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Abstract: Cardiovascular diseases are the leading cause of death globally, causing nearly 17.9 million
deaths per year. Therefore, early detection and treatment are critical to help improve this situation.
Many manufacturers have developed products to monitor patients’ heart conditions as they perform
their daily activities. However, very few can diagnose complex heart anomalies beyond detecting
rhythm fluctuation. This paper proposes a new method that combines a Short-Time Fourier Transform
(STFT) spectrogram of the ECG signal with handcrafted features to detect heart anomalies beyond
commercial product capabilities. Using the proposed Convolutional Neural Network, the algorithm
can detect 16 different rhythm anomalies with an accuracy of 99.79% with 0.15% false-alarm rate
and 99.74% sensitivity. Additionally, the same algorithm can also detect 13 heartbeat anomalies with
99.18% accuracy with 0.45% false-alarm rate and 98.80% sensitivity.

Keywords: electrocardiogram; deep learning; signal processing; machine learning; anomaly detection

1. Introduction

Cardiovascular diseases (CVD) are the leading cause of death worldwide, with nearly
17.9 million deaths per year. CVD continues its decades-long rise in low-income and middle-
income countries. Even in high-income countries with accessible healthcare systems,
the age-standardized rate of CVD has begun to rise [1]. Therefore, there is an urgent need
to focus on implementing cost-effective policies and technological solutions to improve
this situation by emphasizing early CVD detection, which can be life-saving, especially in
younger populations [2]. This is even more true in many low-income and middle-income
countries because of limited access to medical equipment and the high cost of medical
services. To help solve this situation, the detection and treatment using low-cost heart
sensors and new algorithms that automatically detect heart anomalies are essential.

The electrocardiogram (ECG) is the most commonly used tool to detect heart condi-
tions. It is a quick, safe, and painless way for physicians to check their heart rate and rhythm
and detect potential heart disease signs. Standard ECG practice consists of installing the
electrodes on the patient at rest and then measuring the lead’s voltages for 10 s. Next,
a cardiologist reads the results and performs a diagnostic. The problem with this approach
is that the patient needs to go to a clinic to be measured and hope that the cardiologist
can detect abnormal heart activities during the visit. This is far from what is necessary for
the early detection of CVD. Ideally, continuous 24/7 ambulatory ECG monitoring devices
are needed to measure heart activities during normal daily activities or at night. These
ambulatory ECG monitoring devices are connected wirelessly to a secure central cloud
service where data recordings are processed to detect heart anomalies. The device must
be low-cost, capable of dealing with motion artifacts and network limitations. At the
cloud, an algorithm must automatically reduce motion artifacts from these long-duration
remote recordings and then identify the anomalies that a cardiologist will confirm. A novel
algorithm for the reduction of motion artifacts was presented in a previous paper by the
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authors [3]. This paper deals with the detection of heart anomalies on long recordings using
a neural network using handcrafted input features extracted from the ECG spectrogram.

Anomaly detection on ECG signals can be divided into rhythm and heartbeat clas-
sifications. Rhythm classification focuses on finding abnormal rhythms among normal
rhythms. To find a rhythm anomaly, one must process multiple heartbeats. Moreover, the
heartbeat classification focuses on finding the pattern of one heartbeat signal [4]. Therefore,
the proposed algorithm must first process the entire ECG record and then detect abnormal
rhythms (Figure 1).

Figure 1. Normal rhythm contains abnormal heartbeat.

In Section 1.1, the state-of-the-art of rhythm and heartbeat classification algorithms
are reviewed. Next, Section 2 will describe the proposed algorithm where ECG signals
are transformed into a Short-Time Fourier Transform (STFT) spectrum followed by hand-
crafted features to classify ECG anomalies using a convolutional neural network architecture.
Section 3 describes the experimental setup and compares the detection results to state-of-the-
art algorithms. The explanation of the advantages of this new algorithm is concluded in
Section 4.

1.1. Related Work

As stated earlier, anomaly detection consists of two parts: rhythm and heartbeat
classifications. Rhythm classification determines the type of the rhythm anomalies such as
Normal Sinus Rhythm (NSR), Atrial Fibrillation (AF), Ventricular Flutter (VF), and so on.
The ECG segments for rhythm classification are usually contained in several heartbeats,
which could be normal or abnormal. Heartbeat classification takes an ECG signal that
only includes one heartbeat as the input and outputs the heartbeat type such as normal
heartbeat, Left/Right bundle branch block beats, premature beats, etc. The following
sections introduce and explain the literature on rhythm and heartbeat classifications.

The goal of rhythm and heartbeat classification is to find abnormal rhythms and heart-
beats on a continuous ECG signal. The difference is that the input for rhythm classification
needs to contain several heartbeats, and the input for heartbeat classification only has one
heartbeat. However, they share a similarity in that they consist of two main parts: feature
extraction and classification. In the feature extraction part, many researchers extract the
features that represent the ECG signal. In the classification part, models are trained with
the extracted feature and then classified.

1.1.1. Feature Extraction

According to the literature, there are two main conventional features: derived and
morphological [4]. The derived features are calculated from the ECG signal using feature
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detectors. The common derived features found in the literature are: Auto-Regressive (AR)
coefficients [5]; Discrete Wavelet Transform (DWT) coefficients [6,7]; Eigen Vectors [8]; Dual-
Tree Complex Wavelet-Transform coefficients [9]; Intrinsic Mode Functions from Empirical
Mode Decomposition [10]. The other morphological features deal with the morphological
information found in the ECG signal. The most used morphological features found in the
literature are: QRS complex duration and peak values; P-wave duration and peak value;
T-wave duration and peak value; PR interval length; QT interval length and so on [11,12].
In [4], one can see a more detailed list of the most common morphological features used
for ECG signal processing. There are some advantages and drawbacks to both types of
features. The derived features usually represent the ECG signal in the frequency domain.
Therefore, the noisy components in the ECG signal can be easily discarded during the
process even though this means that some essential information in the time domain may be
lost, such as peak values, interval duration, etc. Moreover, the derived features may not
distinguish between different rhythms or heartbeats. Morphological features, on the other
hand, focus on the time domain even though they are easily contaminated by noise. They
also represent the same information that Cardiologists use to interpret ECG recordings.
Other than the standard derived and morphological features, the spectrogram of the ECG
signal was proposed by [13,14] for rhythm and heartbeat classification. Compared to the
standard features, a spectrogram contains information from both the time and frequency
domains. The drawback is that the spectrogram is a 2D image. Therefore, traditional 1D
classification algorithms cannot be applied.

