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Comorbid Lewy body pathology is very common in Alzheimer’s disease and may confound clinical trial design, yet there is no

in vivo test to identify patients with this. Tissue (and/or radioligand imaging) studies have shown cardiac sympathetic denervation

in Parkinson’s disease and dementia with Lewy bodies, but this has not been explored in Alzheimer’s subjects with Lewy bodies

not meeting dementia with Lewy bodies clinicopathological criteria. To determine if Alzheimer’s disease with Lewy bodies subjects

show sympathetic cardiac denervation, we analysed epicardial and myocardial tissue from autopsy-confirmed cases using tyrosine

hydroxylase and neurofilament immunostaining. Comparison of tyrosine hydroxylase fibre density in 19 subjects with Alzheimer’s

disease/dementia with Lewy bodies, 20 Alzheimer’s disease with Lewy bodies, 12 Alzheimer’s disease subjects without Lewy body

disease, 19 Parkinson’s disease, 30 incidental Lewy body disease and 22 cognitively normal without Alzheimer’s disease or Lewy

body disease indicated a significant group difference (P< 0.01; Kruskal–Wallis analysis of variance) and subsequent pair-wise

Mann–Whitney U tests showed that Parkinson’s disease (P< 0.05) and Alzheimer’s disease/dementia with Lewy bodies (P<0.01)

subjects, but not Alzheimer’s disease with Lewy bodies subjects, had significantly reduced tyrosine hydroxylase fibre density as

compared with cognitively normal. Both Parkinson’s disease and Alzheimer’s disease/dementia with Lewy bodies subjects also

showed significant epicardial losses of neurofilament protein-immunoreactive nerve fibre densities within the fibre bundles as com-

pared with cognitively normal subjects (P<0.01) and both groups showed high pathologic alpha-synuclein densities (P< 0.0001).

Cardiac alpha-synuclein densities correlated significantly with brain alpha-synuclein (P< 0.001), while cardiac tyrosine hydroxylase

and neurofilament immunoreactive nerve fibre densities were negatively correlated with the densities of both brain and cardiac

alpha-synuclein, as well as Unified Parkinson’s Disease Rating Scale scores (P<0.05). The clear separation of Alzheimer’s disease/

dementia with Lewy bodies subjects from Alzheimer’s disease and cognitively normal, based on cardiac tyrosine hydroxylase fibre

density, is the first report of a statistically significant difference between these groups. Our data do not show significant sympathetic

cardiac denervation in Alzheimer’s disease with Lewy bodies, but strongly confirm that cardiac nuclear imaging with a noradrener-

gic radioligand is worthy of further study as a potential means to separate Alzheimer’s disease from Alzheimer’s disease/dementia

with Lewy bodies during life.
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Introduction
The Dementia with Lewy Bodies (DLB) Consortium con-

sensus clinical diagnostic criteria have high specificity

(Jolly-Tornetta and Wolf, 2000) for diagnosis of patients

with the fully developed clinical syndrome, but low sensi-

tivity (McKeith et al., 1996, 2017; Litvan et al., 1998;

Nelson et al., 2010; Huang and Halliday, 2013; Malek-

Ahmadi et al., 2019). Even in specialist research settings,

only 10–30% of subjects neuropathologically confirmed

as DLB are diagnosed during life, with the most common

misdiagnosis being Alzheimer’s disease (Alzheimer’s dis-

ease). Furthermore, comorbid Lewy body (LB) disease is

very common in Alzheimer’s disease (Dickson et al.,

1991); up to 60% of Alzheimer’s disease subjects also

have pathologic alpha-synuclein (a-syn) at autopsy

(Hamilton, 2000; Tsuang et al., 2006; Uchikado et al.,

2006). Some of these are subjects that meet clinicopatho-

logical criteria for both diagnoses, Alzheimer’s disease

and DLB, but most have a-syn that does not meet density

and distribution criteria for DLB and hence have been

termed Alzheimer’s disease with Lewy bodies (ADLB)

(McKeith et al., 2005, 2017; Beach et al., 2009). This is

a critical concern for Alzheimer’s disease clinical trials, as

subjects with both Alzheimer’s disease and a-syn may

have a different clinical course (Malek-Ahmadi et al.,

2019) and may not respond well to therapeutic agents

targeting only Alzheimer’s disease pathology. In the USA,

sympathetic neuroimaging is rarely used for the diagnosis

of autonomic or movement disorders, but this has been

commonly used in Europe and Japan. Tissue studies have

shown cardiac sympathetic denervation in both clinical

and neuropathologically diagnosed Parkinson’s disease

(PD) and DLB, but this has not been explored in ADLB

(Yoshita et al., 1997, 2001, 2015; Yoshita, 1998;

