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The decline in natural mating behavior is the primary reason underlying in

the poor population growth of captive giant pandas. However, the influencing

factors and underlyingmechanisms remain unclear to data. It is speculated that

the decline in natural mating behavior could be related to the psychological

stress caused by captivity, which restricts their free choice of mates. In

order to test this hypothesis, we performed urinary metabolomics analysis

using Ultra-High-Performance Liquid Chromatography-Mass Spectrometry

(UHPLC/-MS) combined with 16S rDNA sequencing for exploring the

physiological mechanism underlying the decline in the natural mating

behavior of captive giant panda. The results demonstrated that the decline in

mating ability could be related to abnormalities in arginine biosynthesis and

neurotransmitter synthesis. Additionally, the relative abundance of bacteria

from the Firmicutes, Proteobacteria, and Actinobacteria phyla and the

Acinetobacter, Weissella, and Pseudomonas genus was significantly reduced

in the group with low natural mating behavior. These findings imply that the

inhibition of arginine synthesis induced by environmental changes could be

related to the poor libido and failure of mate selection in captive giant pandas

during the breeding period. The results also demonstrate the relationship

between the altered urinary microbes and metabolites related to arginine

and neurotransmitter synthesis. These findings may aid in understanding the

mechanism underlying environment-induced mate selection in captive giant

pandas and propose a novel strategy for determining the sexual desire of giant

pandas based on urinary microbes. The method would be of great significance

in improving the natural reproductive success rate of captive giant pandas.
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Introduction

The decline in natural mating behavior is a serious issue

faced by the population of captive giant pandas (Ailuropoda

melanoleuca) (Xie, 2016), and mate choice is an important

factor in the natural mating process of giant pandas (Lumley

et al., 2015; Martin-Wintle et al., 2015, 2018). Captive giant

pandas often demonstrate low natural reproductive efficiency;

however, the mechanism underlying the decline in instinctive

mating behavior remains unclear. The giant panda is a solitary

animal, distributed in the mountains of Sichuan, Shaanxi, and

Gansu provinces in China (Schaller et al., 1985). Years of

behavioral observations have demonstrated that both wild and

captive pandas show strong mate selection behavior (Martin-

Wintle et al., 2015; Owen et al., 2016). Contrary to wild giant

pandas that have a free choice of mates, captive giant pandas

are often paired one-on-one. The present captive breeding

model severely limits the free mating choice of giant pandas

in captivity, resulting in the lack of strong sexual desire for

the opposite sex in the majority of captive giant pandas during

the breeding season, which eventually leads to the failure

of natural mating (Martin-Wintle et al., 2020; Zhang et al.,

2021b). Although large spaces and environmental enrichment

can effectively improve the expression of estrus behavior in

captive giant pandas (Peng et al., 2007), the low natural mating

efficiency of captive giant pandas remains to be solved (Martin-

Wintle et al., 2018; Zhang et al., 2021b). Our years of experience

have revealed that in 90% of cases, the low natural reproductive

success rates of captive giant pandas is attributed to the failure

of mate selection resulting from the inability to freely choose

a mate. The failure of mate choice is not due to the absence

of estrus behavior or the size of the population. Therefore,

investigating the mechanism underlying the decline in the

natural reproductive behavior from the perspective of mate

selection based on environmental adaptation can provide a

novel avenue of research. Giant pandas endure the pressure

of environmental changes during ex situ conservation (Wei

et al., 2015; Ciminelli et al., 2021; Zhang et al., 2021a), posing

great challenges to their environmental adaptability (The captive

environment is capable of meeting the various physiological

needs of giant pandas) (Martin-Wintle et al., 2020; Zhang

et al., 2021b). Previous studies have suggested that captive

giant pandas may suffer from long-term stress and even

psychological discomfort in captivity. Moreover, environmental

discomfort suppresses the expression of reproductive behavior

and impairs the reproductive performance of giant pandas

(Martin-Wintle et al., 2020). We therefore speculate that the

psychological frustration caused by long-term environmental

constraints and failure of mate selection appears to further

aggravate the inability of mate selection (Zhang et al., 2004,

2022); however, direct evidence is lacking in this regard. This

study aimed to employ a multi-omics strategy for elucidating the

mechanism underlying the decline in the natural reproductive

behaviors of captive giant pandas from the perspective of

environmental adaptability.