1.1.2. Classification Tool

Once the feature vectors are extracted from the ECG signal; a classification algorithm is
needed to classify each condition. The Euclidean distance is one of the most popular metrics
to compare two vectors’ similarities. It computes the distance between two same-length
vectors, and one can cluster the input vectors based on the computed distance. The paper
by [15] shows an example of using Euclidean distance for anomaly heartbeat detection.
K-means clustering is the most common clustering method that uses Euclidean distance
to cluster data entries to different clusters. In [16], the K-means clustering method is used
to classify heartbeat into normal and abnormal classes. The Euclidean distance and its
corresponding clustering method are fast and simple methods to distinguish different
classes. However, it has a high requirement on the extract features. The difference between
feature vectors must be large to be assigned into different clusters. In addition, it is easily
affected by data outliers and noise.

Another common classification tool is used by traditional machine learning classi-
fication algorithms. The algorithms build a mathematical model on collected training
data to perform anomalies recognition. There are some popular algorithms found in the
literature: Kth Nearest Neighbor [17], Linear Discriminant Analysis [18], Support Vector
Machine [7,12], Multi-Layer Perceptron Neural Network [9]. These algorithms rely heavily
on feature selection. Therefore the raw ECG signal could not be the input of such algorithms.
Compared to the Euclidean distance, the training time is much longer for these machine
learning algorithms, and because of the size of the training dataset, a small number of
outliers in the dataset will not affect the trained model.

With the rapid development of fast and low-cost computing hardware, deep learning
neural networks (DNN) can be used to reduce the need to extract hand-crafted features
from an ECG signal. In many applications, they can generate more accurate classifiers.
However, DNN often requires a massive amount of data for training. Convolutional Neural
Network (CNN) [19] model is one of the most popular artificial neural network. It is
mostly used for images and signals analysis and segmentation. The most important layer
in the CNN is the convolution layer. The convolution layer can reduce the input so that
the network can process the local regions instead of the whole input [20]. Therefore, one
advantage of CNN is that it could take a raw ECG or the spectrogram image as the input
without the need for feature extraction. Another advantage of the CNN is that it may not
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require the preprocessing step since the convolution layer can eliminate the unwanted
noise during training. There are several researchers who have explored the potential of
CNN for rhythm and heartbeat classification [13,21–23].

Recurrent Neural Network (RNN) is another popular deep learning neural network
class used to classify ECG. This neural network is specialized in processing sequential data
such as time series, text and so on. Compared to feed-forward neural networks such as
CNN, RNN uses past features that affect the present such as the well-known long short-
term memory (LSTM) networks [24]. RNN could keep the useful information of the input
and discard the rest from the beginning of the training. Therefore, while processing ECG
signals, the prediction of the previous rhythms or heartbeats will also affect the decision
of the current one. Both RNN and LSTM networks have been proven to be effective for
rhythm, and heartbeat classification by several researchers such as [8,25].

2. Materials and Methods

The following section describe the public ECG dataset used to test and train the
proposed algorithm (see Tables 1 and 2 third columns).

Table 1. Complete Description of Rhythms Types.

Symbol Meaning Database

NSR Normal sinus rhythm M, E
AB Atrial bigeminy M, E

AFIB Atrial fibrillation M, E
AFL Atrial flutter M

B Ventricular bigeminy M, E
BII 2° heart block M
B3 3° heart block E

IVR Idioventricular rhythm M
NOD Nodal (A-V junctional) rhythm M

P Paced rhythm M
PREX Pre-excitation (WPW) M
SAB Sino-atrial block E
SBR Sinus bradycardia M, E

SVTA Supraventricular tachyarrhythmia M, E
T Ventricular trigeminy M, E

VFL Ventricular flutter M
VT Ventricular tachycardia M, E

Table 2. Complete Description of Heartbeat Types.

Symbol Meaning Database

N Normal M, E
LBBB Left bundle branch block beat M
RBBB Right bundle branch block beat M
PAC Atrial premature beat M

a Aberrated atrial premature beat M, E
J Nodal (junctional) premature beat M, E
S Supraventricular premature beat M, E

PVC Premature ventricular contraction M, E
F Fusion of ventricular and normal beat M, E
e Atrial escape beat M
j Nodal (junctional) escape beat M, E
E Ventricular escape beat M, E
P Paced beat M
f Fusion of paced and normal beat M, E
Q Unclassified beat M
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2.1. Data Description

The test ECG datasets are from the MIT-BIH database [26] and the European ST-T
database [27] both located in the PhysioNet database [28]. The MIT-BIH data contains
48 half-hour excerpts of two-channel ambulatory ECG recordings obtained from 47 subjects.
The data is fully annotated with 15 different rhythm classifications. The European ST-T
database consists of 92 annotated 2 h excerpts of two-channel ambulatory ECG recordings
from 79 subjects with 10 different rhythm classifications, and a complete description of the
rhythms is shown in Table 1. similarly, a complete description of the heartbeat is shown in
Table 2. In these tables, M is short for the MIT-BIH database, and E is short for the European
ST-T Database.

2.2. Methodology

As described previously, anomaly detection can be divided into abnormal rhythm
detection and abnormal heartbeat detection. First, abnormal rhythm detection will find
the abnormal rhythms in the ECG record and label them. However, some rhythms may be
labeled as normal rhythm, they could contain abnormal heartbeat (an example can be seen
in Figure 1). Therefore, the second part of the algorithm will go through all heartbeats in
the normal rhythm and label the irregular heartbeats. This section describes the steps of
the algorithm and the features used to model the rhythms and heartbeat signal.