Goldstein, 2001; Orimo et al., 2002, 2008; Fujishiro

et al., 2008; Goldstein et al., 2009; Takahashi et al.,

2015; Manabe et al., 2017). In this study, we tested the

hypothesis that ADLB will be distinguishable from

Alzheimer’s disease without LB by having lower densities

of cardiac noradrenergic nerve fibres.

Materials and methods

Human subjects

Human hearts came from subjects who were volunteers

in the Arizona Study of Aging and Neurodegenerative

Disorders, a longitudinal clinicopathological study of nor-

mal aging, cognition and movement in the elderly since

1996 in Sun City, Arizona (Beach et al., 2008a, 2015).

Autopsies were performed by the Banner Sun Health

Research Institute’s Brain and Body Donation Program

(www.brainandbodydonationprogram.org). All subjects

signed Institutional Review Board-approved informed

consents allowing both clinical assessments during life
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and several options for brain and/or bodily organ dona-

tion after death. All subjects were clinically characterized

by expert clinicians and most of them had annual stand-

ardized test batteries consisting of general neurological,

cognitive and movement disorders components, including

the Unified Parkinson’s Disease Rating Scale (UPDRS),

Hoehn and Yahr staging and the Scales for Outcomes in

Parkinson’s disease questionnaire autonomic (Damian

et al., 2012). Subjects for the current study had a com-

plete pathological evaluation by medically licensed pathol-

ogists (Table 1; N¼ 121) and were chosen by searching

the Banner Sun Health Research Institute’s Brain and

Body Donation Program database for cases with a

whole-body autopsy and specific clinicopathological diag-

noses including controls who were defined as non-demen-

ted individuals without parkinsonism and without LB

pathology in the brain or examined peripheral tissue

(CN, n¼ 22) and non-demented, non-Parkinsonian indi-

viduals without any neurodegenerative disorder diagnosis

who also had incidental Lewy bodies (ILBD) at autopsy

(n¼ 30), Parkinson’s disease (n¼ 19), Alzheimer’s disease

(n¼ 12), AD/DLB (n¼ 19) and ADLB (n¼ 19).

Pathological examination

Complete gross and microscopic pathological examination

was performed using standard Arizona Study of Aging

and Neurodegenerative Disorders methods and included

pathologist assessment of both brain and peripheral

organs (Beach et al., 2008a, 2015). Cardiac samples

included epicardial and adjacent myocardial tissue col-

lected at the left circumflex coronary artery, lateral to the

pulmonary trunk and inferior to the auricle of the left

atrium. Tissue blocks were fixed in neutral-buffered for-

malin and embedded in paraffin. All sections were stained

with haematoxylin and eosin for general pathological as-

sessment. Immunohistochemical staining was used to

document the presence of a-syn pathology in brain and

cardiac nerve fibres. The antibody used for p-synuclein

(raised against alpha-synuclein phosphorylated at serine

129) was privately developed and its characterization has

been previously described (Fujiwara et al., 2002; Walker

et al., 2013). The signal development steps have been

described in previous publications (Beach et al., 2008b).

Tyrosine hydroxylase (TH; Sigma Catalogue # T2928)

and neurofilament (NF; ABCAM Catalogue # AB8135)

antibodies were used to localize noradrenergic sympathet-

ic nerve terminals and all nerve fibres, respectively.

Immunohistochemical procedures were identical for all

three methods, except for differing epitope exposure:

20 min proteinase K pre-treatment for p-synuclein; 20 min

in boiling citrate buffer for TH and no antigen retrieval

step for NF. Primary antibody concentrations were

1:10 000 for p-synuclein and 1:3000 for TH and NF.

