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Abstract
Our previous studies have shown that meningitic Escherichia coli can colonize the brain and cause neuroinflammation. Con-
trolling the balance of inflammatory responses in the host central nervous system is particularly vital. Emerging evidence 
has shown the important regulatory roles of long non-coding RNAs (lncRNAs) in a wide range of biological and pathologi-
cal processes. However, whether lncRNAs participate in the regulation of meningitic E. coli-mediated neuroinflammation 
remains unknown. In the present study, we characterized a cytoplasm-enriched antisense lncRNA DDIT4-AS1, which showed 
similar concordant expression patterns with its parental mRNA DDIT4 upon E. coli infection. DDIT4-AS1 modulated DDIT4 
expression at both mRNA and protein levels. Mechanistically, DDIT4-AS1 promoted the stability of DDIT4 mRNA through 
RNA duplex formation. DDIT4-AS1 knockdown and DDIT4 knockout both attenuated E. coli-induced NF-κB signaling as 
well as pro-inflammatory cytokines expression, and DDIT4-AS1 regulated the inflammatory response by targeting DDIT4. 
In summary, our results show that DDIT4-AS1 promotes E. coli-induced neuroinflammatory responses by enhancing the 
stability of DDIT4 mRNA through RNA duplex formation, providing potential nucleic acid targets for new therapeutic 
interventions in the treatment of bacterial meningitis.
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Introduction

Bacterial meningitis is the most important life-threatening 
infection of the central nervous system (CNS) and continues 
to be a significant cause of mortality and morbidity [1, 2]. 

Despite advances in antimicrobial treatment, survivors suffer 
from neurological sequelae including cognitive impairment, 
developmental delay, and hearing loss [1, 3]. Escherichia 
coli (E. coli) is the most common Gram-negative bacillary 
organism that causes meningitis in neonates and children, 
and hematogenous spread is the leading spreading way of 
E. coli meningitis [4, 5]. Our earlier studies have shown that 
meningitic E. coli can colonize the brain and cause neuroin-
flammation [6, 7]. However, how host respond to invading 
bacteria and modulate neuroinflammatory responses are still 
poorly understood.

In recent years, there has been increasing interest in long 
non-coding RNAs (lncRNAs). These are defined as RNAs 
longer than 200 nucleotides in length with no protein-coding 
capacity [8] and can be further classified as antisense lncR-
NAs, long intergenic noncoding RNAs (lincRNAs), intronic 
lncRNAs, and enhancer RNAs (eRNAs) based on their 
genome position [9]. Accumulating evidence has shown that 
lncRNAs play significant regulatory roles in diverse bio-
logical processes [10]. Further, they have been proposed to 
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perform their functions through diverse mechanisms, includ-
ing binding with RNA or DNA through nucleic acid base 
pairing, interacting with proteins through higher-order RNA 
structures [9, 11, 12]. However, our knowledge about the 
function and the potential molecular regulatory mechanisms 
of lncRNAs in bacterial meningitis is still limited.

DNA damage inducible transcript 4 (DDIT4), also known 
as REDD1/RTP801/Dig2, was originally characterized by 
its transcriptional upregulation in response to DNA dam-
age. DDIT4 is an inhibitor of mammalian target of rapa-
mycin (mTOR) and is induced by multiple cellular stresses 
including hypoxia, heat shock, energy depletion, starvation, 
and LPS [13, 14]. DDIT4 participates in regulating a broad 
spectrum of cellular and biological functions, such as cell 
survival, growth, apoptosis, and autophagy [15, 16]. Impor-
tantly, a growing body of evidence suggests that DDIT4 
plays a crucial role in inflammation [14, 17–20]. Neverthe-
less, the function of DDIT4 in the CNS remains poorly char-
acterized, especially in the context of bacterial infection.

In the present study, we characterized DDIT4-AS1, a long 
non-coding antisense transcript for DDIT4, is a cytoplasm-
enriched antisense lncRNA and showed similar concord-
ant expression patterns with DDIT4 upon E. coli infection. 
In addition, DDIT4-AS1 was found to positively regulate 
DDIT4 expression by promoting the stability of DDIT4 
mRNA through RNA duplex formation. Decreasing the 
expression of DDIT4-AS1 or DDIT4 attenuated E. coli-
induced pro-inflammatory factors production and NF-κB 
signaling. Moreover, we demonstrated that DDIT4-AS1 reg-
ulates the inflammatory response by targeting DDIT4. Taken 
together, these findings reveal that DDIT4-AS1 regulates 
meningitic E. coli-induced neuroinflammation by promoting 
DDIT4 mRNA stability, providing novel nucleic acid targets 
for future prevention and treatment of bacterial meningitis.