2.2.1. Signal Pre-Processing

The signal pre-processing steps consist of re-sampling, normalization, data extraction,
and balancing. The ECG signals in the MIH-BIH arrhythmia dataset have a 360 Hz sampling
frequency, and the signals in the European ST-T dataset have a 250 Hz sampling frequency.
To make the sampling frequency at the same rate, both signals were down-sampled at a rate
of 250 Hz, with an antialiasing lowpass Filter provided by Matlab [29]. The algorithm starts
by inserting 250 zeros to the original signal S(t)orig to obtain the up-sampled signal S(t)up.
Then S(t)up is filtered by an FIR antialiasing filter that uses a Kaiser window method to
maintain the original shape of S(t)orig. Finally, 250 samples in the S(t)up are discarded to
obtain the down-sampled signal S(t)down. Next, the signals S(t) from both datasets are
normalized between 0 and 1 using the min–max normalization formula:

S(t) =
value(t)−min

max−min
. (1)

2.2.2. Rhythm and Heartbeat Signal Extraction

The ECG signal is split into 3-s segments using a sliding window method to extract
the rhythm data. The window size is chosen to be 3× sample frequency, and the step size
is chosen to be 1× sample frequency. The heartbeat data are extracted using the provided
heartbeat annotation location. The R peak locations of the last heartbeat and the following
R peak will be the beginning and ending points of the current heartbeat. After rhythm and
heartbeat extraction, the extracted data is used to compute the spectrogram and features
for data modeling.

2.2.3. Spectrogram Using Short-Time Fourier Transform

Traditional signal-processing approaches assume that the signal is stationary, which
is not true, especially for ECG. Hence, time or frequency descriptions alone are insuf-
ficient to provide a comprehensive analysis of the ECG signals [30]. Similar to speech
analysis, time-frequency analysis is much more suitable for nonstationary signals. Us-
ing Short-Time Fourier Transform (STFT), one can determine the frequency and phase
content of local sections of a signal as it changes over time [30]. STFT is a sequence of
Fourier transforms of a windowed signal. The STFT matrix is the combination of the
Discrete Fourier Transform (DFT) of each windowed segments which can be expressed as
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X( f ) = [X1( f ), X2( f ), X3( f ), . . . , Xm( f ), . . . , Xk( f )] [31], where k is the number columns
of the spectrogram.

To compute the STFT spectrum, one must choose the window function and size.
The window function selected must be adapted to the signal frequencies. The window
size affects the amount of time and frequency information presented in the spectrogram.
If the spectrogram is computed using a long window, then the spectrogram has more
Discrete Fourier Transform (DFT) samples but less time resolution. On the other hand,
if the spectrogram is computed using a short window, then the spectrogram has fewer
DFT samples but better time resolution. The window size from 0.1 s to 1 s were tested
to find a balance between frequency and time resolutions. In this search, based on many
experiments, a window length L of 167 samples was chosen for the rhythm data, and
28 samples were chosen for the heartbeat data, which is 0.668 s and 0.11 s correspondingly.
The best window function for the STFT is the Hanning window for both data (shown
in Figure 2). The reason for selecting the Hanning window is that it ranged from 0 to 1
in amplitude, matching the normalized ECG signal range. Moreover, the shape of the
Hanning window function is similar to the waves of the ECG signal.

Figure 2. Hanning window function in the time domain and the frequency domain.

Examples of the spectrogram and its corresponding ECG rhythm and heartbeat can
be seen in Figures 3–6. The y-axis for the ECG signal in the above figures were normal-
ized voltage.

(a)

Figure 3. Cont.
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(b)

Figure 3. Abnormal ECG rhythm and its corresponding spectrogram. (a) Normal rhythm plot.
(b) Normal rhythm spectrogram.

(a)

(b)

Figure 4. Normal ECG rhythm and its corresponding spectrogram. (a) Normal rhythm plot. (b) Nor-
mal rhythm spectrogram.



Sensors 2022, 22, 2467 8 of 22

(a)

(b)

Figure 5. The normal heartbeat plot and spectrogram. (a) Normal heartbeat plot. (b) Normal
heartbeat spectrogram.

(a)

Figure 6. Cont.
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(b)

Figure 6. The abnormal heartbeat plot and spectrogram. (a) Abnormal heartbeat plot. (b) Abnormal
heartbeat spectrogram.

2.2.4. Handcrafted Features Rhythm Classification

Sometimes, humans can quickly identify relationships between two objects where a
computer cannot. In the proposed research, in addition to the extracted features from the
Convolutional Neural Network, nine extra handcrafted features were added to improve the
recognition performance. The feature vector for rhythm classification contains the number
of R peaks detected from two algorithms, skewness, kurtosis, variance, average interval
length, average QRS complex length, average PR interval length, average QT interval
length. The features will be explained in the following sections.

2.2.5. Detecting the Number of R Peaks

For this feature, two algorithms were used to detect the R peaks. One is the Pan–
Tompkins algorithm [32], and the other one is the Shannon Energy Envelope Hilbert
transform (SEEHT) [33]. The detected R peaks were included in the final feature vectors.
The reason for using two R peaks detection algorithms is that they perform differently
for different ECG signals. The Pan–Tompkins uses a filter bank that only keeps the R
peaks on the ECG signal. The SEEHT algorithm calculates the Shannon energy envelope
of each heartbeat on the ECG signal and then applies Hilbert transform to the Shannon
energy signal. By finding the zero-crossing of the converted signal, one can detect the R
peak locations. By comparison, the SEEHT has higher overall detection accuracy, and the
Pan–Tompkins has higher abnormal heartbeat detection accuracy. For example, if one
selects a record from the MIT-BIH database with 472 ventricular flutter (VF) beats, the Pan–
Tompkins algorithm will detect 363 VF beats, and the SEEHT will only detect 177 VF beats.
Therefore, by using both algorithms as features, one can improve detection accuracy.

2.2.6. Statistics Features

Another handcrafted feature is a skewness measurement that computes the asymmetry
of the ECG signal about its mean. Negative skewness indicates the signal is leaning right,
and positive skewness indicates the signal is leaning left. The skewness estimate can be
computed using the following equation:

skewness =
µ3

σ3 , (2)

where the µ is the mean, and the σ is the standard deviation.
The kurtosis describes the ‘peak’ of a signal. The kurtosis should be zero for a perfectly

normal distribution. Signal with positive excess kurtosis indicates a high peak, and a signal
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with negative kurtosis indicates a flat-topped curve [34]. The kurtosis can be computed
using the following equation:

kurtosis =
µ4

σ4 , (3)

where µ is the mean, and the σ is the standard deviation.
The variance of a signal computes how far the sample points are away from their

mean. It can be computed using the following equation:

Variance =
1

N − 1

N

∑
i=1
|Xi − µ|2, (4)

where Xi is the signal, N is the length of the signal, and µ is the mean of the signal.