Stained epicardial nerve bundles were semi-quantitatively

analysed blinded to the final clinicopathological diagno-

ses. We counted the numbers of NF-positive bundles to

ensure a good sample size and sections were blindly

graded for TH, NF and p-synuclein using templates

analogous to those recommended by CERAD (Mirra

et al., 1991) with separate semi-quantitative density esti-

mates of either absent (0), sparse (1), moderate (2) or nu-

merous (3) densities within nerve bundles. The

neuropathological examination was performed in a stand-

ardized manner and consisted of gross and microscopic

observations, the latter including assessment of frontal,

parietal, temporal and occipital lobes, all major dienceph-

alic nuclei and major subdivisions of the brainstem, cere-

bellum and spinal cord. Following fresh brain slicing and

subsequent fixation in cold 10% neutral-buffered forma-

lin for 36–60 h, histological preparations included paraf-

fin-embedded 6 mm sections, as well as large-format (3 �
5 cm), 40–80 mm-thick, cryoprotected frozen sections.

Both sets were stained with haematoxylin and eosin and

the former set was also immunohistochemically stained

for phosphorylated p-synuclein in 10 standard brain

regions including olfactory bulb, anterior medulla, anter-

ior and mid-pons, midbrain with substantia nigra, amyg-

dala, anterior cingulate gyrus and three neocortical

regions (middle frontal gyrus, middle temporal gyrus, in-

ferior parietal lobule). Each region was graded as 0–4 for

p-synuclein density using the template provided by

McKeith et al. (2005). A summary brain score of all 10

regions is recorded to give an overall brain load estimate,

with the highest possible score being 40. Senile plaques,

neurofibrillary changes and other neuronal and glial

Table 1 Patient demographics

DX (n) Age (SD) Gender

(M:F)

UPDRS OFF

(SD)

Hoehn and Yahr

(SD)

SCOPA-Aut total

(SD)

PMI (SD) a-syn sum Brain

(SD)

CN (22) 82 (14) 13:9 6.1 (5.5) 0.2 (0.8) 19.8 (15.7) 6.0 (14.8) 0

PD (19) 81 (6) 16:3 39.4 (18.8)* 2.9 (1.5)* 25.1 (8.5) 3.4 (1.3) 27.2 (5.9)*

AD/DLB (19) 82 (8) 12:7 34.9 (18.6)* 1.8 (1.8)* 27.5 (12.9) 3.6 (1.5) 32.8 (5.6)*

ADLB (20) 80 (8) 13:7 23.9 (23.1)* 1.5 (2.2) 29.3 (10.5) 4.4 (5.9) 13.7 (6.3)*

AD (12) 77 (9) 8:4 17.5 (20.9) 0.6 (1.5) 15.3 (6.0) 3.7 (0.8) 0

ILBD (30) 86 (9) 18:12 8.2 (6.3) 0.0 (0.0) 17.7 (9.8) 4.6 (4.4) 8.0 (8.0)*

AD ¼ Alzheimer’s disease; AD/DLB ¼ Alzheimer’s disease and dementia with Lewy bodies; ADLB ¼ Alzheimer’s disease with Lewy bodies; CN ¼ non-demented movement con-

trol; F ¼ female; ILBD ¼ incidental Lewy bodies; M ¼ male; Parkinson’s disease ¼ Parkinson’s disease; PMI ¼ post-mortem interval; SCOPA-Aut ¼ SCales for Outcomes in

Parkinson’s disease questionnaire autonomic; SD ¼ standard deviation; UPDRS ¼ Unified Parkinson’s Disease Rating Scale.

*P< 0.05 post-test when compared with CN (CN).

Cardiac sympathetic denervation BRAIN COMMUNICATIONS 2020: Page 3 of 7 | 3



tauopathies were assessed using thioflavin S, Gallyas and

Campbell-Switzer methods and were graded blindly as

recommended by CERAD with separate semi-quantitative

density estimates of none, sparse, moderate or frequent.

All scores were converted to a 0–3 scale for statistical

purposes. Regions scored included cortical grey matter

from frontal (F), temporal (T), parietal (P), hippocampal

CA1 (H) and entorhinal (E) regions, with the sum of all

brain regions giving a maximum score of 15.

Statistical analysis

One-way ANOVA was used to analyse group differences

in demographics; the Kruskal–Wallis test with subsequent

pair-wise Mann–Whitney U tests were used to analyse

group differences in brain and heart a-syn and TH dens-

ity. Spearman’s correlation was used to test for relation-

ships between TH fibre density and a-syn, in both brain

and heart.

Data availability

The authors confirm that the data supporting the findings

of this study are available at the Banner Sun Health

Research Institute’s Brain and Body Donation Program

(https://www.brainandbodydonationregistration.org) and

upon request to the corresponding author.

