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Assessment of dysplasia in bone 
marrow smear with convolutional 
neural network
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Masahiko Fukatsu5, Kayo Harada5, Hideyoshi Noji5,6, Takayuki Ikezoe5, Tomoya Maeda7 & 
Akira Matsuda7

In this study, we developed the world’s first artificial intelligence (AI) system that assesses the 
dysplasia of blood cells on bone marrow smears and presents the result of AI prediction for one of the 
most representative dysplasia—decreased granules (DG). We photographed field images from the 
bone marrow smears from patients with myelodysplastic syndrome (MDS) or non-MDS diseases and 
cropped each cell using an originally developed cell detector. Two morphologists labelled each cell. The 
degree of dysplasia was evaluated on a four-point scale: 0–3 (e.g., neutrophil with severely decreased 
granules were labelled DG3). We then constructed the classifier from the dataset of labelled images. 
The detector and classifier were based on a deep neural network pre-trained with natural images. 
We obtained 1797 labelled images, and the morphologists determined 134 DGs (DG1: 46, DG2: 77, 
DG3: 11). Subsequently, we performed a five-fold cross-validation to evaluate the performance of 
the classifier. For DG1–3 labelled by morphologists, the sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and accuracy were 91.0%, 97.7%, 76.3%, 99.3%, and 
97.2%, respectively. When DG1 was excluded in the process, the sensitivity, specificity, PPV, NPV, and 
accuracy were 85.2%, 98.9%, 80.6%, and 99.2% and 98.2%, respectively.

Many attempts have been made in the past decade to automatically determine cell types in blood smears. Initially, 
researchers developed algorithms to detect leukocytes, red blood cells, or nuclear segmentation1–10. Subsequently, 
they started addressing the detection of abnormal leukocytes including various types of leukemic cells11–17. 
However, these works mainly focused on peripheral blood smears, and few studies have covered bone marrow 
due to their greater complexity18–20. As there are many types of progenitor cells with various stages of continuous 
maturation in bone marrow specimens, a microscopic field contains a larger amount of information compared 
to peripheral blood. Moreover, the examination of bone marrow smears requires morphological evaluation in 
clinical settings, whereas the examination of peripheral blood mainly focuses on cell counting. These hurdles 
have prevented the development of automated examination of bone marrow smears and delayed the application 
of machine learning technology in the diagnosis of bone marrow disorders.

Myelodysplastic syndrome (MDS) is a haematological disease that develops mainly in the elderly and is 
characterised by an abnormal morphology (dysplasia) of blood cells in bone marrow. Haematopoietic progeni-
tor cells, which acquire certain somatic gene mutations, clonally expand in bone marrow, leading to cytopenia 
characterised by ineffective haematopoiesis with myelodysplasia. Progressive cytopenia in multiple blood lineages 
and transformation to acute myeloid leukaemia are causes of death in patients with MDS. The morphological 
examination of bone marrow smears using light microscopy plays a critical role in the diagnosis of MDS. Since 
the first report of this disease, various types of dysplasia in cell lineages have been identified, such as granulocyte, 
erythrocyte, and megakaryocyte. The presence of bone marrow dysplasia, which is a requisite condition for the 

OPEN

1Department of Hematology, Jyoban Hospital, Tokiwa Foundation, 57 Jyoban kamiyunagayamachi kaminodai, 
Iwaki, Fukushima  972‑8322, Japan. 2Institute of Mathematics for Industry, Kyushu University, Fukuoka, 
Japan. 3Research and Development Department, LPIXEL Inc., Tokyo, Japan. 4Department of Public Health, 
Fukushima Medical University, Fukushima, Japan. 5Department of Hematology, Fukushima Medical University, 
Fukushima, Japan. 6Department of Hematology, Minami Fukushima Cardiovascular Hospital, Fukushima, 
Japan. 7Department of Hemato‑Oncology, International Medical Center, Saitama Medical University, Saitama, 
Japan. *email: jinichi‑mori@tokiwa.or.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-71752-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:14734  | https://doi.org/10.1038/s41598-020-71752-x

www.nature.com/scientificreports/

diagnosis of MDS, is defined as 10% or more of dysplastic cells in each cell lineage, or 5–20% of myeloblasts in 
all nucleated cells21.

Notably, expert skill in morphological examination is required for the accurate diagnosis of dysplasia in bone 
marrow smears; however, such expert review is not always available in daily clinical practice. Therefore, it is nec-
essary to develop an artificial intelligence (AI) system that assists with the morphological assessment of dysplasia 
in bone marrow smears, but no reports exist in this field to date. In the current study, we developed an AI system 
that can diagnose ‘decreased granules (DG)’ in neutrophil, one of the most representative forms of dysplasia.