2.2.7. ECG Intervals Measurement

Four ECG interval measurements are also used as features. They are average RR
interval length, average QRS complex length, average PR interval length, and average
QT interval length. The detection tool used for detecting the Q wave and T wave was
‘ecgpuwave’, which is provided by PhysioNet [28]. The ‘ecgpuwave’ uses Pan–Tompkins
algorithm [32] to detect the QRS complex. Then the detector detects the P peak and T
peak based on the detected R peaks. For P and T peak detection, the detector defined
search windows before and after the R peak. The detector searches the maximum and the
minimum values in the defined window. The P and T wave peak is assumed to occur at
the zero-crossing between the maximum and the minimum values in the search windows.
Figure 7a,b show the examples of the P-QRS-T detection using the ‘ecgpuwave’ detector.
These two examples represent the most common situation for detecting the P, R and T
peaks on the heartbeats with the ‘ecgpuwave’ detector, which are the peaks on abnormal
heartbeats that cannot be fully detected and the detection on normal heartbeats are perfectly
detected. Therefore, for undetected peaks, its corresponding interval length and peak value
will be set to 0.

(a)

Figure 7. Cont.
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(b)

Figure 7. The P,R,T peak detection on both normal and abnormal heartbeat. (a) P,R,T peak detection
on normal heartbeat. (b) P,R,T peak detection on abnormal heartbeat.

2.2.8. Handcrafted Features for Heartbeat Classification

The previous statistics features for the rhythm are also used for the heartbeat signal:
skewness, kurtosis, and variance. However, there are still some features that are different
from the rhythm. Since there is only one heartbeat in the heartbeat signal, the number of
R peaks, average RR interval length, average QRS complex length, average PR interval
length, and average QT interval length no longer exists. They are replaced with normalized
R peak value, left RR interval length, right RR interval length, PR interval length, QRS
complex length, QT interval length, In addition, as shown in Figure 7, the ’ecgpuwave’
detector could detect the peak location of the heartbeat signal, and the P wave and T wave
peak value could also be retrieved. Therefore, the final two features added to the feature
vector are normalized P wave peak and T wave peak values.

To sum up, there are a total of 11 features in the handcrafted feature vector which
are normalized R peak value, left RR interval length, right RR interval length, skewness,
kurtosis, variance, QRS complex length, PR interval length, QR interval length, normalized
P wave peak value, and normalized T wave peak value.

2.2.9. Network Architecture

The proposed Convolutional Neural Network (CNN) consists of a feature-extraction
layer, a normalization layer, a CNN block, and a feature-merging layer. The proposed
CNN structure is shown in Figure 8. According to the figure, the original input is the raw
ECG signal. From the original input, the program could produce the STFT spectrogram
and the handcrafted features in Section 2.2.8. Once the handcrafted features are obtained,
the normalization layer will normalize those features to a range between [0, 1] so that each
feature contributes the same weight to the classification. The STFT spectrogram was sent to
the CNN block and a sigmoid layer. The CNN block could be any popular CNN structure
such as VGG-19 CNN, plain 34-layers CNN, 34-layers Residual Net (shown in Figure 9).
The primary purpose of the CNN block was to extract the features from the spectrogram
using convolutional layers. The sigmoid layer acts as a normalization layer, converting
CNN features to be in the range [0, 1] so that the CNN features will have the same weight
as the handcrafted features at the final layer. Once the CNN and handcrafted features are
obtained, the feature-merging layer then combines the normalized handcrafted features
with the extracted features from the spectrogram. Finally, the merged feature vector will
input a fully connected layer to produce the final classification. The output value of the
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fully connected layer is in the range of 0 and 1 where the value of the final classification
label will be decided by:

label =

{
normal if x <= 0.5
abnormal if x > 0.5

(5)

where x is the output value of the fully connected layer.

Figure 8. The proposed CNN.
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Figure 9. VGG-19 CNN, 34-layer plain CNN, 34-layer ResNet.
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3. Experimental Setup and Result Discussion
3.1. Dataset Setup

There are 17 different rhythm types in the data sets, as described previously. However,
in the experiment, the data were classified according to 1 for abnormal and 0 for normal.

There are 26,532 abnormal ECG rhythms for the rhythm dataset and 1,199,065 normal
ECG rhythms. Since there were much more normal rhythm data than anomalous rhythm
data, dataset balancing was necessary. The normal rhythm dataset was constructed by
randomly selecting 26,532 samples from the original normal rhythm dataset. As a result,
the reconstructed dataset has 26,532 abnormal ECG rhythms and 26,532 normal rhythms.
For the final dataset, 53,064 ECG rhythms were generated. A total of 90% of the data were
used as the training dataset, and 10% were used as the testing dataset. Therefore, the train-
ing set contains 47,758 ECG rhythms, and the testing dataset contains 5306 ECG rhythms.

For generating the heartbeat dataset, there is a slight difference. According to Section 2.2,
the only abnormal heartbeats that occur in normal rhythm are used for training and testing.
There are no Right Bundle Block Beat in these two databases, and Pace Beat occurs in the
normal rhythm. Therefore, there were 14 heartbeat types in the training and testing dataset.
Similar to the generation of rhythm dataset, the training and testing dataset split follows a
9:1 ratio. Finally, the generated training dataset contains 43,516 heartbeats, and the testing
dataset contains 4850 heartbeats. Moreover, the normal and abnormal heartbeats in both
datasets are 50–50 split so that the testing result will be nonbiased.

The spectrograms were generated using Short Time Fourier Transform (STFT) de-
scribed in Section 2.2.3. The dimension of the output RGB spectrograms is 875 × 656 × 3.
The spectrogram power values are encoded as an RGB color image to emphasize the differ-
ence in one version. The power spectrum power values are simply coded as a greyscale
image where an integer represents each pixel in a second version.

3.2. Model Training and Testing

A total of 80% data is used as training during the training step, and 20% data is used as
validation. The learning rate decay technique is used during the training to determine the
best learning rate. The learning rate decay adopts an initially large learning rate and then
decays it by a certain factor after predefined epochs. According to You’s study, an initially
large learning rate suppresses the memorization of noisy data while decaying the learning
rate improves the learning of complex patterns [35]. In the experiment, the start learning
rate is 0.1, and the decay rate is 50%. The neural network architectures used in the CNN
block are VGG-16, VGG19, ResNet-18 and ResNet-34. The ResNet-50, ResNet-101 and
ResNet-150 architectures are not tested here because these two models have too many
layers, so the models’ prediction speed will be slow. Therefore, the models will not be able
to provide a diagnosis in real-time. Moreover, to show how the feature merging layer could
increase the prediction accuracy, regular VGG 16,19 and Residual Neural Network 18 and
34 were trained as well (Figure 9). The results are compared in Table 3.