Materials and Methods

Bacterial Strains

The meningitic E. coli strain PCN033 used herein is a highly 
virulent cerebrospinal fluid isolate, originally isolated in 
Hunan Province, China, in 2006 [21]. The PCN033 strain 
was routinely grown aerobically at 37 °C in Luria–Bertani 
(LB) medium. The strain was evidenced to be capable of 
causing host blood–brain barrier (BBB) disruption and 
severe neuroinflammation in vitro and in vivo [6].

Cell Culture and Infection

The human astrocyte cell line U251 was cultured in Dul-
becco’s modified Eagle’s medium (DMEM) supplemented 
with 10% heat-inactivated fetal bovine serum (FBS). Human 

brain microvascular endothelial cells (hBMECs) were cul-
tured in RPMI 1640 medium supplemented with 10% FBS, 
2 mM L-glutamine, 1 mM sodium pyruvate, essential amino 
acids, nonessential amino acids, vitamins, penicillin, and 
streptomycin (100 U/mL). The human microglia cell line 
HMO6 was cultured in DMEM supplemented with 10% 
heat-inactivated FBS. All cells were incubated in a 37 °C 
incubator with a 5%  CO2 atmosphere until monolayer 
confluence. Confluent cells were washed three times with 
phosphate-buffered saline (PBS) and starved in serum-free 
medium for 16–18 h prior to infection. Overnight cultures 
of PCN033 were resuspended and diluted in serum-free 
medium and then added to the starved monolayer cells at a 
multiplicity of infection (MOI) of 10.

Reagents

The DDIT4 (rabbit) antibody (#10,638–1-AP, 1:1000 dilu-
tion) and β-actin (mouse) antibody (#66,009–1-Ig, 1:5000 
dilution) were obtained from Proteintech (Chicago, IL, 
USA). Anti-NF-κB p65 (#6956, 1:1000 dilution) and anti-
phospho-p65 (#3033, 1:1000 dilution) were obtained from 
Cell Signaling Technology (Danvers, MA, USA). Cy3-
labeled goat anti-mouse (#A0521, 1:200 dilution) and 
FITC-labeled goat anti-rabbit antibodies (#A0562, 1:200 
dilution) and DAPI were obtained from Beyotime Institute 
of Biotechnology (China). The DDIT4-AS1 antisense oli-
gonucleotides (ASO) and the control ASO were purchased 
from Integrated Biotech Solutions Co., Ltd. (Shanghai, 
China); the sequences are listed in Table S2. The clustered 
regularly interspaced short palindromic repeats (CRISPR)/
Cas9 plasmid pYSY-spCas9-sgRNA-Puro was obtained 
from YSY Biotech (Nanjing, China). The transfection rea-
gent jetPRIME was purchased from Polyplus Transfection 
(Illkirch, France). The RNA polymerase II transcription 
inhibitor α-amanitin was purchased from Medchem Express 
(Princeton, NJ, USA). RNAse A + T cocktail was purchased 
from Thermo Fisher Scientific (Waltham, MA, USA). The 
super electrochemiluminescence (ECL) kit was obtained 
from US Everbright Inc. (Suzhou, China).

RNA Extraction and Quantitative Real‑Time PCR 
(qPCR)

Total RNA was extracted from astrocytes U251 cells using 
TRIzol® Reagent (Aidlab Biotech, Beijing, China) in 
accordance with the manufacturer’s protocol. One micro-
gram of the total RNA was subjected to cDNA synthe-
sis using HiScript II Q RT SuperMix (Vazyme, Nanjing, 
China). Real-time PCR was performed with the MonAmp™ 
SYBR Green qPCR Mix (RN04005M, Monad Biotech Co., 
Ltd, Wuhan, China) according to the manufacturer’s instruc-
tions. The transcriptional levels of all mRNA targets were 
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normalized to GAPDH. Primers for the quantitative real-
time PCR are listed in Table S1. Each assay was performed 
in triplicate.

RNA Fluorescence In Situ Hybridization (FISH)

Cy3-labeled DDIT4-AS1 and Fam-labeled DDIT4 FISH 
probes were obtained from Genscript (Nanjing, China) and 
the sequences are listed in Table S2. Briefly, the astrocytes 
were fixed with 4% paraformaldehyde and then treated with 
1% Triton X-100 in PBS, followed by hybridization with 
probes targeting DDIT4-AS1 and DDIT4, respectively. The 
cells were counterstained with DAPI and the fluorescence 
signals were visualized under a fluorescent microscope.

Nuclear and Cytoplasmic Fractionation

The experiment was performed as previously described [22]. 
Briefly, the astrocytes were treated with Trypsin–EDTA, 
resuspended in DMEM, centrifuged, and resuspended in 
hypotonic buffer (10 mM Hepes, pH 7.9, 1.5 mM MgCl2, 
10 mM KCl). Subsequently, 10% Nonidet P-40 was added 
to the samples, which were then centrifuged for 7 min, and 
the supernatant was collected as the cytoplasm extracts. The 
remainder was considered as nuclear fraction and was sub-
jected to washing four times with hypotonic buffer.