Materials and methods
Data collection.  Figure 1 illustrates the workflow of the AI construction. We collected bone marrow smears 
stained with May–Grunwald–Giemsa stain from patients who had been diagnosed with MDS or other haema-
tological disease (to obtain images of normal blood cells) at Jyoban Hospital and Fukushima Medical University 
Hospital between 2011–2018. Two clinicians photographed field images of the bone marrow smears at 100 times 
magnification using cellSens Standard (version 2.1). Each cell in the field images was detected using the Tensor-
flow Object Detection API (https​://githu​b.com/tenso​rflow​/model​s/tree/maste​r/resea​rch/objec​t_detec​tion), and 
they were cropped into rectangular images such that each cropped image contained only a single cell—provided 
the cells did not overlap (Fig. 2A). We trained Faster R-CNN with ResNet-101 backbone using a part of the 
images mentioned above. All blood cells were annotated with bounding boxes, which were respectively tagged as 

Figure 1.   Workflow of the AI construction. Microscopic images from bone marrow smears in hospitals 
were digitalised into field images. Each single cell was cropped by the originally developed detector. The 
morphologists labelled them, and these labelled images were fed into the regressor. The AI system’s predictions 
were presented back to the morphologists for re-evaluation of the labels (Doctor in the loop).

Figure 2.   Detector and targeted dysplasia. (A) The detector automatically extracts the single cells from the field 
images. It distinguishes between the subjects that are of interest (green boxes: nucleated cells) and those that are 
not (orange boxes: red blood cells, platelets or trashes). (B) Normal neutrophils (left). Decreased granules; pink 
and fine granules in the cytoplasm are markedly reduced in the neutrophil with decreased granules (right).

https://github.com/tensorflow/models/tree/master/research/object_detection
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such. We used a repository’s sample configuration for COCO dataset with only minor changes to num_classes, 
and max/min_dimention. The ratio of second_stage_classification_loss_weight to second_stage_classification_
loss_weight was set to 2.0. All the field images were then passed to the trained Faster R-CNN. Output annota-
tions that were wrong (e.g., the ones containing two cells) were corrected by a human annotator such that each 
of the boxes contained a single cell. Subsequently, each cell was cropped into a rectangular image in preparation 
for the labelling process.

Two experts (AM and TM) in blood cell morphology labelled each cell in the cropped image by discussing 
with each other. We first excluded squashed, broken, or out-of-focus cells, as well as dust and bare nuclei. Next, 
we divided the cells into ‘applicable’ and ‘not applicable’ for the determination of dysplasia. Dysplasia was defined 
according to the World Health Organisation Classification of Tumours of Haematopoietic and Lymphoid Tissues, 
revised, 4th edition (2017), and we added some factors defined by the International Working Group on Morphol-
ogy of Myelodysplastic Syndrome classification (Supplementary Table 1)22. The degree of dysplasia was evaluated 
on a four-point scale—0: normal; 1: intermediate, i.e., between normal and dysplasia; 2: dysplasia; and 3: severe 
dysplasia. As there is no universal grading system for dysplasia, our grading depended on the morphologists. We 
refer to a pair of the single-cell image and its label as the labelled image. Among the various types of dysplasia, 
we focused on DG in neutrophils (Fig. 2B) because it is regarded as a highly representative dysplasia for which 
we had relatively abundant labelled images.

Informed consent was obtained from all patients. This study was reviewed by the local ethics committees of 
Jyoban Hospital and Fukushima Medical University, and it was conducted according to the ethical principles of 
the Declaration of Helsinki.

