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Abstract: Recently, generating dense maps in real-time has become a hot research topic in the
mobile robotics community, since dense maps can provide more informative and continuous features
compared with sparse maps. Implicit depth representation (e.g., the depth code) derived from deep
neural networks has been employed in the visual-only or visual-inertial simultaneous localization and
mapping (SLAM) systems, which achieve promising performances on both camera motion and local
dense geometry estimations from monocular images. However, the existing visual-inertial SLAM
systems combined with depth codes are either built on a filter-based SLAM framework, which can
only update poses and maps in a relatively small local time window, or based on a loosely-coupled
framework, while the prior geometric constraints from the depth estimation network have not been
employed for boosting the state estimation. To well address these drawbacks, we propose DiT-
SLAM, a novel real-time Dense visual-inertial SLAM with implicit depth representation and Tightly-
coupled graph optimization. Most importantly, the poses, sparse maps, and low-dimensional depth
codes are optimized with the tightly-coupled graph by considering the visual, inertial, and depth
residuals simultaneously. Meanwhile, we propose a light-weight monocular depth estimation and
completion network, which is combined with attention mechanisms and the conditional variational
auto-encoder (CVAE) to predict the uncertainty-aware dense depth maps from more low-dimensional
codes. Furthermore, a robust point sampling strategy introducing the spatial distribution of 2D
feature points is also proposed to provide geometric constraints in the tightly-coupled optimization,
especially for textureless or featureless cases in indoor environments. We evaluate our system on
open benchmarks. The proposed methods achieve better performances on both the dense depth
estimation and the trajectory estimation compared to the baseline and other systems.

Keywords: visual-inertial SLAM; depth estimation; implicit representation; graph optimization;
dense mapping

1. Introduction

Vision-based SLAM systems have been widely explored in the past 20 years and
many representative systems have been proposed, which include filter-based approaches
(e.g., MonoSLAM [1,2] and the optimization-based approaches (such as PTAM [3], DTAM [4],
and ORB-SLAM serials [5–7])). Recently, visual-inertial odometry or SLAM methods
combined with deep neural networks can achieve more accurate localization results [8–11],
while in the real-time applications, the dominated SLAM approaches are also based on
key or corner points extraction and tracking for accurate pose estimation. Furthermore,
for building the association between multi-frames in a longtime, a sparse structure map
is usually constructed and the bundle adjustment technique is utilized for optimizing

Sensors 2022, 22, 3389. https://doi.org/10.3390/s22093389 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093389
https://doi.org/10.3390/s22093389
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22093389
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093389?type=check_update&version=2


Sensors 2022, 22, 3389 2 of 22

the camera pose and the map simultaneously. Although the light-weight sparse map is
very suitable for real-time SLAM systems, it also limits its further applications, such as
collision-free motion planning, surface-aware AR, or object recognition tasks, due to lack
of the dense environment representation. To simultaneously achieve the accurate camera
pose estimation and the dense environment reconstructions, many works have been tried,
such as LSD-SLAM [12], DynamicFusion [13], and ElasticFusion [14]. However, the former
LSD-SLAM system can only give a semi-dense environment reconstruction and the latter
two systems are designed specifically for RGB-D cameras in indoor environments.

Direct integration of dense reconstruction (or depth map) into the existing SLAM
systems will bring significant computation costs for storing and processing due to its
high dimensionality. To address this kind of problem, a compact and optimizable repre-
sentation has been proposed in reference [15], which compresses the scene depth with a
low-dimensional code vector conditioned on the intensity image. Specifically, the dense
depth map is transformed into a low-dimensional depth code with the encoder of a CVAE
network [16] first. Then, it can be recovered into a dense depth map by a decoder network.
Based on this representation, dense reconstruction can be obtained in the SLAM systems.
In reference [17], the depth codes are jointly optimized with camera poses and sparse maps
by minimizing three objective functions, such as photometric, reprojection, and sparse
geometric factors. This strategy can ensure consistency between observations from multi-
ple camera frames. To introduce the absolute scale (or metric) for the monocular SLAM
systems, an additional sensor such as the inertial measurement unit (IMU) is often needed.
CodeVIO [18] proposes to update depth codes jointly with navigation states in a filter-based
sliding window for generating the dense local geometry. However, compared with the
filter-based SLAM frameworks, which update the states only in a limited sliding local time
window, the graph optimization-based approaches can optimize system states among the
selected historical frames and maintain a pose graph or a hierarchical map database [7].
Alternatively, CodeMapping [19] proposes to run the dense mapper thread separately in
a loosely-coupled manner to achieve the optimized dense reconstruction. Although the
loosely-coupled design makes the system flexible to integrate arbitrary metric information
into the system, the loosely-coupled system for local dense mapping can not take advantage
of the prior geometric information generated by the depth estimation network, which can
provide more geometric constraints for tracking and the graph optimization, especially in
textureless or featureless environments.