Overexpression/Knockdown Experiments

To construct a DDIT-AS1 overexpression plasmid, the full-
length DDIT4-AS1 sequence was amplified from U251 
cDNA by overlap-expression PCR and subsequently cloned 
into the pCDNA3.1 ( +) vector. The plasmids were trans-
fected with jetPRIME. For the knockdown of DDIT-AS1, 
300 nM DDIT4-AS1 ASO was transfected into astrocytes 
using jetPRIME.

Plasmid Constructs

pEGFP-N1-MUT was generated by mutating the start codon 
ATG GTG  to ATT GTT  in pEGFP-N1 vector using overlap-
ping extension PCR. The primers were listed in Table S1. 
The DDIT4-AS1-ORF-pEGFP-N1-MUT and DDIT4-
pEGFP-N1-MUT plasmids were synthesized by Genscript 
(Nanjing, China). In brief, the DDIT4-AS1 ORF sequence 
and DDIT4 CDS sequence with the stop codon removed 
were cloned into the pEGFP-N1-MUT.

RNA Antisense Purification (RAP)

We designed and synthesized five RAP probes targeting 
DDIT4-AS1, and each DNA oligonucleotide probe was 
modified with a 5′ biotin. The sequences of the probes 

are presented in Table S2. RAP was performed using the 
RAP Kit (BersinBio, Guangzhou, China). According to the 
manufacturer’s instruction, approximately 4 ×  107 cells were 
crosslinked with 1% formaldehyde. The crosslinked cells 
were solubilized using lysis buffer with protease inhibitor 
and RNase inhibitor, followed by DNA elimination using 
DNase. The solubilized lysates were subsequently incubated 
with the prepared DDIT4-AS1 probe mixture or the control 
probes and then immobilized with streptavidin-coated mag-
netic beads. Beads with captured hybrids were washed five 
times with washing buffer. RNA elution buffer was added 
to release the RNA from the beads and proteinase K was 
used to remove all proteins. Finally, RNA was isolated and 
subjected to qPCR assays.

RNase Protection Assay

The procedure was performed as previously described [23]. 
Two sets of primers were used. The first targeted the overlap-
ping (OL) region of DDIT4 and DDIT-AS1, and the second 
targeted the non-OL region of DDIT4 mRNA. The RNA 
samples from astrocytes were incubated at 37 °C for 1 h and 
then treated with RNAse A + T cocktail at 37 °C for 30 min. 
The samples were then treated with proteinase K at 50 °C 
for 1 h, followed by RNA purification using a MicroElute 
RNA Clean-up Kit (Norcross, GA, USA). Subsequently, the 
purified RNAs were subjected to cDNA synthesis and PCR 
amplification to detect the OL and non-OL regions of DDIT4 
mRNA, using two distinct sets of primers.

α‑Amanitin Treatment

The astrocytes were transfected with the DDIT4-AS1 over-
expression plasmid or control plasmid. After 24 h, these 
cells were treated with 5 μM α-amanitin for 6 h and then the 
cells were harvested for RNA extraction and qPCR. Three 
independent samples were obtained from each group.

CRISPR/Cas9 Genomic Editing

Two sgRNAs targeting human DDIT4 were cloned into the 
all-in-one vector to generate the pYSY-spCas9-DDIT4-
sgRNA-Puro plasmids. Astrocytes were transfected with the 
two CRISPR/Cas9 plasmids using jetPRIME. The cells were 
incubated at 37 °C with 5%  CO2 for 24 h, and then, 400 ng/
mL puromycin was added and incubated for another 48 h. 
The surviving cells were then transferred into 96-well plates 
with limiting dilution and incubated at 37 °C with 5%  CO2 
until a single-cell clone was formed. Genomic DNA from 
each cell clone was extracted using the QuickExtract DNA 
Extraction Solution (YSY Biotech, Nanjing, China). PCR 
was performed to amplify the target region with the follow-
ing primers: 5′-CTT ACA GCG GCT TCT ACG C-3′ (forward) 
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and 5′-GGC TCT GAC CCC TTC CAG -3′ (reverse). Finally, 
the positive editing cells were validated by sequencing.

Western Blotting

The astrocytes were lysed in radio immunoprecipitation 
assay (RIPA) buffer with a protease inhibitor cocktail 
(Sigma-Aldrich, USA) and then centrifuged at 12,000 rpm 
for 10 min at 4 °C. A BCA protein assay kit (Beyotime, 
China) was used to measure the protein concentration in 
the supernatant and the cell lysates were then subjected to 
western blot analyses as previously described [6]. The blots 
were visualized with ECL reagents.

