± 0.01, p = 0.240, respectively), as shown in Figure 13. Figure 14 shows
the reconstructed micro-CT images of the Fe SA at 2 and 6 weeks.
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Figure 13. Micro-CT degradation analysis of the Fe SA groups 2 and 6 weeks postoperation in
(A) Objective volume (mm2), (B) Object surface (mm2), and (C) Object thickness (mm). Mean ± SEM.
* p < 0.05.
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Figure 14. Reconstructed micro-CT images of two Fe SAs (A) 2 weeks postoperation and (B) 6 weeks
postoperation.

3.6. Histological Analyses

The mineralized bone formation was observed in the Ti SA and Fe SA groups at 2 and
6 weeks postoperation (Figure 15). In all the histological analyses, mineralized osteocytes
were observed in the region that closely contacted the SA. At 2 weeks, new bone formation
was observed around the Fe SA, which penetrated the suture fiber. More degradation
products were observed surrounding the FE SA at 6 weeks as compared to that of the Fe
SA at 2 weeks.
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Figure 15. Micro-CT and histological examination of the bone–SA interface 2 and 6 weeks postopera-
tion. w, week; A, anchor; S, suture; DP, degradation products; MO, mineralized osteocytes.

3.7. Biochemical Analysis

Blood samples were collected from all the rabbits preoperation and at 2 and 6 weeks
postoperation for biochemical analysis. Table 1 and Figure 16 show that the serum ALT
level was increased gradually at 2 and 6 weeks postoperation. However, the serum Cr, Alb,
and BUN levels were comparable at both time points.

Table 1. Blood biochemistry analysis.

Week 0 Week 2 Week 6

BUN (mg/dL) 19.8 ± 3.19 18.43 ± 3.06 18.98 ± 2.83
ALT (U/L) 39.35 ± 13.33 51.95 ± 16.39 65.50 ± 23.19
Alb (g/dL) 4.12 ± 0.19 3.81 ± 0.21 4.07 ± 0.25
Cr (mg/dL) 1.35 ± 0.18 1.06 ± 0.17 1.19 ± 0.11
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Figure 16. (A) Level of serum blood urea nitrogen (BUN; mg/dL), (B) level of serum alanine
transaminase (ALT; U/L), (C) level of serum albumin (Alb; g/dL), and (D) level of creatinine
(Cr; mg/dL) preoperation and 2 and 6 weeks postoperation. Mean ± SEM.

4. Discussion

The results showed that the in vitro biomechanical data of the 3D-printed Fe SA
was similar to that of the Ti SA (Figure 6). The corrosion rate of the Fe SA was 0.049 ±
0.002 mm/year (Figure 7). The in vivo data in the rabbit model demonstrated that the Fe
SA exhibited a higher pullout strength and showed more mineralized bone formation 2
and 6 weeks postoperation as compared to the Ti SA (Figure 8).

Corrosion behavior is one of the most important factors for biodegradable materials.
The optimal value of corrosion rate for plates and screws is approximately 0.5 mm/year [14].
If the corrosion rate is too high, the mechanical strength will deteriorate before healing,
leading to implant failure. If the corrosion rate is too low, delays in the healing of the
bone tissue might cause adverse effects. The in vitro corrosion rates vary with either the
static immersion test or polarization test using different physiological solutions. The Fe SA
employed in this study was produced using SLM technology and Fe powder with an Fe
purity of > 99.5%. The corrosion rate calculated using the 3-month static immersion test was
0.049 ± 0.002 mm/year, which was similar to scaffolds produced using extrusion-based 3D
printing with an Fe power purity of 99.88% (0.05 mm/year) [13], but was slower than that
of pure Fe with a refined structure produced using electroforming (0.40 mm/year) [38],
soft ingot Fe (>99.8% purity) in the form of 2 mm thick sheets produced using cross-rolling
(0.11–0.14 mm/year) [39], and composites produced using SLM with C nanotubes/Fe
(99% purity) (0.085 mm/year) [40]. Overall, pure Fe’s corrosion rate ranges from 0.049
to 0.4 mm/year. In comparison to biodegradable Fe, the in vitro corrosion rate of pure
Mg ranges from 0.33 to 0.99 mm/year [17,41,42], and that of pure Zn ranges from 0.014 to
0.75 mm/year [43–45]. The in vitro corrosion rate of pure Fe is slower than that of pure Mg
and Zn.