Metabolomics is a branch of science concerned with the

types, quantities, and alterations of endogenous metabolites

induced by external stimuli, pathophysiological changes, and

gene mutations (Cao et al., 2020). Metabolomics studies

typically analyze the differences in the levels of different

metabolites between experimental and control groups for

identifying the altered metabolites, which aids in the biomarker

screening. Metabolomics analyses also aid in studying the

biological processes associated with the altered metabolites (by

reverse investigation of regulating enzymes and genes through

metabolic pathways), and elucidate the underlying biological

mechanism (Nicholson and Lindon, 2008). The majority of

potential biomarkers reported so far are derived from urine

samples due to the fact that urine can be conveniently analyzed

and can be collected non-invasively. Therefore, urine samples

are frequently used for identifying the altered metabolites in

various common and rare diseases (Collino et al., 2013; Khamis

et al., 2017). Since its discovery and confirmation, the human

urinary microbiome has been found to be closely related to

the development of several diseases (Bajic et al., 2018; Fok

et al., 2018; Popovic et al., 2018), even infertility in humans

(Lundy et al., 2021). For instance, specific bacterial communities,

including Lactobacillus sp., have been found in healthy urinary

tracts. Alterations in the urinary microbiome, such as a higher

abundance of L. sp., Klebsiella sp., Corynebacterium sp., and

Staphylococcus sp., have been observed in certain urologic

disorders, including urinary incontinence, urologic cancers,

interstitial cystitis, neurogenic bladder dysfunction, sexually

transmitted infections, and chronic prostatitis/chronic pelvic

pain syndrome (Aragón et al., 2018). The 16S rDNA refers

to the DNA sequence that encodes the ribosomal 16S rRNA

molecule in the bacterial genome, that is, the gene encoding

the bacterial 16S rRNA is referred to as the 16S rDNA. The

16S rDNA sequence comprises 10 conserved regions and 9

hypervariable regions, of which the conserved regions have

little difference among bacteria, while the hypervariable regions

have genus- or species-specificity and exhibit unique kin-specific

differences (Wolfe and Brubaker, 2019). Therefore, the 16S

rDNA sequence can be used as a characteristic nucleic acid

sequence for identifying bacterial species and is considered to be

themost suitable indicator in bacterial phylogenetic analyses and

taxonomic identification. The 16S rDNA amplicon sequencing

technology has become an important technique for studying

the composition and structure of microbial communities in

environmental samples (Watanabe and Koga, 2009; Youssef

et al., 2009; Caporaso et al., 2011; Hess et al., 2011).

Based on the aforementioned reasons, and combined with

the key role of urinary markers in the mate choice of captive

giant pandas, we speculate that certain urinary biomarkers

may act as important influencing substances that led to the

failure of mate choice in captive giant pandas, resulting
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in the decline in their natural mating behavior. Therefore,

this study aimed to use non-target Ultra-High-Performance

Liquid Chromatography-Mass Spectrometry (UHPLC-MS) for

metabolomics analysis and a 16S rDNA sequencing technology

for studying the differences in the levels of urinary metabolites

of captive giant pandas during peak estrus. The study also

aimed to identify the alterations in urinary microbial species

and abundance, and explore the correlation between the

altered urinary microbiota and levels of altered metabolites.

In order to identify the key bacterial species and metabolites,

enrichment analysis of the metabolic pathways and functional

annotation of bacterial flora was performed, which revealed the

physiological mechanism underlying the decline in the success

rate of mate choice and natural mating behavior of captive

giant pandas.

Materials and methods

Animals and ethics statement

In this study, 12 captive giant pandas from the Chengdu

Research Base of Giant Panda Breeding (Panda Base) were

selected as research subjects. The animals are divided into

two groups: NM group, six had successful natural mating

experience (able to produce offspring through natural mating

after adulthood), and AI group, another six adult giant pandas

did not have successful natural mating experience (did not

produce offspring through natural mating after adulthood). The

study protocol was approved by the Institutional Animal Care

and Use Committee of Chengdu Research Base of Giant Panda

Breeding (approved number: 2020013).

Urine sampling

Previous research studies at the Panda Base have

demonstrated that the appearance of the urinary luteinizing

hormone peak indicated the timing of ovulation and can be

used to determine the appropriate time for natural mating

(Cai et al., 2017). After years of positive behavioral training by

the foreign animal behavior expert, James Ayala, and breeders

at Panda Base, we have successfully trained giant pandas to

urinate at a fixed location, which ensured that the urine samples

used in this experiment were devoid of contaminants from the

external environment at the time of sampling. In this study,

urine samples from the 12 captive adult giant pandas were

collected during peak estrus in the breeding season (February to

April) in 2021. The specific groupings are depicted in Table 1.

The urine samples were collected with a syringe from the clean

floor of an enclosure, once every morning and afternoon during

estrus, and every 2 h during the peak period, and transported

to the laboratory on ice. The samples were stored at −80◦C

until further analyses. The samples were subjected to 16S

rDNA sequencing and metabolomics analysis with UHPLC-MS,

according to the manufacturer’s instructions (Shanghai Applied

Protein Technology).

Liquid chromatography-mass
spectrometry/mass spectrometry
(LC-MS/MS) analysis

Sample preparation

Urine samples were collected in 5-mL vacutainer tubes

containing ethylene diamine tetra acetic acid (EDTA) as the

chelating agent, following which the samples were centrifuged

at 1,500 × g for 15min (at 4◦C). Then, 150 µl aliquots

of urine samples were stored at −80◦C until UHPLC-

quadrupole time-of-flight (Q-TOF)/MS analysis. The samples

were slowly thawed at 4◦C, following which an appropriate

quantity of the samples was added to a pre-cooled solution

of methanol/acetonitrile/water (2:2:1, v/v), mixed by vortex

agitation, sonicated at a low temperature for 30min. The

samples were then centrifuged at 14,000 × g for 20min at 4◦C,

following which the supernatant was removed and dried in a

vacuum. Then, 100 µL of an aqueous solution of acetonitrile

(acetonitrile:water = 1:1, v/v) was added for reconstituting the

sample, which was re-mixed by vortex agitation and centrifuged

at 14,000× g for 15min at 4◦C. The sample was finally removed

for serum injection analysis.

Chromatography-MS

The samples were analyzed using an UHPLC system

(1290 Infinity LC, Agilent Technologies) coupled to a Q-TOF

platform (AB Sciex TripleTOF 6600; Shanghai Applied Protein

Technology Co., Ltd.). The chromatographic conditions were

as follows: the samples were separated by an Agilent 1290

Infinity LC UHPLC HILIC column; column temperature 25◦C;

flow rate: 0.5 mL/min; injection volume: 2 µL; composition of

mobile phase A: water + 25mM ammonium acetate + 25mM

ammonia water; mobile phase B: acetonitrile. The gradient

elution program is as follows: 0–0.5min, 95% phase B; 0.5–

7min, phase B was linearly changed from 95 to 65%; 7–8min,

phase B was linearly changed from 65 to 40%; 8–9min, phase B

was maintained at 40%; 9–9.1min, phase B was linearly changed

from 40 to 95%; and 9.1–12min, phase B wasmaintained at 95%.

The samples were placed in an autosampler at 4◦C during the

analysis. The influence due to fluctuations in the instrumental

detection signal was excluded by the continuous analysis of the

samples in a random manner. Quality control (QC) samples

were inserted into the sample queue for monitoring and

evaluating the stability of the system, and ensuring the reliability

of the experimental data. The conditions of Q-TOF/MS were

as follows: the primary and secondary spectra of the samples
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TABLE 1 Experimental grouping.