Dysplasia detection by convolutional neural networks.  We randomly divided the labelled images 
into five strata such that each stratum contained approximately the same number of images of each type of dys-
plasia. For the stratification, we used a publicly available python code (https​://githu​b.com/trent​-b/itera​tive-strat​
ifica​tion). We trained a regressor on four out of the five strata. The performance was measured using five-fold 
cross-validation on these five strata. As our dataset was relatively small, we utilized transfer learning. Our deep 
neural network-based regressor consisted of two parts: ResNet-152 truncated at the last pooling layer, followed 
by a fully connected linear layer with an output dimension of 34, which is the number of label types23. Our codes 
are available online (https​://githu​b.com/shizu​o-kaji/Myelo​dyspl​astic​Syndr​ome). ResNet-152 was pre-trained for 
image classification using ImageNet, which is a large dataset of natural images. Between the two parts, a dropout 
at the ration of 0.5 was applied. After the fully connected layer, sigmoid and scaling were applied. For exam-
ple, if a label was scaled from null to four, the corresponding output was scaled by four. We also tested linear 
and ReLU outputs but observed deterioration in performance. The outputs of some samples were well outside 
the legitimate range, and they seemed to affect the loss optimisation. We used the weighted-mean-quartic loss 
for the loss function. To prioritise the low loss values for the focused label DG, the output corresponding to 
the focused label DG was weighted 10 times more. We tested a few other loss functions, including the mean-
squared-error, contrastive loss, and focal loss. However, we found that the weighted-mean-quartic loss was the 
best choice because it penalises large deviation more (we did not want our AI system to make significant errors). 
We used a regression model and tested a classification model, replacing the final output layer with softmax. 
The performance worsened, which can be explained by the larger output dimension of the classification model 
required for the on-hot encoding of classes. We used Adam optimiser with a learning rate of 10-5 for the first 
(pretrained) part and 10-4 for the fully connected part. An L2 weighted regularization of 10-6 was used to pre-
vent overfitting. Training was performed using 120 epochs with a batch size of 10, but we observed that the train-
ing converged after approximately 90 epochs. The main difficulty in training the regressor was that the dataset 
was highly imbalanced. For example, only 13 out of 1797 images were labelled as DG3. A standard strategy to 
deal with imbalanced data is to weigh the loss function. However, with our extreme imbalance, we found that 
data augmentation resulted in better performance. Before applying the data augmentation transformations, each 
labelled image was pasted in the centre of a large field image to remove boundary effects. For every epoch, each 
labelled image was randomly translated, rotated, flipped, and scaled by 0.8–1.2 before being fed into the regres-
sor (Fig. 3). The images with rare labels were fed multiple times into an epoch such that the total number of 
images with each label became approximately the same. The inference was made in the following manner. First, 
each image was rotated by 22.5 × n degrees (n = 0, 1, …, 15) and fed into the regressor. The maximum score for 
each label among the 16 rotated images was then computed. The 34 output classes belonged to one of the four 
non-overlapping categories: ‘erythrocyte’, ‘granulocyte’, ‘megakaryocyte’, or ‘not applicable’. The images fell into 
categories other than ‘granulocyte’ were given a final DG score of 0. Otherwise, the final DG score was set as the 
maximum of the 16 output scores for the DG label, rounded to the nearest integer, which were 0, 1, 2, and 3. The 
score depended on the rotation angle of the input image. Therefore, considering the maximum score among the 
16 rotations was necessary.

Doctor‑in‑the‑loop.  When we investigated the output of our machine learning system, we found that some 
of the predictions that contradicted the doctors’ labels were correct. We realised that not only the AI, but also the 
doctors had made mistakes. Thus, we adopted the following strategy which we named the ‘Doctor in the loop’ 
iteration. In each iteration, the doctors were shown the list of misclassified images with raw outputs from the AI 
system. Then, the doctors assessed where the AI system or humans had made a mistake. Further, the doctors cor-
rected the wrong labels of the previous iteration. The engineers tuned the model and its hyper-parameters, and 
the AI system was trained again. Over these iterations, both the quality of the data and machine learning method 
described in the previous section were improved. In our case, it took five iterations before convergence. For each 
iteration, training the AI system lasted several hours (times fivefold cross-validation), and the morphologists’ 

https://github.com/trent-b/iterative-stratification
https://github.com/trent-b/iterative-stratification
https://github.com/shizuo-kaji/MyelodysplasticSyndrome
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re-evaluation lasted several minutes. Tuning the network structure and hyper-parameters lasted longest in each 
iteration, sometimes up to a few days. In total, convergence took a few months. We named the AI system ‘AKIRA’ 
after one of the morphologists in our group.

Evaluation metrics.  Classification performance of AKIRA was assessed using the following metrics:

‘true positive’ and ‘true negative’ are the number of images for which both the human label and network predic-
tion are DG or not DG, respectively. ‘false positive’ and ‘false negative’ are the number of images for which the 
human label was not DG and network prediction was DG, or the human label was DG and network prediction 
was not DG. ‘positive label’ and ‘negative label’ are the number of total images labelled with DG or not labelled 
with DG, respectively.