Immunofluorescence Microscopy

The astrocytes were washed with PBS three times and fixed 
with 4% paraformaldehyde. The fixed cells were treated 
with 1% Triton X-100 in PBS and blocked in 5% BSA in 
Tris-buffered saline with Tween 20 (TBST), and then incu-
bated with the primary antibody. Herein, DDIT4 was labeled 
with FITC and p65 was labeled with Cy3. The cells in the 
dishes were mounted and visualized under a fluorescence 
microscope.

Statistical Analysis

Data are expressed as the mean ± SD and the significance 
of differences between groups was evaluated by unpaired 
two-tail t-test or one-way analysis of variance (ANOVA) 
embedded in GraphPad Prism, version 7.0 (GraphPad Soft-
ware Inc., La Jolla, CA, USA). A level of p < 0.05 (*) was 
considered significant, and p < 0.01 (**) or p < 0.001 (***) 
was considered extremely significant.

Results

Antisense lncRNAs Display Differential Expression 
upon Meningitic E. coli Infection

We have previously performed lncRNAs sequencing in 
meningitic E. coli-infected astrocytes [24]. The expression 
profiling data revealed that 74 lncRNAs were differentially 
expressed, including 45 upregulated and 29 downregu-
lated. In addition, the expression of 2045 mRNAs was sig-
nificantly changed upon E. coli infection, of which 1150 
were upregulated and 895 were downregulated. Subgroup 
analysis showed genomic classification of differentially 
expressed lncRNAs in Fig. 1a; lincRNAs represented the 
largest category (63.5%) of all differentially expressed lncR-
NAs, followed by antisense lncRNAs, which accounted for 
28.4% (Table S4). A growing body of evidence suggests 

that antisense lncRNAs are frequently functional and reg-
ulate the expression of their sense protein-coding RNAs 
through diverse regulatory mechanisms, including tran-
scription-related modulation, RNA–DNA interactions, and 
RNA–RNA interactions [25, 26]. To characterize the role 
of antisense lncRNAs in the pathological process of men-
ingitic E. coli infection, we evaluated the expression of 21 
antisense lncRNAs and their corresponding protein-coding 
mRNAs. We found that nine lncRNA–mRNA pairs were 
differentially expressed upon E. coli infection, and all of 
them showed concordant patterns of expression, includ-
ing seven upregulated pairs (RP11-442H21.2/DDIT4, 
RP11-624G17.3/RTN4RL2, RP11-796E2.4/BTG1, RP11-
809N8.2/RELT, RP4-781K5.2/IRF2BP2, AC093673.5/ZYX, 
and RP11-445F12.1/LHX1) and 2 downregulated pairs 
(CTD-2540B15.11/CEBPA and RP11-1143G9.4/LYZ) 
(Fig.  1b and c) (Table  S5). Quantitative real-time 
PCR was performed for verification of differentially 
expressed lncRNA–mRNA pairs. As shown in Fig. 1d, six 
lncRNA–mRNA pairs displayed concordant expression, 
among which the RP11-442H21.2/DDIT4 pair showed the 
most significant difference. Combined with the fact that 
RP11-442H21.2 was highly expressed, as compared with 
other differentially expressed lncRNAs, and that DDIT4 has 
been reported to be involved in inflammation, the RP11-
442H21.2/DDIT4 pair was chosen for further study.

DDIT4‑AS1 Is a Cytoplasm‑Enriched Antisense 
lncRNA

Based on the UCSC genome browser, RP11-442H21.2 is 
located at chromosomal band 10q22.1 and consists of two 
exons with a full length of 847 nt. RP11-442H21.2 was 
identified as a single antisense lncRNA transcribed from 
the reverse strand of the DDIT4 locus; therefore, it is also 
named DDIT4-AS1. The whole sequence of DDIT4-AS1 is 
shown in Table S3. As shown in Fig. 2a, the full length of 
DDIT4-AS1 shares a reverse complement region with the 
third exon of DDIT4, which is an 847 nt long sequence that 
we referred to as the overlapping (OL) region. To exclude 
the coding potential of DDIT4-AS1, three tools, including 
Coding-Non-Coding Index (CNCI) [27], Coding Potential 
Calculator (CPC) [28], and Predictor of Long Non-coding 
RNAs and Messenger RNAs Based on K-mer Scheme 
(PLEK) [29] were utilized to perform coding-potential 
analysis. Two well-known lncRNAs, XIST and HOTAIR, as 
well as three mRNAs, DDIT4, GAPDH, and β-actin, were 
used as controls. It is apparent from Fig. 2b that DDIT4-
AS1 had a very low coding potential and comparable to 
XIST and HOTAIR. In addition, we predicted a short 141-
nt small ORF in DDIT4-AS1 with the potential to encode 
peptide; the sequence was shown in Table S3. A series of 
constructs were generated to further validate the coding 
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potential of DDIT4-AS1 (Fig. S1a). pEGFP-N1-MUT was 
generated by mutating the start codon ATG GTG  to ATT 
GTT  in pEGFP-N1 vector. The DDIT4-AS1 ORF sequence 
and DDIT4 CDS sequence were cloned into the pEGFP-
N1-MUT. As expected, substantial expression of the EGFP 
was observed in pEGFP-N1-WT-transfected cells, while 
mutation of the start codon abolished the expression of the 
EGFP protein. Importantly, the expression of the EGFP was 
observed in DDIT4-pEGFP-N1-MUT-transfected cells, but 
not in DDIT4-AS1-ORF-pEGFP-N1-MUT-transfected cells, 
which further proved the non-coding feature of DDIT4-AS1 
(Fig. S1b). In order to investigate the subcellular localization 
of DDIT4-AS1, a FISH assay was conducted, and the results 
showed that DDIT4-AS1 was enriched in the cytoplasm of 
astrocytes (Fig. 2c). This result was further confirmed by the 