Results
There were no significant differences in group mean age

or post-mortem intervals (Supplementary Table 1).

UPDRS scores were significantly higher in Parkinson’s

disease, AD/DLB and ADLB when compared with CN,

while Hoehn and Yahr scores were only significantly

higher in Parkinson’s disease and AD/DLB. Furthermore,

SCOPA-Aut total scores were significantly different be-

tween the groups, but neither neurodegenerative group

was significantly different when compared with CN

(Table 1). NF staining confirmed the presence of numer-

ous nerve fibre bundles in the epicardium around coron-

ary artery branches in the cardiac tissue blocks (Fig. 1),

with an average of 85 nerve fibre bundles per sample.

Both Parkinson’s disease and AD/DLB subjects showed

significant losses of NF protein-immunoreactive nerve

fibres within bundles as compared with CN (P< 0.01)

and both groups showed higher a-syn densities within

bundles when compared with CN (Fig. 2; P< 0.0001).

Cardiac a-syn was also present in ILBD and ADLB, but

the mean from each group was not significantly different

than CN. Cardiac a-syn densities correlated significantly

with medulla, amygdala and brain summation a-syn den-

sities, with medulla showing the strongest correlation

(Table 2; P< 0.001). Furthermore, cardiac TH-immunor-

eactive nerve fibre densities were significantly different be-

tween the groups (P< 0.01), and subsequent pair-wise

analysis showed that Parkinson’s disease and AD/DLB

subjects had significantly reduced TH fibre densities

when compared with CN (P< 0.01) and Alzheimer’s dis-

ease (P< 0.05). Neither NF nor TH fibre densities in

Alzheimer’s disease, ADLB or ILBD were significantly dif-

ferent from those of CN. Cardiac TH- and NF-immunor-

eactive nerve fibre densities were negatively correlated

with the densities of both brain and cardiac a-syn, as

well as UPDRS scores (Gau et al., 2002).

Discussion
This study strengthens the rationale that sympathetic car-

diac denervation might be driven by a-syn pathology,

such that an in vivo test for such denervation would

allow clinical differentiation between pure Alzheimer’s

disease and AD/DLB while patients are still alive. While

we found no evidence that cardiac denervation could be

used to distinguish between Alzheimer’s disease and those

Alzheimer’s disease patients that have a-syn pathology

that does not meet DLB criteria, being able to separate

cases of AD/DLB from Alzheimer’s disease during life

would be a huge advance for dementia epidemiologic and

treatment studies (McKeith et al., 1996, 2017; Litvan

et al., 1998; Nelson et al., 2010; Huang and Halliday,

2013). For instance, close to 50% of the AD/DLB cases

used, in this study, were clinically diagnosed during life

Figure 1 Myocardial immunostaining with p-asynuclein,

NF and TH. Numerous, moderate, sparse or absent densities

scores were used to analyse nerve denervation and a-syn pathology

in autopsy collected myocardia.
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as Alzheimer’s disease alone. The symptoms of these sub-

jects did not manifest like typical DLB and may have a

different clinical course (Malek-Ahmadi et al., 2019).

Furthermore, it is also known that up to 60% of

Alzheimer’s disease subjects have comorbid a-syn at aut-

opsy (Hamilton, 2000; Uchikado et al., 2006; Malek-

Ahmadi et al., 2019). Some of these subjects received a

final autopsy diagnosis of Alzheimer’s disease and DLB,

while others had a-syn that did not meet density and dis-

tribution criteria for DLB. This is a critical concern for

Alzheimer’s disease clinical trials, since subjects with both

Alzheimer’s disease and a-syn may be less responsive or

even resistant to Alzheimer’s disease-specific therapeutic

agents. Those DLB subjects who do not have at least two

core clinical features (cognitive fluctuations, Parkinsonism,

dream enactment behaviour and visual hallucinations) are

more likely to be misdiagnosed as Alzheimer’s disease or

dementia NOS (McKeith et al., 2017). In the USA, only

two of the three recommended biomarkers, dopamine

transporter single positron emission tomography

(DaTscan) or polysomnography to document presence of

rapid eye movement sleep behaviour disorder are available

to support a DLB diagnosis (in combination with one

core clinical feature). 123I-MIBG (123I-metaiodobenzylgua-

nidine) scanning has been approved by the United States

Food and Drug Administration for the evaluation of

pheochromocytoma and some forms of heart failure and

has been recently incorporated as a supportive biomarker

for clinical DLB diagnoses in the most recent revised DLB

Consortium consensus criteria (McKeith et al., 2017;

Uyama et al., 2017; Goldstein and Cheshire, 2018). Such

a noradrenergic radioligand would be worthy of study to

validate its use for diagnosing DLB, particularly in demen-

ted patients who do not have either cognitive fluctuations

or visual hallucinations, and also lack parkinsonism or

dream enactment behaviour.