Group Name Studbook Birth Sex Wild or Captive Whether can produce

cubs naturally

NM Gong Zi 711 2008 Male Captive Yes

NM ABao (Lou) 703 2007 Male Wild Yes

AI Ying Ying 724 2008 Male Captive No

AI Xi Lan 731 2008 Male Captive No

NM Mei Lan 649 2006 Male Captive Yes

AI Xing Bang 614 2005 Male Captive No

NM Zhao Mei 990 2010 Female Wild Yes

AI Ni Da 995 2015 Female Captive No

AI Ya Zai 637 2006 Female Captive No

NM ABao (USA) 801 2010 Female Captive Yes

NM Ya Yun 796 2010 Female Captive Yes

AI Mei Huan 871 2013 Female Captive No

The animals are divided into two groups: NM group, six had successful natural mating experience (able to produce offspring through natural mating after adulthood), AI group, and

another six adult giant pandas did not have successful natural mating experience (did not produce offspring through natural mating after adulthood).

were collected using an AB Triple TOF 6600 mass spectrometer.

The samples were separated on an Agilent 1290 Infinity LC

UHPLC system, following which MS was performed on a Triple

TOF 6600 mass spectrometer (AB SCIEX) using electrospray

ionization (ESI) in positive and negative ion modes. The settings

of the ESI source parameters were as follows: nebulizer gas

auxiliary heater gas 1 (Gas1), 60; auxiliary heater gas 2 (Gas2):

60; curtain gas (CUR): 30 psi; ion source temperature: 600◦C;

spray voltage (ISVF) ± 5,500V (both positive and negative

modes); primary mass-to-charge ratio detection range: 60–

1,000 Da; secondary product ion mass-to-charge ratio detection

range: 25–1,000 Da, primary MS scan accumulation time: 0.20

s/spectra; and secondary MS scan accumulation time 0.05

s/spectra and mass spectra were acquired in data-dependent

acquisition mode (IDA) using the peak intensity value screening

mode; declustering voltage (DP): ±60V (both positive and

negative modes); collision energy: 35 ± 15 eV. The settings

in IDA were as follows: dynamically excluded isotope ion

range: 4 Da, 10 fragment spectra were collected per scan

(Blaženović et al., 2018).

Data processing

The raw data obtained in Wiff format (wiff.scan files) were

converted to MzXML format using ProteoWizard. The XCMS

software was then used for aligning the peaks, correcting the

retention time, and extraction of peak area. The data extracted

by XCMS were first used to identify the structures of the

metabolites, following which the data were preprocessed. Data

analysis was finally performed after evaluating the quality of the

experimental data (Wen et al., 2017).

Statistical analyses

Data analyses were performed by univariate statistical

analysis, multi-dimensional statistical analysis, differential

metabolite screening, differential metabolite correlation

analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis, and other analyses. The statistical analyses are

described in detail in our previous reports (Zhang et al., 2022).

16S rDNA amplicon sequence analyses

DNA extraction and amplification with
polymerase chain reaction (PCR)

In order to avoid environmental contamination, the

genomic DNA from the urine samples and the reagent-only

control sample was extracted on a sterile operating table. The

total genomic DNA was extracted from the samples using

the CTAB/SDS method (Ma et al., 2020). The concentration

and purity of the DNA was determined using 1% agarose

gels. Selected V3-V4 variable regions were amplified with PCR

using specific primers with barcodes and high-fidelity DNA

polymerase based on the selected sequenced regions. The PCR

products were detected by gel electrophoresis using 2% agarose

gels, and the target fragments were cut and recovered using

an AxyPrepDNA gel recovery kit. Based on the preliminary

quantitative results of electrophoresis, the products recovered

from PCR amplification were detected and quantified with

a QuantiFluorTM-ST blue fluorescence quantitative system

(Promega Company), and the corresponding proportions

were mixed according to the amount of sample sequenced.
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Library was constructed using an NEB Next R© UltraTM DNA

Library Prep kit. Library was rechecked using an Agilent

Bioanalyzer 2100 and Qubit, and the library was sequenced after

quality check.

Data analyses

Paired-end reads from the original DNA fragments were

merged using FLASH, a very rapid and accurate analysis tool

that is designed to merge paired-end reads when at least

some portion of the reads overlap with the read generated

from the opposite end of the same DNA fragment. Paired-

end reads were assigned to each sample according to the

unique barcodes. Sequence analyses were performed using

the UPARSE software package, with the UPARSE-OTU and

UPARSE-OTUref algorithms. In-house Perl scripts were used

for analyzing the alpha (within sample) and beta (among

samples) diversity. Sequences with ≥97% similarity were

assigned to the same operational taxonomic units (OTUs).

We selected a representative sequence for each OTU and

used the Ribosomal Database Project (RDP) classifier for

annotating the taxonomic information of each representative

sequence. The alpha diversity was determined by rarifying

the OTU table and calculation of three metrics, namely,

(1) Chao1, which provides a measure of estimated species

abundance; (2) observed species, which estimates the number

of unique OTUs in each sample; and (3) the Shannon index.

Rarefaction curves were generated based on these three metrics.

The relative abundance of bacterial diversity at phylum to

species levels was graphically represented and visualized using

a Krona chart. Cluster analysis was preceded by principal

component analysis (PCA) for reducing the dimensionality

of the original variables using the QIIME software package.

QIIME calculates both the weighted and unweighted UniFrac

distances, which are phylogenetic measures of beta diversity.