quantification of nucleus/cytoplasm RNAs (Fig. 2d). Collec-
tively, these data indicate that DDIT4-AS1 is a cytoplasm-
enriched antisense lncRNA.

DDIT4‑AS1 and DDIT4 Are Upregulated 
upon Meningitic E. coli Infection

We next examined the expression of DDIT4-AS1 and 
DDIT4 upon meningitic E. coli infection. To prevent non-
specific amplification, the forward primer of DDIT4-AS1 
was designed to span the first and second exons. The prim-
ers of DDIT4 were designed on the second exon to distin-
guish DDIT4-AS1 and DDIT4. We first analyzed the level 
of DDIT4-AS1 in the E. coli-infected astrocyte cell line 
U251 using qPCR. The results showed that the expression 

Fig. 1  Antisense lncRNAs 
display differential expression 
upon meningitic Escherichia 
coli infection. a Genomic 
classification of differentially 
expressed lncRNAs. b Number 
of concordant upregulated 
and downregulated sense/
antisense pairs in the E. coli-
infected astrocytes. c Heatmap 
representing the nine concord-
ant differentially expressed 
lncRNA–mRNAs pairs. d qPCR 
verification of the concord-
ant differentially expressed 
lncRNA–mRNAs pairs. 
GAPDH was used as an internal 
control. Data are presented as 
the mean ± SD from three inde-
pendent experiments; p values 
were analyzed by unpaired two-
tail t-test; *p < 0.05, **p < 0.01, 
***p < 0.001
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of DDIT4-AS1 was significantly increased in a dose- 
and time-dependent manner (Fig. 3a, b). In addition, the 
mRNA and protein levels of DDIT4 also elevated in a time-
dependent manner (Fig. 3c, d). Furthermore, we detected 
the expression of DDIT4-AS1 and DDIT4 in human brain 
microvascular endothelial cells (hBMECs) and microglia 
cell line HMO6. The results were similar to those observed 
in E. coli-infected astrocytes; E. coli infection induced the 

notable upregulation of DDIT4-AS1 and DDIT4 in hBMECs 
(Fig. 3e–h) and microglia (Fig. 3i–l). The similar concordant 
expression patterns of DDIT4-AS1 and DDIT4 indicated a 
strong correlation between them. Given that astrocytes and 
hBMECs are the two major BBB cell types and microglia 
are considered the major inflammatory cell type in the CNS, 
the DDIT4-AS1/DDIT4 pair might play an important role in 
the CNS upon E. coli infection.
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Fig. 2  DDIT4-AS1 is a cytoplasm-enriched antisense lncRNA. a 
Schematic illustration of the genome organization of DDIT4 and 
DDIT4-AS1 at locus chr10 (q22.1). Arrows show the transcription 
direction. The qPCR primers of DDIT4 and DDIT4-AS1 are shown 
in the schema. The overlapping (OL) regions are also indicated in 
the schema. b Coding potential of six RNAs (DDIT4-AS1, XIST, 
HOTAIR, DDIT4, GAPDH, and β-actin) predicted by CNCI, CPC, 

and PLEK. c Representative images of RNA FISH showing cyto-
plasm localization of DDIT4-AS1 (red) in astrocytes. The cell nucleus 
was stained in blue with DAPI. Scale bar: 20 μm. d Subcellular local-
ization of DDIT4-AS1 in cytoplasm and nucleus (n = 3). 18 s mRNA 
and U6 mRNA were controls for cytoplasmic and nuclear RNAs, 
respectively
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DDIT4‑AS1 Positively Regulates DDIT4 Expression