Results
We included 35 smears in the study and obtained 1797 labelled images from 386 field images. A summary of 
labels by morphologists is shown in Table 1. In the initial labelling process, the morphologists determined 125 
DGs (DG1: 47 DG2: 65 DG3: 13). However, through three loop cycles between the AI and morphologists, 134 
cells were finally determined as DG (DG1: 46, DG2: 77, DG3: 11). Table 2 summarises the labelling of DGs by 
the morphologists and prediction by AKIRA. When DG1–3 are defined as positive, the sensitivity, specificity, 
positive predictive value, and negative predictive value were 91.0%, 97.7%, 76.3%, and 99.3%, respectively. The 
area under the curve (AUC) was 0.944, and accuracy of the system was 97.2%. For clinical use, it is important to 
determine more obvious dysplasia such as DG2–3 than vague dysplasia such as DG1. We excluded DG1 labels 
and divided DG1 predictions into DG0 or DG2 based on their prediction probabilities. As a result, the sensitiv-
ity, specificity, positive predictive value, and negative predictive value were 85.2%, 98.9%, 80.6%, and 99.2%, 
respectively. The AUC was 0.921, and accuracy was 98.2%.

To investigate the cause of DG misclassification, we extracted the false positive or false negative cells in 
which the discrepancy in scale between the label and prediction was two or more (e.g., the label was DG0, but 
the prediction was DG2 or DG3.) (Fig. 4). Six of the nine false negative cells were mistaken as immature granu-
locytes (IG), which resemble neutrophils with nuclear hyposegmentation (HS). Conversely, three of the seven 
false positive cells had a label of IG.

As dysplastic features in neutrophils are often associated with one another, it is possible that AKIRA dose 
not really recognise decreased granules but regards other dysplasia (e.g., HS, nuclear projection, and abnormal 
chromatin clamping) as DG. To address the possibility, we compared the accuracy of prediction between cells 
labelled as DG alone and those labelled as DG and HS—the most frequently associated with DG in our dataset. 
Among 168 cells with DG alone and 65 cells with DG and HS, AKIRA mis-predicted 7 (4%) and 15 (23%) cells 
with 2 or more scale differences, respectively. This result suggests that AKIRA might accurately learn DGs in the 
cytoplasm from the labelled images. If DG accompanies HS, they are often recognised as IG, which is excluded 
from dysplasia classification. This increases the false negative rate.

Discussion
We have described an intelligent system that can determine a type of dysplasia in bone marrow smears, and to the 
best of our knowledge, this is the first study to do so. As noted above, the automated assessment of bone marrow 
specimen is highly challenging, and the determination of dysplasia is even more difficult. To overcome various 
hurdles, we devised a few techniques to specialise our system, with particular attention given to addressing the 
significant imbalance in the number of cells with specific labels. Although we have not conducted a validation 
study evaluating the concordance between the AI system and third-party morphologists, an accuracy of 97.2% is 
an outstanding result. Moreover, in excluding DG1, the accuracy was 98.2%. A similar previous study in which 
the convolutional neural network (CNN) was constructed using over 18,000 images of white blood cell showed 
that myeloblasts in blood smears were classified with a sensitivity of 94% (91.0% in our study) and a negative 
predictive value of 94% (99.3% in our study)17. It is notable that our CNN developed using far less images 
achieved such a high predictive performance. This high performance is attributable to our careful design of the 
loss functions and data augmentation scheme. To observe the effect of transfer learning, we trained the same 

sensitivity =
true positive

positive label

specificity =
true negative

negative label

positive predictive value =
true positive

positive prediction

negative predictive value =
true negative

negative prediction

accuracy =
true positive+ true negative

true positive+ false positive+ true negative+ false negative
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model from scratch. The result is shown in Supplementary Table 2. The training (convergence) lasted three times 
longer (about 300 epochs compared to 100 epochs for transfer learning). The accuracy was 94.0% (against 97.2% 

Table 1.   Confirmed labels by morphologists.