The unweighted UniFrac distance was used for principal

coordinate analysis (PCoA) using the unweighted pair-group

method with arithmetic mean (UPGMA) for clustering. The

principal coordinates were obtained from PCoA, which aided

in visualizing the coordinates of complex, multidimensional

data. PCoA also transformed the distance matrix to a new

set of orthogonal axes, in which the first principal coordinate

represents the factor with the maximum variation, and the

second principal coordinate represents the factor with the

second maximum variation, and so on. UPGMA clustering is a

hierarchical clustering method using average linkage and can be

used to interpret distance matrices.

Statistical analysis

The differences between the individual taxonomic

abundances of the two groups were determined using the

STAMP software. The LEfSe method was used for quantitative

analysis of biomarkers within different groups. This method

is designed to analyze data in which the number of species

is much higher than the number of samples, and is used to

provide biological class explanations for establishing statistical

significance, biological consistency, and effect-size estimation

of predicted biomarkers. Adonis analysis was performed based

on Bray-Curtis dissimilarity distance matrices for identifying

the differences between the microbial communities of the

two groups.

Correlation analysis

The relative abundances of the bacterial groups in the 12

urine samples, showing significant differences at the genus

level (LEfSe linear discriminant analysis (LDA)>2 and p-

value<0.05), as revealed by 16S rDNA amplicon sequence

analysis of the 12 experimental samples, were compared with

the results of metabolomics analysis. The expression levels

of 38 significantly different metabolites (variable importance

in the projection (VIP) >1 and t-test p-value <0.05) were

organized in a table as input files for subsequent analyses. The

correlation coefficient between the significantly altered bacterial

groups and the metabolites showing significantly altered

urinary levels in the experimental samples was determined

using Spearman’s correlation method. A heatmap matrix was

constructed and hierarchical clustering, correlation network

analysis, and other statistical analyses were performed using R

scripts and Cytoscape software, for analyzing the interactions

between the urinary microbiota and metabolites from multiple

perspectives (Cribbs et al., 2016).

Results

Bioinformatics analysis of di�erential
metabolites

The quality of the data was first evaluated prior to data

analysis. The system stability of the project was analyzed and

evaluated by comparing the QC and sample spectra, and

PCA analysis. The total ion chromatogram (TIC) of the QC

samples was compared for spectral overlap. The experimental

results demonstrated that the response intensity and retention

time of each chromatographic peak basically overlapped,

indicating that the variation caused by instrumental error

was small during the experimental process. The extracted

peaks extracted from the experimental and QC samples were

also subjected to PCA analysis. The experimental results

demonstrated that the QC samples in the positive and negative

ion modes were closely clustered together, indicating that the

experiment has good repeatability. The metabolites that were

significantly different between the two samples were identified
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by univariate data visualization (Supplementary Figures S1A,B).

We subsequently used multivariate statistical methods,

including principal component analysis (PCA), partial least-

squares discriminant analysis (PLS-DA), and orthogonal partial

least-squares discriminant analysis (OPLS-DA), for performing

dimensionality reduction analysis of the collected multi-

dimensional data by preserving the original information to the

maximum extent. In this study, the data was cross-validated

seven-fold using the multivariate statistical model constructed

with PCA, PLS-DA, and OPLS-DA. The main parameter in

the PCA model is R2X; a value closer to 1 indicates that the

model is more stable and reliable. The R2X values of the NM-AI

group in positive and negative ion modes were 0.557 and 0.603,

respectively. The evaluation parameters of the PLS-DA model

for the NM-AI group were calculated (positive ion mode: R2Y

= 0.996, Q2 = 0.977; negative ion mode: R2Y = 0.997, Q2

= 0.840). The OPLS-DA model was also constructed in this

study. The values of the parameters used for evaluating the

model for the NM-AI group were also determined (positive

ion mode: R2Y = 0.996, Q2 = 0.950; negative ion mode: R2Y

= 0.997, Q2 = 0.954). The results of multivariate statistical

analyses also revealed that the spectrum of metabolites in

the AI-group underwent significant alterations or were even

partially disordered compared with that of the NM-group.

In order to detect the changes in the concentration of the

metabolites between the NM and AI groups, strict metabolite

screening criteria, namely, OPLS-DA VIP>1 and p-value

<0.05, were used for identifying a total of 136 metabolites

with altered urinary levels. Of these, 64 metabolites were

identified in the positive mode and 72 metabolites were

identified in the negative mode. The major metabolites with

altered urinary levels were categorized as organoheterocyclic

compounds (kynurenic acid, adenine, and others), organic

acids and derivatives (DL-glutamic acid, glutamine, aspartic

acid, sulfoacetic acid, and other compounds), lipids and lipid-

like molecules, benzenoids, phenylpropanoids, and polyketides

(Supplementary Figures S1C,D). Of these, the urinary levels of

43 kinds of urinary metabolites, including DL-glutamic acid and

glutamine, increased significantly in the AI group (p < 0.05),

while the levels of 93 kinds of urinary metabolites, including

aspartic acid, kynurenic acid, and sulfoacetic acid significantly

decreased in the AI group, compared with those of the NM

group (p < 0.05) (Supplementary Figures S1C,D).

In order to determine the relationship between the samples

and identify the differences in the expression patterns of

the metabolites in different samples more comprehensively

and intuitively, the expression levels of the metabolites in

all the samples and differential metabolites were subtracted

from the average value of the corresponding groups, and

subsequently divided by the root mean square of the group

for normalization. The distance matrix was subsequently

calculated, and the hierarchical clustering method was used

for cluster analysis (Figures 1A,B). We observed relevance

among the metabolites with significantly altered urinary

levels (Figures 1C,D). The urinary metabolites were subjected

to KEGG metabolic pathway enrichment analysis. KEGG

pathway enrichment analysis of the differentially expressed

metabolites by Fisher’s exact test revealed significant changes

in important pathways, including the pathways of taurine and

hypotaurine metabolism, arginine biosynthesis, glutamatergic

synapse, GABAergic synapse, ABC transporters, metabolism

of alanine, aspartate, and glutamate, D-glutamine and D-

glutamate metabolism, pyrimidine metabolism, and bicarbonate

reclamation in proximal tubules (Figure 1E).