To determine whether DDIT4-AS1 can regulate the expres-
sion of DDIT4, we transiently downregulated it in astrocytes 
using modified ASO, which is a single-strand RNA target-
ing DDIT4-AS1 without directly affecting the expression 
of DDIT4. DDIT4-AS1-depleted cells showed decreased 
DDIT4 mRNA levels (Fig. 4a). In addition, western blot and 

immunofluorescence results showed that DDIT4 protein lev-
els were also reduced in DDIT4-AS1-depleted cells (Fig. 4b, 
c). We also overexpressed DDIT4-AS1 by transfecting the 
full-length sequence of DDIT4-AS1 in astrocytes; as we 
expected, overexpression of DDIT4-AS1 induced increased 
mRNA and protein expression of DDIT4 (Fig. 4d–f). These 
findings indicate that DDIT4-AS1 positively regulates 
DDIT4 expression.
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Fig. 3  DDIT4-AS1 and DDIT4 show similar concordant expression 
patterns upon meningitic E. coli infection. a, b The human astrocyte 
cell line U251 was infected with meningitic E. coli at the indicated 
multiplicity of infection (MOI) for 3 h or an MOI of 10 for the indi-
cated times. The expression of DDIT4-AS1 was detected by qPCR. 
c, d The mRNA and protein expression of DDIT4 in U251 cells in 
response to E. coli infection at an MOI of 10. e–h Expression of 

DDIT4-AS1 and DDIT4 in E. coli-infected human brain microvas-
cular endothelial cells (hBMEC). i–l Expression of DDIT4-AS1 and 
DDIT4 in E. coli-infected human microglia cell line HMO6. GAPDH 
was used as the reference control for qPCR. Data represent the 
mean ± SD (n = 3/group). Statistical analysis was carried out by one-
way ANOVA. p < 0.05 (*), p < 0.01 (**), p < 0.001 (***)
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DDIT4‑AS1 Increases DDIT4 mRNA Stability 
by Forming an RNA Duplex

Based on the reverse complement nucleotides between 
DDIT4-AS1 and DDIT4, we speculated that DDIT4-AS1 and 
DDIT4 could form an RNA duplex to increase the stability 
of DDIT4 mRNA. To test our hypothesis, we first exam-
ined the cellular localization of DDIT4-AS1 and DDIT4 by 
FISH. As shown in Fig. 5a, some fluorescence signals of 
DDIT4-AS1 and DDIT4 overlapped, implying that DDIT4-
AS1 is likely to interact with DDIT4 in the cytoplasm. To 
further verify the direct interaction between DDIT4-AS1 and 
DDIT4, RNA antisense purification (RAP) was conducted 
using biotin-labeled RNA probes targeting DDIT4-AS1. We 
observed that DDIT4 mRNA was significantly enriched in 
biotin-labeled DDIT4-AS1 pull-down samples compared to 
levers in negative control (Fig. 5b). In addition, we used an 
RNase protection assay (RPA) on RNA from astrocytes to 
confirm the formation of the RNA duplex. The detection 
probes were designed on the overlapping (OL) and non-OL 
regions of DDIT4. PCR amplification results showed that the 
non-OL region was completely digested by RNase, whereas 
the OL region was partially protected from degradation 
(Fig. 5c). We next evaluated the effect of DDIT4-AS1 on 
the stability of DDIT4 by blocking new RNA synthesis with 

the RNA polymerase II transcription inhibitor α-amanitin 
over a 6-h period. As shown in Fig. 5d, 18 s ribosomal 
RNA, a product of RNA polymerase I, showed no signifi-
cant changes upon α-amanitin treatment. Approximately 
60% of DDIT4 mRNA was consumed after 6 h, whereas 
the expression of DDIT4 was partially restored by overex-
pressing DDIT4-AS1, which revealed that the stability of 
DDIT4 was elevated by DDIT4-AS1. Taken together, these 
data demonstrate that DDIT4-AS1 and DDIT4 could form an 
RNA duplex to increase DDIT4 mRNA stability.

Knockdown of DDIT4‑AS1 Suppresses E. coli‑Induced 
Pro‑inflammatory Factors Production and NF‑κB 
Signaling