3.2.1. Multilead Utilization

As described in Section 2.1, the MIT-BIH database and the European ST database are
both collected with two-channel ECG devices. Therefore, a DNN model for each lead signal
was trained to take advantage of the multilead signal. The models for each lead were all
used for the final classification. As a result, the final prediction is calculated using the
following equations:

Y = Y1 + Y2 − 0.5 (6)

where Y1 is the prediction from lead one model and Y2 is the prediction from lead two
model. The label is determined using the following conditions:

Y =

{
1, if Y ≥ 0.5
0, otherwise

(7)
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The models could also be used for individual prediction for another dataset with
lead-II channel data. Therefore, the models can be used for further learning with other
ECG datasets.

Table 3. Classification results of rhythms.

Method A/N Types TP FP TN FN SEN FAR PPV ACC Time(s)

AR modeling [5] 713/143 6 706 10 133 7 99.02% 6.99% 98.60% 98.01% N/A
Acharya Net A [22] 20,807/902 4 19,160 62 840 1647 92.08% 6.87% 99.68% 92.13% N/A
Acharya Net B [22] 8322/361 4 7946 376 294 67 99.16% 56.12% 95.48% 94.90% N/A

Zihlmann [13] - 4 - - - - - - - 82.3% N/A
Regular VGG16-RGB 2653/2653 17 2522 185 2468 131 95.06% 6.97% 93.17% 94.04% 433
Regular VGG19-RGB 2653/2653 17 2436 235 2418 217 91.82% 8.86% 91.20% 91.48% 452
Regular VGG16-Gray 2653/2653 17 2554 215 2438 99 96.27% 8.10% 92.24% 94.08% 332
Regular VGG19-Gray 2653/2653 17 2544 116 2537 109 95.89% 4.37% 95.64% 95.76% 349

Regular ResNet18-RGB 2653/2653 17 2536 121 2532 117 95.59% 4.56% 95.45% 95.51% 117
Regular ResNet34-RGB 2653/2653 17 2550 131 2522 103 96.12% 4.94% 95.11% 95.59% 152
Regular ResNet18-Gray 2653/2653 17 2599 155 2498 54 97.96% 5.84% 94.37% 96.06% 61
Regular ResNet34-Gray 2653/2653 17 2635 150 2503 18 99.32% 5.65% 94.61% 96.83% 96
Proposed VGG16-RGB 2653/2653 17 2433 173 2480 220 91.71% 6.52% 93.36% 92.59% 425
Proposed VGG19-RGB 2653/2653 17 2476 199 2454 177 93.33% 7.50% 92.56% 92.91% 446
Proposed VGG16-Gray 2653/2653 17 2567 172 2481 86 96.76% 6.48% 93.72% 95.14% 319
Proposed VGG19-Gray 2653/2653 17 2572 134 2519 81 96.95% 5.05% 95.05% 95.95% 345

Proposed
ResNet18-RGB 2653/2653 17 2648 15 2638 5 99.81% 0.57% 99.44% 99.62% 110

Proposed
ResNet34-RGB 2653/2653 17 2646 10 2643 7 99.74% 0.38% 99.62% 99.68% 144

Proposed
ResNet18-Gray 2653/2653 17 2646 4 2649 7 99.74% 0.15% 99.85% 99.79% 55

Proposed
ResNet34-Gray 2653/2653 17 2649 8 2645 4 99.85% 0.30% 99.70% 99.77% 90

3.2.2. Over-Fitting Prevention

Most deep neural network architectures are prone to over-fitting, meaning that if the
accuracy of the network on the training set is increased, the accuracy of the network on
the actual test set may not improve. This situation indicates that the model is overfitting
the training set and cannot generalize all data. During the training of the CNN model,
the following two methods were used to prevent over-fitting. The first one consists of
adding a dropout layer after the fully connected layer, and the second consists of using an
early stopping technique, as shown by [36]. After each training epoch, the model predicts a
validation set to determine accuracy. The training process stops if the validation accuracy
drops two times in two consecutive epochs. The training and testing were computed on
a workstation with Intel Core i5-8400 CPU and Nvidia Geforce GTX 1080 GPU. One can
see in Figures 10 and 11 the training and validation of rhythm and heartbeat classification
loss function value vs. epochs. It is clear that both training loss and validating loss
converge around 20 epochs. The validation loss is lower than the training loss because
of that the validation dataset was never trained by the models, it was only used for
over-fitting prevention.

3.3. Evaluation Metrics

The evaluation metrics used for comparison with ground truth are the following:

• TP: the number of successfully detected abnormal rhythms/heartbeats;
• FP: the number of wrongly detected abnormal rhythms/heartbeats;
• TN: the number of successfully detected normal rhythms/heartbeats;
• FN: the number of wrongly detected normal rhythms/heartbeats;
• Sensitivity (SEN) = TP/(TP + FN);
• False Alarm Rate (FAR)= 1 − Specificity = FP/(FP + TN);
• Positive Predictive Value (PPV) = TP/(TP + FP);
• Accuracy (ACC) = (TP + TN)/(TP + FP + TN + FN).
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Figure 10. Training and validation loss curve for rhythm classification of ResNet34 Gray.

Figure 11. Training and validation loss curve for heartbeat classification of ResNet34 Gray.

The main goal is to find the most abnormal rhythms and heartbeats on the ECG
signal. The chosen metrics could show whether the algorithm detects abnormal cases.
The sensitivity is also called the true positive rate, which shows the detection rate among all
abnormal cases. The false alarm shows how many normal cases are detected as abnormal
cases. The positive predictive value indicates the number of real abnormal cases among
all detected abnormal cases. The accuracy is the overall accuracy for both normal and
abnormal detection.
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3.4. Comparison Results and Discussion
3.4.1. Rhythm Classification Result Discussion

In Table 3, one can compare the result of the proposed method and its comparison to
state-of-art algorithms. In the Table, ‘RGB’ indicates that the model was trained with RGB
spectrogram, and ‘Gray’ suggests that the model was trained with a grayscale spectrogram.
Regular ResNet corresponds to the results obtained by the typical Residual neutral network,
shown in Figure 9, that are trained with only the spectrograms. Proposed ResNet corre-
sponds to the new Residual Neural Network architecture, shown in Figure 8. The ‘Time(s)’
column shows how many seconds the models used to predict the test dataset.