16S rDNA amplicon sequence analyses

OTU analysis and species annotation

The statistical data was used to process the number of sample

sequences at each stage for evaluating data quality. Splicing, QC,

and de-chimerism of the offline data (Raw PE) was obtained

by sequencing. The values of Q20 and Q30 were above 90%,

indicating that the QC data were good andmet the requirements

of the experimental analysis. The Rarefaction and Shannon

curves revealed (Figures 2A,B) that the amount of sequencing

data was reasonable and could reflect the majority of microbial

information in the samples. The NM and AI groups had 2,377

identical OTUs, while 1,573 and 3,525 OTUs were unique to the

NM and AI groups, respectively (Figure 2C).

Alpha and beta diversity

The Chao1, Simpson, and Shannon indices were used for

estimating microbial richness and diversity for characterization

of microbial alpha diversity. There was no difference in the

Chao1, Shannon, and Simpson indices between the NM and

AI groups, indicating that there was no difference between the

diversity of the microbial communities of the groups (Table 2).

The weighted UniFrac index and non-metric multi-dimensional

scaling (NMDS) analyses were used for measuring the beta

diversity of the samples. The PCoA diagram revealed that, with

the exception of the individual samples, the microbiota of the

NM and AI groups were present in different regions (Figure 3A).

The results of NMDS analysis revealed that the samples had

significant differences between and within groups (p < 0.05)

(Figure 3B). The differences between the community structure

of the groups were analyzed by the Adonis analysis significance

test (permutational MANOVA analysis). The results of Adonis

analysis were: R2 = 0.0938, p < 0.05.

Species composition analysis

For species annotation, the species of special interest (top

10 genera with the highest relative abundance and selected

by default) were selected from the results of each sample
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FIGURE 1

Bioinformatics analysis of di�erential metabolites. (A) Significant di�erence metabolite hierarchical clustering results in positive ion mode. (B)

Significant di�erence metabolite hierarchical clustering results in negative ion mode. (C) Relevance among significant di�erence metabolites.

(D) Relevance among significant di�erence metabolites. (E) KEGG pathway enrichment analysis of di�erentially expressed metabolites.

or group for species classification tree statistics (Zhou et al.,

2018) (refer Supplementary Figure S2). Based on the results

of species annotation, species-level clustering was performed

at each classification level (phylum, class, order, family,

and genus), and the clustered data were represented as a

heatmap, which is convenient for the intuitive identification

of the species present in corresponding samples or groups.

The results for phylum level classification are provided in

Supplementary Figures S3A,B.

Microbial flora structure and di�erential
analysis

Statistical analysis was performed for analyzing the

composition of microbial community of the NM and AI

groups at each classification level (phylum, class, order, family,

genus, and species), and emphasis was placed on bacterial

species with comparatively high relative abundance. We

identified 10 strains at the phylum level, of which the phyla

Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria

phyla were abundant in the two groups. The sum of degrees

exceeded 95%. Of these, the abundance of Bacteroidetes

increased significantly in the AI group, while the abundances

of Firmicutes, Proteobacteria, and Actinobacteria decreased

significantly in the AI group. Analysis at the class level indicated

a decline of Proteobacteria in the AI group, which was mainly

attributed to be increased abundance of Acinetobacter, while the

decline of Firmicutes in the AI group was primarily attributed

to the increased abundance of Weissella sp. The decline in the

abundance of Actinobacteria in the AI group was primarily

attributed to Glutamicibacter sp. (Figures 3C,D), and the results

of LEfSe demonstrated differences in the microbial community

structure between the groups (Figure 3E).

Based on the results of community structure analyses, we

determined that the microbial flora in the urine samples of the

giant pandas in the AI group underwent tremendous changes

compared with that of the NM group. The differences were

subsequently identified using LDA. The microorganisms with

higher relative abundance used as potential markers, and the

significance of the different species was analyzed usingMates tats

software. The differential strains were screened according to the

following criteria: LDA> 4 and q< 0.050. At the genus level, we

observed that the abundance of Acinetobacter sp., G. sp.,W. sp.,

and Pseudomonas sp. increased significantly in the NM group (p

< 0.05), while the abundance of L. sp., Tissierella sp., Romboutsia

sp., and Sphingopyxis sp. (Figure 3F).

Correlation analysis

The results of correlation analyses revealed that the altered

urinary microbiota was closely related to changes in certain

metabolites. The scatter plot revealed that several typical urinary

microbiotas were highly related to amino acid metabolites.

For instance, A. sp., G. sp., and W. sp. were significantly

positively correlated with aspartic acid (A. sp.: r = 0.790;

p < 0.01; G. sp.: r = 0.839; p < 0.01; W. sp.: r =

0.699; p < 0.01), sulfoacetic acid (G. sp.: r = 0.825; p <

0.01), and phosphoric acid (A. sp.: r = 0.559; p < 0.05; G.
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FIGURE 2

Alpha diversity. (A) Rarefaction Curve for di�erent samples and di�erent groups; Rarefaction Curve is to randomly extract a certain amount of

sequencing data from a sample, count the number of species they represent, and construct a curve based on the amount of sequencing data

extracted and the number of corresponding species. The dilution curve can directly reflect the rationality of the amount of sequencing data, and

indirectly reflect the abundance of species in the sample. When the curve tends to be flat, it means that the amount of sequencing data is

reasonable. More data will only generate a small amount of new OTUs. Otherwise, it means that continuing sequencing may generate more new

OTUs. (B) Shannon curve is constructed according to the microbial diversity index of each sample’s sequencing amount at di�erent sequencing

depths. When the curve tends to be flat, it indicates that the amount of sequencing data is large enough to reflect the vast majority of microbial

information in the sample. (C) Venn graph of OTUs clustering. Venn graph shows the common and unique OTUs between the di�erent groups.