Considering that DDIT4 has been implicated in the regu-
lation of inflammatory responses and DDIT4-AS1 can 
positively regulate DDIT4 expression, we next examined 
the effect of DDIT4-AS1 knockdown on pro-inflammatory 
gene expression in astrocytes. As shown in Fig. 6a, DDIT4-
AS1 knockdown significantly inhibited E. coli-induced pro-
inflammatory gene expression, including IL-1β and TNF-α. 
NF-κB-mediated pro-inflammatory gene expression plays 
a crucial role in the innate immune response against bacte-
rial infection; thus, we evaluated the effect of DDIT4-AS1 
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Fig. 4  DDIT4-AS1 regulates DDIT4 expression at the mRNA and 
protein levels. a–c U251 cells were transfected with modified anti-
sense oligonucleotides (ASO) targeting DDIT4-AS1, and the expres-
sion of DDIT4 was detected by qPCR, western blotting (WB), and 
immunofluorescence (IF) microscopy. d–f U251 cells were trans-
fected with DDIT4-AS1 overexpression plasmid, and the expression 

of DDIT4 was detected by qPCR, WB, and IF. For the qPCR experi-
ment, GAPDH was used as the reference control. Data represent the 
mean ± SD (n = 3/group). p < 0.05 (*), p < 0.01 (**), p < 0.001 (***). 
For the IF experiment, DDIT4 was labeled in green, and the cell 
nucleus was stained in blue with DAPI. Scale bar indicates 20 μm
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knockdown on NF-κB signaling. E. coli infection stimulated 
the phosphorylation of p65, and this effect was attenuated 
by the knockdown of DDIT4-AS1 (Fig. 6b). We further 
examined the effect of DDIT4-AS1 on NF-κB signaling 
using immunofluorescence microscopy. As expected, E. coli 
infection promoted p65 translocation from the cytoplasm 
to the nucleus, which was partly prevented by DDIT4-AS1 
knockdown (Fig. 6c). Collectively, these results suggest that 
DDIT4-AS1 regulates pro-inflammatory factors production 
and NF-κB signaling.

DDIT4‑AS1 Regulates the Inflammatory Response 
by Targeting DDIT4

To further verify that DDIT4-AS1 regulates the inflamma-
tory response by targeting DDIT4, we evaluated the func-
tion of DDIT4 through deletion using the CRISPR/Cas9 
approach. Two small guide RNAs were designed to target 
exon 2 of DDIT4, and the deletion was validated by PCR 
amplification (Fig. 7a). In addition, E. coli infection led to 
the upregulation of DDIT4, which was abolished by DDIT4 
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(ASO) or negative control for 24 h and then infected with E. coli at 
an MOI of 10 for 3 h. The expression of IL-1β and TNF-α was deter-
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deletion, with no DDIT4 expression in the knockout (KO) 
cells (Fig. 7b). DDIT4 knockout markedly suppressed E. 
coli-induced pro-inflammatory IL-1β and TNF-α expression, 
as well as infection-induced NF-κB p65 phosphorylation and 
nuclear translocation (Fig. 7c–e). Moreover, the overexpres-
sion of DDIT4-AS1 augmented E. coli-induced IL-1β and 
TNF-α expression; however, the pro-inflammatory effect of 
DDIT4-AS1 vanished in DDIT4 KO cells (Fig. 7f), which 
revealed that DDIT4-AS1 functions are mediated by DDIT4. 
Collectively, these data indicate that DDIT4-AS1 plays a pro-
inflammatory role in the progress of E. coli infection by 
promoting DDIT4 mRNA stability.

Discussion

A growing body of evidence suggests that lncRNAs are 
involved in a wide range of biological functions and lncR-
NAs are now emerging as important regulators of inflamma-
tion [30]. Antisense lncRNAs are defined as long non-coding 
RNAs from the opposite strand of the sense transcript of 
either protein-coding or nonprotein-coding genes [26, 31]. 
Antisense lncRNAs have been reported to modulate almost 
every level of gene regulation, including pre-transcriptional, 
transcriptional, and post-transcriptional gene regulatory 
mechanisms, to exert a broad spectrum of biological func-
tions [25]. Importantly, antisense lncRNAs can act as posi-
tive and negative regulators of the corresponding sense tran-
script [31–33]. In the current study, we sought to explore the 
involvement of lncRNAs in the regulation of meningitic E. 
coli-mediated neuroinflammation. We focused our attention 
on antisense lncRNAs and selected the most significantly 
upregulated lncRNA–mRNA pair (DDIT4-AS1/DDIT4) for 
further studies. We found that the cytoplasm-enriched anti-
sense lncRNA DDIT4-AS1 showed concordant expression 
patterns with DDIT4 upon E. coli infection, and DDIT4-
AS1 modulated DDIT4 expression by enhancing the stability 
of DDIT4 mRNA through RNA duplex formation, thereby 
promoting NF-κB activation and pro-inflammatory gene 
expression.