The architecture of small mammal rotator cuffs shows greater similarity to that of
humans than that of large mammals [27]. Some rabbit rotator cuff tear studies have
been proposed to demonstrate the outcomes of repairing these using SAs [30,46]. Chaler
et al. [46] demonstrated that repairing SST ruptures using SAs yielded higher loads to
failure immediately after the repair and after the first postoperative week as compared to the
transosseous repair. Louati et al. [30] demonstrated the outcomes of the channeling and no-
channeling techniques in the repair of SST ruptures using SAs. Both animal studies showed
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no difference in the load to failure after 4 weeks of SA implantation [30,46]. Consequently,
the authors hypothesized that 6 weeks after SA implantation is a long enough period
to examine the ultimate load to failure. The in vivo biomechanical analysis mimicked
the supraspinatus muscle pullout direction. The biomechanical results showed the most
common failure site was at the tendon–suture junction, implying that the tendon was cut
by the sutures (Figure 9). Although the load to failure was similar between the two groups,
there was no SA pullout failure in the Fe SA group but there was one SA pullout failure in
the Ti SA group.

Micro-CT was used to quantify the BV fraction (BV/TV) and BS density (BS/TV) of
the ROI surrounding the SA [47]. A higher BV/TV is better for bone growth and a higher
BS/TV indicates an increased bone growth closer to the implant surface region. The results
of this study demonstrate that the Fe SA yielded increased bone growth as compared to the
Ti SA, especially in the region near the implant surface. This result corresponded to the
histology results, where the BV, identified using micro-CT, was mineralized bone. Due to
the open-construct design of the Fe SA, new mineralized bone growth into the core of the
anchor occurred as early as week 2 (Figure 14). The micrograph demonstrated new bone
grew into the Fe SA and embedded the sutures, which may provide stability, even if degra-
dation occurred in the Fe SA (Figure 15). In our previous study, the cell sensitivity assays
showed that the Fe SA exhibited no cytotoxicity and lamellipodial extrusions from the cells,
and the attachment on the implant surface could be identified using a scanning electron
microscope [25]. Additionally, no significant Fe deposition in the visceral organs was
found [25]. Overall, Fe SA is a biocompatible implant and shows better new mineralized
bone growth around the implant.

In this study, a mild elevation in serum ALT was noted. The biocompatibility of the
Fe SA was confirmed in a previous study of Fe SA implantation in rabbit tibia for three
months [25], in which the histopathology of Prussian blue staining of the liver showed that
no Fe was detected in the Fe SA group. Additionally, the percentage of Fe stores in the
spleen in the Fe SA group showed no significant difference from those in the polymer SA
group. In this study, some degradation products surrounding the Fe SA were found. A
longer-term follow-up study is needed to confirm any occurrence of local inflammation
reactions after further degradation of the Fe SA.

This study showed a similar short-term ultimate pullout strength between Ti and
Fe SAs. Because of the structural difference, the stress concentration during the ultimate
pullout test was located around the proximal site in the Ti SAs and around the distal site in
the Fe SAs. A biomechanical study conducted in a polyurethane foam block and porcine
bone showed a similar ultimate pullout strength and cyclic loading test results between
open-construct coil-type PEEK SAs and Ti non-vented screw-type SAs [48]. The authors
cannot attribute this to the superior biomaterial properties of Ti or Fe or the structural
design of either the non-vented screw-type or open-construct coil-type SAs. Future stud-
ies comparing the same open-construct coil-type design with different biomaterials may
determine whether nondegradable Ti or biodegradable Fe is superior for use in SAs.

3D printing technology allows for the rapid fabrication of porous implants and com-
posite scaffolds which can be tailored to different orthopedic applications [25,49,50]. The
Fe SA used in this study was produced by laser sintering using high purity biodegradable
spherical Fe powder. 3D printing selective laser sintering technology allowed the accurate
construction of the two-helical structure and the incorporation of porous structures in the
thread, which could facilitate bone ingrowth to stabilize the anchor. Overall, the 3D printed
open-construct biodegradable Fe SA showed good initial mechanical pullout strength,
mineralized bone growth, and optimal gradual degradation.

This study had some limitations that should be addressed. First, the rabbit SST
tear study analyzed the osteointegration between the bone and SA using histological
evidence and micro-CT results. The ultimate pullout strength of the SST was evaluated.
However, whether the occurrence of local inflammation reactions during Fe degradation
may influence the SST healing requires further study. Second, this study showed that
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biodegradable Fe SA promoted better bone growth than commercialized Ti SAs. However,
the two SAs in the experimental and control groups had different material properties and
structural designs. Further studies using the same SA design with different materials are
needed to clarify which material (Fe, Ti, or PEEK) is superior.

5. Conclusions

The in vitro test confirmed that the static biodegradable property of Fe SAs was
0.049 ± 0.002 mm/year and the pullout strength was similar to that of the Ti SAs. The
micro-CT and histology confirmed that the Fe SAs exhibited better mineralized bone growth
around the Fe SA as compared to the Ti SA in the rabbit rotator cuff tear model. Overall,
the open-construct and double-helical Fe SAs produced using 3D printing technology
could outperform the currently used Ti SAs in terms of their biomechanical properties
and osteointegration capacity. Future research should focus on the biocompatibility of the
long-term implantation of Fe SAs and the in vivo degradation rate of the biodegradable
Fe SAs.
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