sp.: r = 0.839; p < 0.01; W. sp.: r = 0.728; p < 0.01),

but negatively correlated with DL-glutamic acid (A. sp.: r

= −0.797; p < 0.01; G. sp.: r = −0.650; p < 0.01; W.

sp.: r = −0.741; p < 0.01) and glutamine (A. sp.: r =

−0.682; p < 0.01; G. sp.: r = −0.785; p < 0.01; W. sp.:

r = −0.790; p < 0.01) (Figure 4A). There was correlation

between the significantly altered microbiota and metabolites

related to arginine, glutamatergic, and GABAergic synthesis

(Figures 4B,C). Notably, the A. sp. was the largest in the network

diagram of dominant bacteria in the vaginal flora and was

positively correlated with the concentration of aspartic acid

and negatively correlated with the concentrations of several

metabolites, including glutamine and DL-glutamic acid. This

suggested that the changes in the concentrations of these

metabolites could be attributed to alterations in the abundance

of A. sp. (Figures 4B,C).

TABLE 2 Comparison of α diversity parameters between the NM

group and AI group.

Group Chao Shannon Simpson

NM 1270.92± 51.05 5.55± 0.11 0.92± 0.02

AI 1440.34± 197.32 5.30± 0.60 0.86± 0.04

The values are presented as the mean± standard deviation.

Discussion

Previous studies have reported that the low natural

reproductive rate of wild animals in captivity, including the

giant panda, is widespread (Christie et al., 2012). The factors

that affect the natural reproductive efficiency of captive giant
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FIGURE 3

Urine microbial abundance and beta diversity in giant pandas between NM and AI group. (A) PCoA analysis. The abscissa represents the first

principal component, the ordinate represents the second principal component, and the percentage represents the contribution to the sample

(Continued)
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FIGURE 3 (Continued)

di�erence. (B) Non-Metric Multi-Dimensional Scaling analysis; Each point represents a sample, the distance between points represents the

degree of di�erence, and samples in the same group are represented by the same color. (C) Histogram of relative abundance of species at the

level of each sample phylum. (D) Histogram of relative abundance of species at the level of each sample genus. Species with di�erent

metabolisms in di�erent colors correspond to the legend on the right; the horizontal axis represents di�erent samples or groups, and the

vertical axis represents the relative abundance of di�erent species. (E) Cladogram obtained by LESEF analysis. The circles radiating from the

inside to the outside in the cladogram represent the taxonomic levels from phylum to genus (or species). Each small circle at a di�erent

taxonomic level represents taxonomy at that level, and the diameter of the small circle is proportional to the relative abundance. The red area

and the green area represent di�erent groups. The red nodes in the branches represent the microbial groups that play an important role in the

red groups, the green nodes represent the microbial groups that play an important role in the green groups, and the yellow nodes represent the

microbial groups that play an important role in the two groups. There were no microbial groups that played an important role in the group. The

species names represented by the English letters in the figure are shown in the legend on the right. (F) LDA Score obtained by LEfSe analysis.

The red and green areas in the LDA value distribution histogram represent di�erent groups, the red nodes in the branches represent the

microbial groups that play an important role in the red groups, and the green nodes represent the microbial groups that play an important role

in the green groups. Only the species who’s LDA Score is greater than the set value (the default setting is 2) are shown in the figure, and the

length of the histogram represents the size of the LDA value. (G) STAMP analysis of species di�erences between NM group and AI group. The left

figure shows the abundance ratio of di�erent species in two samples or two groups of samples, the middle shows the di�erence ratio within the

95% confidence interval, the rightmost value is the p-value, p-value <0.05, indicating the di�erence significant.

pandas are complex and changeable (Zhang et al., 2004;