Meningitic E. coli infection of the host CNS relies on 
intricate interactions between the host BBB and bacteria. 
Our previous studies have characterized the transcriptome 
profiles of astrocytes in response to infection and revealed 
that lncRNAs are likely involved in the development of 
bacterial meningitis [24]. Indeed, the role of lncRNAs in 
the host cell response to bacterial infections has received 
increased attention in recent years, and studies show that 
lncRNAs actively respond to various bacterial infections, 
including Salmonella, Helicobacter pylori, Mycobacterium, 
and Listeria monocytogenes [34–38]. Interestingly, many 
lncRNAs have been reported to modulate inflammatory 
responses in the progress of bacterial infection. For example, 

an intergenic lncRNA lincRNA-EPS is downregulated in 
macrophages exposed to L. monocytogenes infection, which 
acts as a repressor of inflammatory responses by interact-
ing with heterogeneous nuclear ribonucleoprotein L [39]. In 
contrast, the antisense lncRNA AS-IL1α, which is partially 
complementary to IL-1α, is upregulated following L. mono-
cytogenes infection. AS-IL1α recruits RNA polymerase II 
to the IL-1α promoter, thereby enhancing IL1α expression 
[38]. In this study, we identified an E. coli infection-induced 
antisense lncRNA DDIT4-AS1 that could promote NF-κB 
signaling by upregulating DDIT4 expression. Our study fur-
ther confirmed the important regulatory role of lncRNAs 
in the process of bacterial infection, which might provide 
potential new targets for future prevention of pathogenic E. 
coli meningitis.

We observed that DDIT4-AS1 and DDIT4 showed con-
cordant expression patterns upon E. coli infection and 
DDIT4-AS1 positively modulated DDIT4 expression. 
Mechanistically, DDIT4-AS1 formed an RNA duplex with 
DDIT4 mRNA and enhanced its stability. Our explanation 
is that mRNA undergoes endonucleolytic or exonucleolytic 
degradation by various RNases; however, the RNA duplex 
formation could protect mRNAs from RNases degradation, 
thereby promoting mRNA stability [40]. A growing body 
of evidence suggests that antisense lncRNAs play important 
regulatory roles by forming RNA duplexes with mRNAs 
[23, 41–46]. A well-known case is BACE-AS1, which is 
transcribed from the opposite strand of BACE1. BACE-AS1 
forms an RNA duplex with BACE1 and drives rapid feed-
forward regulation of β-secretase [23]. In gastric cancer 
(GC), lncRNA KRT7-AS shows concordant expression with 
KRT7 in GC tissues and cell lines. KRT7-AS increases KRT7 
mRNA stability by forming an RNA duplex, which promotes 
GC cell proliferation and migration [41]. In lung adenocar-
cinoma, lncRNA MUC5B-AS1 promotes cell migration 
and invasion by increasing the stability of MUC5B mRNA 
through a mechanism involving RNA duplex formation [42]. 
In addition, the formation of an RNA duplex by antisense 
lncRNA and mRNA might cover microRNA binding sites 
of the mRNA, thereby stabilizing the mRNA [47, 48], which 
generally occurs in cytoplasm-enriched lncRNAs. Nucleus-
enriched antisense lncRNAs can promote mRNA stability 
by modulating the association of RNA-binding proteins [43, 
44]. For example, antisense lncRNA Safe could form an 
RNA duplex with Sfrp2, and the RNA binding protein HuR 
could bind to the Safe–Sfrp2 RNA duplex and stabilize both 
Safe and Sfrp2 [44]. Our RNA FISH assays demonstrated 
that DDIT4-AS1 was located in cytoplasm and DDIT4-AS1 
co-located with DDIT4. Further experiments showed that 
DDIT4-AS1 directly interacted with DDIT4 mRNA and pro-
tected it from degradation. Moreover, the overexpression of 
DDIT4-AS1 promoted the stability of DDIT4 mRNA after 
treatment with α-amanitin. Our studies, in conjunction with 
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these previous findings, suggest that antisense lncRNAs can 
modulate their sense mRNAs by forming RNA duplexes.

DDIT4 has emerged as an important regulator of inflam-
matory responses. In a mouse model of cigarette smoke, 
DDIT4 is determined to be upregulated in the lungs and 
forcefully expressing DDIT4 promotes NF-κB activation 
and further exacerbates alveolar inflammation. However, 
alveolar inflammation and lung injury are markedly abro-
gated in DDIT4 knockout mice [17]. DDIT4 also aggravates 
LPS-induced systemic inflammation in macrophages, and 
the inflammatory responses are attenuated by DDIT4 knock-
down and knockout [14, 19]. In agreement with previous 
studies, the absence of DDIT4 in astrocytes also decreased 
E. coli-induced inflammation, which further verified the reg-
ulatory function of DDIT4 in inflammation. DDIT4 knock-
out markedly alleviated the production of pro-inflammatory 
cytokines through the NF-κB signaling pathway. Recent 
evidence suggests that DDIT4 interacts with and sequesters 
IκBα, thus promoting IKK independent atypical NF-κB acti-
vation [14]. It is possible that DDIT4 knockout abrogated 
the sequestration of IκBα, which led to the suppression of 
NF-kB signaling. However, the specific molecular mecha-
nisms require further investigation.
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