Compared to results shown in the Table 3, the proposed models achieved better
accuracy and could detect more various rhythm types. Furthermore, the proposed model
with feature merging layers performs better than the regular ResNet models. In addition,
when comparing the proposed model to Zihlmann’s model [13] which is only trained with
a spectrogram, one can see that our approach had much higher accuracy. This demonstrates
that prior knowledge, such as handcrafted features, can increase the accuracy of heart
rhythm classification.

The accuracy difference between the RGB spectrogram-trained models and Grayscale
spectrogram-trained models should be minimal. Since the RGB spectrogram uses different
colors to express power density, the grayscale spectrogram expresses the power density
using its pixel intensities. However, as the effect for model training, the RGB spectrograms
increase the learning capacity of the model since it contains more channels. The result in
the Table supports this finding as well. The average accuracy difference between VGG
networks is around 3%. The accuracy difference between regular ResNet is around 1%.
In addition, the accuracy difference between ResNet with feature merging layer is none.
For a regular residual neural network, the models trained with RGB spectrograms have
a lower prediction accuracy (about 1%) than those trained with Grayscale spectrograms.
This indicates that the model could be overwhelmed by irrelevant information containing
three RGB spectrogram channels. However, there is no significant difference between the
models trained with RGB spectrogram and those trained with grayscale spectrogram after
adding the feature merging layer to the regular residual neural network. This shows that
the handcrafted features have a heavier weight than the CNN layer extracted features for
modelling the rhythm signal. From the time aspect, the Grayscale spectrogram-trained
models took about half the time than the RGB spectrogram-trained models.

For the VGG Neural Network architecture, the models trained with grayscale spectro-
gram are better than those trained with RGB spectrograms. Additionally, the accuracy for
models trained with both spectrogram and handcrafted features is slightly better than those
trained with spectrograms only. The VGG19 models have the best overall accuracy com-
pared to the VGG16 models. For the Residual Neural Network architecture, the ResNet18,
ResNet34, and ResNet50 have different layers, where the ResNet18 has the least layers,
and the ResNet50 has the most layers. The number of layers also indicates the number of
trainable variables. More trainable variables mean that the model is harder to learn, or in
other words, the model takes a long time to converge. Moreover, during the prediction step,
the larger network takes a longer time than the smaller network. The ‘Time’ column in the
Table also shows that the ResNet18 models used less time than ResNet34 and ResNet50
models. In addition, the ResNet50 models did not have the best performance in the experi-
ment. The reason could be that more trainable variables in the network caused the model
to be easier to overfit to the training dataset than the other models; therefore, it performed
worse on the test dataset. By comparing the VGG and ResNet architectures, it is clear that
the ResNet architecture performs better than the VGG architecture on accuracy and takes
less time for a prediction.

By comparing all the models, the proposed ResNet18-Gray held the highest accu-
racy with the third-lowest false-alarm rate. The other proposed ResNet-18 and ResNet-34
network models also have similar performances. However, between these models, the pro-
posed ResNet-18 Gray only took 55 s to complete the prediction of the test dataset, which is
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the fastest model compared to other models. Therefore, the system should produce a high
anomaly-detection accuracy and low false-alarm rate in clinical heart anomaly detection.
Furthermore, the abnormality detection system should predict as fast as possible; therefore,
the proposed ResNet18-Gray model should be the best choice for clinical applications.

3.4.2. Heartbeat Classification Result Comparison

In Table 4, one can compare the result of the proposed method with state-of-art algo-
rithms. The naming of the proposed model is similar to the one described in Section 3.4.1.

Similar to the rhythm classification, three different datasets were tested using both
proposed ResNet and regular ResNet. As one can see in Table 4, the proposed ResNet
models are better than the standard ResNet models in all metrics. Moreover, the proposed
ResNet Models also performed better than Sen’s algorirhm [14] which is only using spec-
trogram and CNN. Sen’s algorithm achieved 99.57% sensitivity, 2.99% false-alarm rate,
96.72% positive predictive value and 98.21% accuracy detecting three types of heartbeats.
The performance metrics were very similar to the regular ResNet-34 model and are 1%
less accurate than the proposed ResNet-34 model. This shows that the handcrafted feature
could increase the accuracy of ECG heartbeat signal recognition. The overall performance
between the models that used the Grayscale spectrogram dataset and the RGB spectrogram
dataset is similar for the rhythm classification. The accuracy difference for all metrics
was about 1%. For the number of ResNet layers, the 34-layer ResNet models had better
performance than the 18-layer ResNet models on the heartbeat datasets. This is caused
by the fact that there is less information on the heartbeat spectrogram since there is only
one heartbeat. In addition, as shown in Table 4, the ResNet models were faster and more
accurate than the VGG models. This result indicates that the residual convolutional neural
network architecture is more suitable for processing the ECG STFT spectrogram.

Compared to results found in the literature, the proposed models generally performed
better except when compared to Ubeyli’s and Ye’s algorithms. However, Ubeyli’s model [8]
has only been tested on 359 heartbeats. Therefore the result may not be suitable for all
different heartbeat types. Similar with the Xia’s algorithm [37], their two models could only
detect one rhythm; that is, either premature ventricular contraction or supraventricular
premature beat. Compared to Ye’s algorithm [12], the performance is quite similar. Ye’s
algorithm has 0.18% better overall accuracy, but the proposed model has a better posi-
tive predictive value, which means the proposed algorithm could more accurately detect
anomalies in the ECG signal. One possible reason for this situation may be caused by Ye’s
test data sets containing more normal heartbeats than abnormal heartbeats, so that correct
detection of normal heartbeats could increase the overall detection accuracy. Another factor
that could affect the model’s accuracy performance is that the training and testing data
sets for the proposed model only contain the abnormal heartbeat found in normal rhythms.
Therefore, the sample is smaller than the irregular heartbeat on all ECG signals. Still, some
rhythm classes are harder to classify, since some heartbeat types are easy to detect but do
not exist in normal rhythms, such as paced and Right Bundle block beats.