Abbreviations Number of cells

Applicable cells

Erythrocytes

 Normal erythroid cells NE 392

Scale of dysplasia

 Dysplastic erythroid cells 1 2 3

  Nuclear budding NB 5 21 4

  Internuclear bridging INB 0 0 2

  Karyorrhexis KR 0 3 2

  Multinuclearity MN 0 2 5

  Red cell abnormal chromatin clamping RCACC​ 64 30 5

  Megaloblastoid change MC 2 0 0

  Giant red cell GRC​ 4 13 9

  Vacuolization VAC 0 2 0

  Howell–Jolly bodies HJB 0 1 1

Granulocytes

 Normal neutrophils NN 96

 Myeloblasts MB 62

Scale of dysplasia

 Dysplastic granulocytes 1 2 3

  Small size or unusually large size SUL 0 0 0

  Nuclear hyposegmentation (Psudo-Pelger–Huët) HS 4 12 22

  Nuclear hypersegmentation HYPES 1 1 0

  Decreased granules; agranularity DG 46 77 11

  Pseudo-Chédiak–Higashi granules PCH 0 0 0

  Döhle bodies DB 0 0 0

  Auer rods AR 0 0 0

  Dysplastic non-Psudo-Pelger–Huët DNP 0 1 0

  Nuclear projections NP 7 8 0

  Abnormal chromatin clumping ACC​ 47 17 1

Megakaryocytes

 Normal megakaryocytes NM 98

Scale of dysplasia

 Dysplastic megakaryocytes 1 2 3

  Micromegakaryocytes MM 1 0 1

  Nuclear hypolobation NH 29 20 11

  Multinucleation MN 5 7 5

  Large megakaryocyte with a hyperlobulated nucleus LM 1 1 0

  Megakaryocytes with cytoplasmic abnormality MCA 0 0 0

Not applicable cells

 Red blood cells RBC 126

 Dividing erythrocytes DE 6

 Immature granulocytes IG 440

 Basophils BAS 1

 Eosinophils EOS 18

 Monocytes MON 24

 Lymphocytes LYM 78

 Plasma cells PC 29

 Histiocytes HIS 10

 Pletelets PLT 29

 Mitotic cells MIT 14
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for transfer learning), and the accuracy of DG2–3 was 95.7% (against 98.2% for transfer learning). Excluding DG1 
enhanced the accuracy of the system, suggesting that obvious dysplasia is easier to classify for AI than ambiguous 
one as with humans. Since determining obvious dysplasia is important for diagnosis of MDS in clinical setting, 
our AI meets clinical requirements. There were very few (less than 1%) misclassifications with a high degree 
of discrepancy (scale difference ≥ 2) between the true label and that predicted by our system. In most of these 
misclassifications, AKIRA was unable to recognise the neutrophils due to another concomitant dysplasia, HS, 
which mimics immature granulocytes. This problem may be resolved when more data is accumulated and the 
determination accuracy of HS and IG are enhanced.

The accuracy of the AI system never exceeds that of humans as long as human labelling is the right answer. 
However, our AI system AKIRA assisted human judgement through three cycles of the ‘Doctor in the loop’ 
feedback process. Among the images whose initial labels differed from AKIRA’s prediction, the morphologists 
corrected over 10% of their labels. This indicates that AKIRA complemented human labelling and thereby 
enhanced its own accuracy. Such ‘human in the loop’ iteration methods are effective for AI systems that generate 
training data based on human judgement, as previously reported by another group24.

There are some limitations in the present study. First, we employed only two experts in the field morphol-
ogy, and the review process was not independent. This might have biased the labelling of the cells. There is no 
gold standard for the morphological diagnosis of dysplasia. In particular, the diagnoses of dysplasia are not 
always concordant among morphologists25. However, a morphologist in our study was a member of the central 
reviewers in the Japanese National Research Group on Idiopathic Bone Marrow Failure Syndromes, in which the 
inter-observer agreement of this system is high26. This strengthened the labelling credibility in our study. Second, 
although our data augmentation method worked successfully for DG, our dataset included a small number of 
labelled images to predict other types of dysplasia. Thus, we intend to construct a larger dataset to develop a 
diagnostic AI system that covers a wide range of dysplasia types.

Figure 3.   Structure and data flow of our system. Inference is performed in an ensemble manner by applying the 
trained regressor to different rotations of a single image.

Table 2.   Prediction versus true label (confusion matrix).

Prediction

DG0 DG1 DG2 DG3

True label

DG0 1623 32 5 1

DG1 5 21 19 1

DG2 6 16 50 5

DG3 1 2 7 1
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In this study, we developed the world’s first AI system that assesses a type of dysplasia of blood cells on bone 
marrow smears with a high predictive accuracy. Although many hurdles remain, we intend to develop an AI 
system that can diagnose MDS based on larger datasets and deploy it in real-world clinical practice.

Data availability
The source code is disclosed in https​://githu​b.com/shizu​o-kaji/Myelo​dyspl​astic​Syndr​ome. The datasets used for 
construction of AI in the current study are also available from the corresponding author on reasonable request.
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