Swaisgood et al., 2006; Li et al., 2017). As giant pandas are

wild animal with a strong mate selection behavior, the scientific

community believes that the low reproductive success rate of

captive giant pandas is related to the loss of their natural

mating ability, lack of complete courtship competition and

poor sexual desire caused by the human selection of mates as

part of the giant panda breeding plan instead of free mating

choice (Yan et al., 2021). Compared to other bio fluids, urine

is characterized by the richness of metabolites and its ability

to reflect imbalances in all biochemical pathways within the

body (Owen et al., 2016). We, therefore, employed a UPLC

Q-TOF/MS metabolomics technology for identifying metabolic

biomarkers in the urine samples of captive giant pandas. The

results demonstrated the presence of differentially expressed

metabolites between the NM and AI groups. Of these, the

metabolites DL-glutamic acid, glutamine, and aspartic acid,

which are related to arginine biosynthesis, were significantly

altered in giant pandas with poor reproductive ability. This

indicated that the decline in the reproductive ability could

be related to arginine biosynthesis. This is also consistent

with the significantly different metabolic pathways enriched by

KEGG pathway analysis based on Fisher’s exact test (arginine

biosynthesis). The physiologically active form, L-arginine, exerts

biological functions in adult animals. Arginine is first converted

to citrulline, which is also derived from glutamate in the

mitochondria. The produced citrulline combines with aspartic

acid and is converted to L-argininosuccinate, which is again

converted to arginine (Wu and Morris, 1998). Although there

were no significant changes in the urinary content of arginine

and argininosuccinate, we observed that the urinary content of

aspartic acid, an important intermediate metabolite related to

arginine synthesis, was significantly down-regulated in the AI

group, while the levels of glutamine and DL-glutamic acid were

significantly up-regulated. This indicated that the decline in the

reproductive ability of giant pandas is related to the imbalance

in arginine synthesis. As glutamate is a key metabolite in several

important amino acid anabolic pathways, the physiological

demand for glutamine increases under stress. As the synthesis

of glutamine does not meet the physiological requirement,

glutamate synthesis increases under stress, which competes with

and reduces aspartic acid synthesis for meeting the physiological

requirement, and in turn reduces arginine synthesis (Scibona

et al., 1994; Eskiocak et al., 2006). L-arginine is crucial for

the reproductive health of male and female animals. Studies

have demonstrated that L-arginine supports normal sperm

production and maturation in male animals (Scibona et al.,

1994), and simultaneously increases blood flow to the genitals

of males and females, leading to increased libido (Moncada

and Higgs, 1993; Eskiocak et al., 2006). However, L-arginine

deficiency reduces the levels of sex hormones in captive giant

pandas due to a decrease in the levels of its metabolic products,

including nitrogen oxides and polyamines, which affect the

expression of libido and sexual behavior during mate selection

(Williams and O’Neill, 2018). By analyzing the data obtained

by urinary metabolomics, we also observed that the metabolic

pathways in the nervous system (glutamatergic and GABAergic

synapses) and amino acid metabolic pathways associated

with stress (alanine, aspartate, and glutamate pathway, and

D-glutamine, and D-glutamate pathway) in the NM group

were also significantly enriched compared to those of the AI

group, as revealed by the differential abundance score (Hakimi

et al., 2016). The amino acid metabolites, including aspartic

acid, GABA, glycine, DL-glutamic acid, and sulfoacetic acid,

which are related to inhibitory neurotransmitter pathways,

also increased or decreased significantly. Although there is no

direct evidence that arginine metabolism is directly related to

psychological stress, arginine has a very important positive

effect on immune function, which is primarily attributed to

increased immunosuppression and the reduction of excessive

inflammatory response for maintaining immune balance. In

addition, arginine acts as an immune stabilizer (Han et al., 2009).
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FIGURE 4

Correlation analysis of urine microorganisms and metabolites.

(A) Hierarchical clustering heat map of spearman correlation

analysis of significant di�erence between microbiota and

metabolites. In the hierarchical clustering heat map, each row

represents a significantly di�erent genus, and each column

represents a significantly di�erent metabolite. The tree branches

on the left represent the results of clustering di�erential

bacterial genera, and the upper tree branches represent the

results of clustering analysis on di�erential metabolites. Clusters

of significantly di�erent metabolites or di�erent genera that

appear in the same cluster have a similar correlation pattern.

Each cell in the hierarchical clustering heat map contains two

kinds of information (correlation coe�cient r and p-value). The

correlation coe�cient r is represented by color. r > 0 means

positive correlation, which is represented by red; r < 0 means

negative correlation, which is represented by blue, and the

darker the color, the stronger the correlation. p-value reflects

the significant level of the correlation, p-value <0.05,

represented by *; p-value <0.01, represented by **. (B) Matrix

heat map of spearman correlation analysis of significant

di�erence between microbiota and metabolites related to

arginine, glutamatergic and GABAergic synthesis. The matrix

graph not only shows the correlation between the significantly

di�erent bacteria and the significantly di�erent metabolites, but

also the correlation between the significantly di�erent

metabolisms and the significantly di�erent bacteria. Taking the

blue dotted line in the picture as the dividing line, the correlation

coe�cient matrix heat map can be divided into four icons. The

upper left corner shows the correlation between significantly

di�erent bacterial groups, the lower right corner shows the

correlation between significantly di�erent metabolites, and the

upper right corner and the lower left corner both show the

significantly di�erent bacterial groups and Correlations between

significantly di�erent metabolites, mirror symmetry. The

Spearman correlation coe�cient value r is between −1 and +1.

The correlation coe�cient r is represented by color. r>0

indicates a positive correlation, which is shown in red. Darker

colors indicate stronger correlations. (C) Network diagram of

spearman correlation analysis of significant di�erence between

microbiota and metabolites related to arginine, glutamatergic

and GABAergic synthesis. Circles in the figure represent

significantly di�erent genera, and rectangles represent

significantly di�erent metabolites. The color of the line

represents the positive and

(Continued)

FIGURE 4

negative correlation coe�cient values between the two (blue

for negative correlation, red for positive correlation), and the

thickness of the line is proportional to the absolute value of the

correlation coe�cient. The size of a node is positively related to

its degree, that is, the larger the degree, the larger the node size.

The main metabolites in the arginine metabolic pathway, DL-

glutamic acid and glutamine, are also important intermediate

metabolites in the synthesis-related pathways of the nervous

system (glutamatergic andGABAergic synapses), and alterations

in these metabolites are serious signs of psychological stress

diseases (Leppik et al., 2018). In this study, we observed

that in addition to the arginine biosynthesis pathway, the

glutamatergic synapse and GABAergic synapse pathways were

significantly annotated, thus confirming the correlation between

psychological stress and arginine biosynthesis and metabolism.

We therefore speculate that the restriction caused by captivity

inhibits the arginine biosynthesis pathway and results in the

loss of libido in giant pandas, which subsequently leads to the

failure of mate selection. The long-term frustration resulting

from mate selection failure induces psychological stress in

captive giant pandas, which in turn affects the biosynthesis

of arginine.

We subsequently analyzed the differences in the structural

diversity of the urinary microbiota of captive giant pandas

using a 16S rDNA amplicon sequencing technology. The results

demonstrated significant changes in the urinary microbiota

at both phylum and genus levels in the AI group. Of

these, the relative abundance of Firmicutes in the AI

group increased significantly, while the relative abundance

of Bacteroidetes decreased significantly. The results of this

study were consistent with the results obtained in the study

on patients with major depression by Jiang et al. (2015).