In conclusion, by comparison, the proposed ResNet34-Gray performs the best at
heartbeat classification. It has 98.80% sensitivity, 0.45% false-alarm rate, 99.54% positive
prediction value, and 99.18% accuracy. It took 279 s to complete the prediction on the test
dataset, which is very fast compared to other models. Compared to the existing state-of-
art algorithm, the proposed algorithm has a better predictive value which is higher by
0.9%, and the other three metrics are only lower by between 0.01% and 0.3%. Therefore,
the proposed algorithm displays a better performance at detecting ECG signal anomalies.
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Table 4. Classification result of heartbeats.

Method A/N Types TP FP TN FN SEN FAR PPV Accuracy Time(s)

Christov [17]-
morphology 18,378/47,239 5 18,042 1604 45,635 336 98.17% 3.40% 91.84% 97.04% N/A

Christov [17]-frequency 18,378/47,239 5 17,590 1459 45,780 788 95.71% 3.09% 92.34% 96.58% N/A
Chazal [18]-frequency 4317/34,394 4 4108 1962 32,432 209 95.16% 5.70% 67.68% 94.39% N/A

Ubeyli [8] 269/90 4 268 2 88 2 99.26% 2.22% 99.26% 99.89% N/A
Llamedo [38] 5441/44,188 3 4752 2238 41,950 689 87.34% 5.06% 67.98% 94.10% N/A

Ye [12] 20,745/65,264 16 20,557 286 64,978 188 99.09% 0.44% 98.63% 99.32% N/A
Zhang [11] 5653/44,011 4 5248 4869 39,142 405 92.84% 11.06% 51.87% 89.38% N/A
Thomas [9] 26,626/67,268 5 22,900 1300 65,968 3726 86.01% 1.93% 94.63% 94.65% N/A

Kiranyaz [23] 7366/42,191 5 6539 1228 40,963 827 88.77% 2.97% 84.19% 95.85% N/A
Rajesh [10] 8000/2000 5 7677 33 1967 323 95.96% 1.65% 99.57% 96.44% N/A
Sahoo [7] 807/244 4 798 5 239 9 98.88% 2.04% 99.38% 98.67% N/A

Xia-VEB [37] 300/- 1 - - - - 98.1% 0.1% 99.84% 99.7% N/A
Xia-SVEB [37] 300/- 1 - - - - 97.2% 0.1% 99.57% 99.8% N/A

Sen [14] 1154/1305 3 1149 39 1266 5 99.57% 2.99% 96.72% 98.21% N/A
Regular VGG16-RGB 2425/2425 14 2196 75 2350 229 90.56% 3.09% 96.70% 93.73% 784
Regular VGG19-RGB 2425/2425 14 2171 58 2367 254 89.53% 2.39% 97.40% 93.57% 862
Regular VGG16-Gray 2425/2425 14 2276 45 2380 149 93.86% 1.86% 98.06% 96% 613
Regular VGG19-Gray 2425/2425 14 2359 22 2403 66 97.28% 0.91% 99.08% 98.19% 701

Proposed VGG16-RGB 2425/2425 14 2324 49 2376 101 95.84% 2.02% 97.94% 96.91% 774
Proposed VGG19-RGB 2425/2425 14 2188 57 2368 237 90.23% 2.35% 97.46% 93.94% 861
Proposed VGG16-Gray 2425/2425 14 2366 28 2397 59 97.57% 1.15% 98.83% 98.21% 612
Proposed VGG19-Gray 2425/2425 14 2367 28 2397 58 97.61% 1.15% 98.83% 98.23% 707
Regular ResNet18-RGB 2425/2425 14 2338 53 2372 87 96.41% 2.19% 97.78% 97.11% 388
Regular ResNet34-RGB 2425/2425 14 2354 60 2365 71 97.07% 2.47% 97.51% 97.30% 453
Regular ResNet18-Gray 2425/2425 14 2373 22 2403 52 97.66% 0.91% 98.47% 99.08% 212
Regular ResNet34-Gray 2425/2425 14 2377 19 2406 48 98.02% 0.78% 99.21% 98.62% 272

Proposed
ResNet18-RGB 2425/2425 14 2390 26 2399 35 98.56% 1.07% 98.92% 98.74% 381

Proposed
ResNet34-RGB 2425/2425 14 2394 32 2393 31 98.72% 1.32% 98.68% 98.70% 444

Proposed
ResNet18-Gray 2425/2425 14 2402 18 2407 23 99.05% 0.74% 99.26% 99.15% 209

Proposed
ResNet34-Gray 2425/2425 14 2396 11 2414 29 98.80% 0.45% 99.54% 99.18% 279

3.4.3. Discussion and Future Work

Based on the comparison in Sections 3.4.1 and 3.4.2, The proposed neural network
models perform better than other algorithms in Tables 3 and 4. The novelty of the pro-
posed neural network structure is that it combines the features extracted from the STFT
spectrogram using a CNN layer with handcrafted features. Therefore, it utilizes infor-
mation from both time and frequency domains. In addition, the proposed algorithm can
be easily adapted to different ECG databases with variable ECG signal lengths and can
detect both abnormal rhythms and abnormal heartbeats from the ECG signal. Most de-
tection algorithms found in the literature are designed only to detect abnormal rhythms
or heartbeats.

In clinical practice, the proposed algorithm could help cardiologists to identify areas
with structural anomalies on long-term ECG recordings. The program could process the
entire recording and provide a report if there are any structural anomalies found. Moreover,
the research could be expanded to detect a specific rhythm or heartbeat if the label of the
detecting classes is set to 1.

In this research, the interference that affects the ECG signals measurement and anomaly
detection is not discussed, since the MIT-BIH database and European ST database had
reduced noise. However, high levels of noise could affect the ECG signal measurement
and anomaly detection. Based on a previous survey [4], there were two groups of noise
on the ECG signal. One is nonphysiological noise, and the other is physiological noise.
Equipment problems cause the first one, and the latter is caused by the patient, such as
muscle activities, skin interference, and body motion. The physiological noise is much
harder to remove because it is unpredictable. In [3], an automatic adaptive noise-removal
algorithm was proposed to remove two significant types of physiological noise: baseline
wander and motion artifacts. Moreover, there are some target-detection algorithms that
could detect anomalies from noisy signals such as [39–41]. The research will be expanded
to build a wearable ECG device database to collect noise-contaminated ECG signals for
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future work. By doing so, one can research how noise will affect anomaly detection on
ECG signals.