Multiple studies have shown sympathetic cardiac de-

nervation in subjects with Parkinson’s disease, and similar

trends in DLB, by the use of MIBG analysis or post-mor-

tem cardiac analysis (Yoshita et al., 1997; Yoshita, 1998;

Goldstein, 2001; Orimo et al., 2002, 2007; Fujishiro

et al., 2008; Orimo et al., 2008). However, studies to

date in DLB cases either lacked pathological confirmation

or used limited numbers of post-mortem samples with no

statistical analysis (Yoshita et al., 2001, 2015; Orimo

et al., 2005; Takahashi et al., 2015; Manabe et al.,

2017). To our knowledge, this is the first report with a

substantial number of autopsied cases, and nerve bundles

analysed, showing a statistically significant separation of

AD/DLB cases from CN and Alzheimer’s disease cases

based on cardiac TH- and NF-immunoreactive nerve fibre

density. Our results provide the physiological basis to jus-

tify further research on validation of cardiac nuclear

imaging ligands for diagnosing DLB but it would not be

likely to clinically separate ADLB from Alzheimer’s dis-

ease subjects without a-syn. This is probably because, as

for ILBD subjects, the peripheral spread and severity of

a-syn pathology in these individuals is not yet as burden-

some as it is in Parkinson’s disease and DLB (Beach

et al., 2010). We also showed a significant negative cor-

relation of TH fibre densities with a-syn densities in both

Figure 2 Densities of myocardial nerve immunostained fibres for p-asynuclein, NF and TH. Both Parkinson’s disease and AD/DLB

subjects showed high a-syn densities in myocardial nerve bundles and significant losses of NF and TH protein-immunoreactive nerve fibres as

compared with CN (P< 0.01).

Table 2 Statistical correlation of heart pathology with

brain pathology and UPDRS score

Correlation Correlation

coefficient

P-value

a-syn heart versus a-syn sum brain 0.588 <0.0001

a-syn heart versus a-syn medulla 0.694 <0.000001

a-syn heart versus a-syn amygdala 0.420 <0.000001

a-syn heart versus TH heart �0.201 <0.05

a-syn sum brain versus TH heart �0.279 <0.01

a-syn medulla versus TH heart �0.0323 <0.001

a-syn amygdala versus TH heart �0.155 NS

a-syn heart versus NF heart �0.331 <0.0001

a-syn sum brain versus NF heart �0.547 <0.0001

a-syn sum medulla versus NF heart �0.612 <0.000001

a-syn sum amygdala versus NF heart �0.445 <0.000001

UPDRS versus a-syn heart 0.284 <0.001

UPDRS versus TH heart �0.178 0.08

UPDRS versus NF heart �0.430 <0.0001

a-syn ¼ pathologic alpha-synuclein; NF ¼ neurofilament; sum ¼ summation; TH ¼
tyrosine hydroxylase; UPDRS ¼ Unified Parkinson’s Disease Rating Scale.
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brain and heart. This supports previous observations and

provides further evidence for a disease process wherein

spread of a-syn pathology directly causes depletion of

sympathetic nerve fibres from the myocardium (Yoshita

et al., 2001, 2015; Orimo et al., 2002, 2008; Fujishiro

et al., 2008; Takahashi et al., 2015; Manabe et al.,

2017). Importantly, our study provides autopsy evidence

for sympathetic denervation of the heart in individuals

with AD/DLB who were not formally diagnosed during

life. Since Alzheimer’s disease pathology in these subjects

may lead to masking of core DLB features, and previous

work using 123I-MIBG has shown sympathetic denerv-

ation in clinically diagnosed DLB subjects, our data sug-

gest that sympathetic nuclear imaging ligands are worthy

of further study to better identify these mixed AD/DLB

cases during life.

Supplementary material
Supplementary material is available at Brain

Communications online.
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