They observed that the abundance of Firmicutes was relatively

lower while the abundance of Bacteroidetes was higher in

patients diagnosed with major depressive disorder, compared

to those of healthy controls (Jiang et al., 2015). Additionally,

studies on intestinal microbiota have demonstrated that severe

psychological stress can cause imbalances in the human

intestinal flora. The imbalance in intestinal flora caused by

alterations in the taxonomic composition of gut microbiota

(Firmicutes: Bacteroidetes ratio) leads to the loss of certain

metabolites produced by the flora (short-chain fatty acids),

which in turn affects the neurotransmitter system of the

brain and promotes the onset of psychological stress (Valles-

Colomer et al., 2019). The results of 16S rDNA analyses

were related to the results obtained by metabolomics analysis,

which revealed that the giant pandas in the AI group might

have serious psychological stress. We also observed that the

relative abundance of Proteobacteria in the human intestinal
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tract rarely shows variations (Shin et al., 2015); however,

the urinary abundance of Proteobacteria in giant pandas

accounted for approximately 50% of the total flora. Additionally,

the urinary abundance of Proteobacteria in giant pandas

in the AI group was significantly lower than that of the

NM group. The differences in microbial STAMP between

the two groups, determined by Welch’s t-test analysis, also

revealed that A. sp., belonging to the Proteobacteria phylum,

exhibited the largest difference in abundance ratio. Although

consistent findings have frequently supported this concept,

dysbiosis during metabolic disorders often occurs due to an

increased prevalence of Proteobacteria. Of the four major phyla

(Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria),

Proteobacteria exhibit the highest intestinal instability over time

(Faith et al., 2013). We also observed that the abundance of

P. sp. increased significantly in the NM group (p < 0.05).

In a male infertility study, Lundy et al. (2021) observed

the abundance of Prevotella sp. is inversely associated with

sperm concentration, while the abundance of P. sp. is directly

associated with the total motile sperm count (Lundy et al.,

2021). Although this study investigated the relationship between

the composition of urinary flora and mating ability, previous

studies identified that the diverse semen microbiome has

modest similarity to the urinary microbiome. These findings

also indicated that the male giant pandas in the AI group

have a higher risk of infertility than the male giant pandas

in the NM group. Furthermore, the results of 16S rDNA

analyses indicated that the decline in natural reproductive

capacity had a minor effect on urinary microbiota, with no

drastic or subversive changes. It is speculated that dynamic

alterations in stress and adaptation occurs in the body during

confinement, and the adaptive response mitigates the effect of

the reduced natural reproductive capacity on the microecology

of urinary microbiota.

The correlation between the altered bacterial genera in the

urine andmetabolites with altered urinary levels was determined

by Spearman correlation analysis. The results demonstrated

significant relationships between urinary microorganisms and

the levels of urinary metabolites involved in amino acid

metabolism and neurotransmitter synthesis. These findings

indicated that the alterations in urinary microbiota are related

to the alterations in metabolic phenotype. The results of

correlation analysis revealed that the A. sp., G. sp., and

W. sp. were significantly correlated to metabolites related to

arginine biosynthesis, and the glutamatergic and GABAergic

synaptic pathways. In particular, we also observed that the

content of P. sp. in the urine samples of the AI group

was significantly lower than that of the NM group. The

content of P. sp. was also significantly correlated with the

metabolites related to arginine synthesis, which further indicated

that these bacteria-metabolite pairs are directly or indirectly

related to the expression of natural mating behavior. We

therefore speculated that the lack of these bacteria would

affect the synthesis of hormones, neurotransmitters, and key

chemical substances during the mating period, which would

in turn affect the sexual desire of the captive giant pandas

during the mating period and their mate selection behavior.

Although some extrapolations were made in this study, the

functional genes could not be identified from the results of

16S amplicon sequencing and urinary metabolite analyses. We

intend to employ metagenomics approaches in future studies for

interpreting these data.

Conclusion

Using an UHPLC-TOF/MS metabolomics approach

combined with 16S rDNA sequencing techniques, this study

demonstrated for the first time that the inhibition of arginine

synthesis caused by environmental changes could be related

to the poor libido of captive giant pandas during the breeding

period. The study also identified the relationship between

the urinary abundance of P. sp. and levels of metabolites

related to arginine synthesis. These findings may aid in

understanding the mechanism underlying environment-

induced mate selection in captive giant pandas. The results

may also aid in the identification of a novel method for

determining the sexual desire of giant pandas based on urinary

microbiota, which would significantly improve the natural

reproductive success rate of captive giant pandas. Targeted

metabolomics approaches can be employed in the later stage of

research, wherein amino acid, neurotransmitter, and intestinal

metagenomics analyses can be performed for identifying and

targeting the marker metabolites and flora that affect the

mate choice of captive giant pandas. The reconstruction of

specific flora or the biosynthetic pathways of key amino acids

would aid in improving the natural mating ability of captive

giant pandas.
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SUPPLEMENTARY FIGURE S1

Analysis of significant di�erence metabolite between NM group and the

AI group. (A) Volcano plot in positive ion mode. (B) Volcano plot in

negative ion mode. (C) Significant expression analysis of urine

metabolites identified by positive ion mode. (D) Significant expression

analysis of urine metabolites identified by negative ion mode. The

abscissa in the figure is the log value of log2 of the Fold Change, and the

ordinate is the log value of –log10 of the significance p-value.

Significantly di�erent metabolites: metabolites that meet FC> 1.5 and

p-value <0.05 are represented in red, and metabolites that meet FC

<0.67 and p-value <0.05 are represented in blue. Non-significantly

di�erent metabolites are shown in black.

SUPPLEMENTARY FIGURE S2

Group specific species taxonomic tree. The circles with di�erent colors

in the above figure represent the classification level, and the size

represents the phase abundance. The circles with di�erent colors in the

figure below represent the grouping, and the size represents the

proportion of the relative abundance in the classification. The numbers

under the circles, the first one indicates the number of sequences that

are only aligned to this category (cannot be aligned to the classification

level below the category level), and the second number indicates how

many sequences are aligned to this category in total.

SUPPLEMENTARY FIGURE S3

Species abundance cluster heatmap. (A) Each sample phylum level. (B)

Each group phylum level. The horizontal axis represents di�erent

samples, and the vertical axis represents di�erent species. The depth of

the color is related to the abundance of the species. The darker the

color, the higher the abundance is.
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