4. Conclusions

This paper proposes a new Convolutional Neural Network (CNN) architecture that
models the ECG signals using Short Time Fourier Transform (STFT) spectrogram and hand-
crafted features. The proposed architecture could adapt the latest CNN architectures to
process the ECG spectrogram and combine the extracted features with handcrafted features.
The proposed algorithm could be used on rhythm and heartbeat classifications with corre-
sponding handcrafted features. The Residual Neural Network (ResNet) architecture is the
best architecture for ECG spectrogram. The proposed ResNet contains a feature-merging
layer that combines the CNN extract features from spectrograms and handcrafted features.
A series of experiments have been conducted to show that these feature-merging layers
could improve the ResNet model’s accuracy. According to the experimental result, the new
algorithm has superior performance than the current state-of-the-art algorithms. The best
model for rhythm classification in the experiment is the proposed ResNet18-Gray. It could
classify 17 different rhythm types into normal and abnormal classes with an exceptional
accuracy of 99.79%, a sensitivity of 99.74%, a false-alarm rate of 0.15%, and a positive
predictive value of 99.85%, which makes this new algorithm the most practical algorithm
for rhythm classification in the literature. The heartbeat classification is used only on nor-
mal rhythms to detect abnormal heartbeats in the proposed anomaly-detection algorithm.
The proposed algorithm is better at detecting state-of-art heartbeat classification algorithms.
The best model for heartbeat classification in the experiment is the ResNet34-Gray. It could
classify 14 different heartbeat types into normal and abnormal classes with an accuracy
of 99.18%, a sensitivity of 98.80%, a false-alarm rate of 0.45%, and 99.54% positive predic-
tive value. The results show that the proposed algorithm has the best detection rate for
abnormal heartbeat compared to other algorithms found in the literature. The proposed
approach also illustrates that in some situations, the introduction of handcrafted features
can significantly improve the performance of neural networks.
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30. Sejdić, E.; Djurović, I.; Jiang, J. Time–frequency feature representation using energy concentration: An overview of recent

advances. Digit. Signal Process. 2009, 19, 153–183. [CrossRef]
31. Mitra, S.K.; Kuo, Y. Digital Signal Processing: A Computer-Based Approach; McGraw-Hill: New York, NY, USA, 2006; Volume 2.
32. Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng 1985, 32, 230–236. [CrossRef] [PubMed]
33. Manikandan, M.S.; Soman, K. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed. Signal Process.

Control 2012, 7, 118–128. [CrossRef]
34. Kim, H.Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent.

Endod. 2013, 38, 52–54.
35. You, K.; Long, M.; Wang, J.; Jordan, M.I. How does learning rate decay help modern neural networks? arXiv 2019,

arXiv:1908.01878.

http://dx.doi.org/10.1186/1475-925X-1-5
http://www.ncbi.nlm.nih.gov/pubmed/12473180
http://dx.doi.org/10.1016/j.eswa.2010.07.118
http://dx.doi.org/10.1016/j.measurement.2017.05.022
http://dx.doi.org/10.1016/j.dsp.2008.09.002
http://dx.doi.org/10.1016/j.aeue.2014.12.013
http://dx.doi.org/10.1016/j.compbiomed.2017.06.006
http://dx.doi.org/10.1016/j.compbiomed.2013.11.019
http://www.ncbi.nlm.nih.gov/pubmed/22907960
http://dx.doi.org/10.1016/j.medengphy.2005.12.010
http://www.ncbi.nlm.nih.gov/pubmed/16476566
http://dx.doi.org/10.1109/TBME.2006.883802
http://www.ncbi.nlm.nih.gov/pubmed/17153211
http://dx.doi.org/10.1016/j.ins.2017.04.012
http://dx.doi.org/10.1109/TBME.2015.2468589
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/51.932724
http://dx.doi.org/10.1093/oxfordjournals.eurheartj.a060332
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
http://dx.doi.org/10.1016/j.dsp.2007.12.004
http://dx.doi.org/10.1109/TBME.1985.325532
http://www.ncbi.nlm.nih.gov/pubmed/3997178
http://dx.doi.org/10.1016/j.bspc.2011.03.004


Sensors 2022, 22, 2467 22 of 22

36. Prechelt, L. Early stopping-but when? In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 1998;
pp. 55–69.

37. Xia, Y.; Zhang, H.; Xu, L.; Gao, Z.; Zhang, H.; Liu, H.; Li, S. An automatic cardiac arrhythmia classification system with wearable
electrocardiogram. IEEE Access 2018, 6, 16529–16538. [CrossRef]

38. Llamedo, M.; Martínez, J.P. Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans.
Biomed. Eng. 2010, 58, 616–625. [CrossRef] [PubMed]

39. Addabbo, P.; Besson, O.; Orlando, D.; Ricci, G. Adaptive detection of coherent radar targets in the presence of noise jamming.
IEEE Trans. Signal Process. 2019, 67, 6498–6510. [CrossRef]

40. Liu, J.; Liu, W.; Hao, C.; Orlando, D. Persymmetric subspace detectors with multiple observations in homogeneous environments.
IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3276–3284. [CrossRef]

41. Hua, X.; Ono, Y.; Peng, L.; Cheng, Y.; Wang, H. Target detection within nonhomogeneous clutter via total Bregman divergence-
based matrix information geometry detectors. IEEE Trans. Signal Process. 2021, 69, 4326–4340. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2807700
http://dx.doi.org/10.1109/TBME.2010.2068048
http://www.ncbi.nlm.nih.gov/pubmed/20729162
http://dx.doi.org/10.1109/TSP.2019.2954499
http://dx.doi.org/10.1109/TAES.2020.2967244
http://dx.doi.org/10.1109/TSP.2021.3095725

	Introduction
	Related Work
	Feature Extraction
	Classification Tool


	Materials and Methods
	Data Description
	Methodology
	Signal Pre-Processing
	Rhythm and Heartbeat Signal Extraction
	Spectrogram Using Short-Time Fourier Transform
	Handcrafted Features Rhythm Classification
	Detecting the Number of R Peaks
	Statistics Features
	ECG Intervals Measurement
	Handcrafted Features for Heartbeat Classification
	Network Architecture


	Experimental Setup and Result Discussion
	Dataset Setup
	Model Training and Testing
	Multilead Utilization
	Over-Fitting Prevention

	Evaluation Metrics
	Comparison Results and Discussion
	Rhythm Classification Result Discussion
	Heartbeat Classification Result Comparison
	Discussion and Future Work


	Conclusions
	References