To address these problems mentioned above, in this paper, we propose DiT-SLAM, a
real-time Dense visual-inertial (VI) SLAM with implicit depth representation and Tightly-
coupled graph optimization. In the proposed system, depth codes can be jointly optimized
with camera poses and sparse maps by considering visual, inertial, and depth residuals. In
order to achieve real-time performance, we compute the Jacobian of the dense depth map
generated from the network with respect to the depth code in a parallel numerical way
based on the batch forward on GPUs [18]. In addition, to improve the system’s accuracy
and robustness, the spatial and channel attention modules for deep feature refinement
and fusion are designed in the depth prediction network. Furthermore, a robust point
sampling strategy is also designed to provide geometric constraints to the tightly-coupled
optimization for textureless or featureless cases. Using this sampling strategy, depth
residuals from featureless regions can supply the prior geometric constraints for both ego-
motion tracking and local dense mapping where the feature-based sparse SLAM is prone
to be lost or seriously drifted. Figure 1 is a system demonstration for real-time tracking and
local dense mapping on the unseen EuRoC dataset of the proposed dense monocular VI
SLAM system. In summary, the contributions of our work can be generally summarized as:

1. We develop a real-time dense monocular VI SLAM system based on the tightly-
coupled graph optimization by considering visual, inertial, and depth residuals. The
proposed VI SLAM system can track the ego-motion of the sensor body and build the
local dense map with a metric scale in real-time;
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2. A light-weight monocular depth estimation and completion network combined with
CVAE and attention mechanisms is proposed. The network can encode and decode
a full-resolution dense depth map from a compact representation (i.e., the depth
code) of the dense depth image. The network predicts uncertainty-aware dense depth
maps in real-time accurately thanks to a light-weight architecture and extremely
low-dimensional depth representation (8D depth codes in our system). At the same
time, the network shows robustness and generalization capability because of attention
modules, leading to improved deep feature refinement and fusion;

3. In order to achieve more consistent local dense mapping and make use of prior ge-
ometry information provided by the depth predictions, particularly in featureless
environments, we propose a robust point sampling strategy in textureless or feature-
less cases for depth residuals. This strategy is based on the spatial distribution of
feature points. The sampling strategy can provide more constraints from featureless
image regions to guide the tightly-coupled optimization for deriving consistent and
complete local dense maps, even in the cases that the feature-based sparse SLAM
system may lose or drift.

(a)

(b) (c) (d) (e)

Figure 1. A system demonstration for real-time tracking and local dense mapping on the unseen
cross-domain EuRoC dataset of the proposed monocular VI SLAM system. (a) Real-time tracking, 3D
sparse mapping, and 3D local dense mapping demonstration; (b) 2D feature extraction and matching
on the gray monocular image; (c) the projected sparse depth image; (d) the dense depth map predicted
by the proposed network only trained on the NYU Depth V2 dataset [20] (warm colors are farther to
the camera); (e) the depth uncertainty prediction result (warm colors are larger uncertainty).

2. Related Work

In this section, we discuss the most related monocular visual-inertial SLAM sys-
tems, light-weight depth estimation networks, and the depth code-based real-time dense
SLAM frameworks.

2.1. Monocular Visual-Inertial SLAM

ORB-SLAM2 [6] proposes an effective SLAM system for different types of sensors, such
as monocular, stereo, and RGB-D cameras with multi-capabilities, where bundle adjustment
and light-weight localization modes are utilized for accurate trajectory estimations. Thus, it
can work in real-time on standard CPUs in a wide variety of environments, including indoor
sequences of small hand-held or drone devices, cars driving around a city, etc. Meanwhile,
ORB-SLAM3 [7] presents a real-time SLAM system that can perform visual, visual-inertial,
and multi-map SLAM with monocular, stereo, and RGB-D cameras with maximum a
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posteriori estimation and place recognition. Besides, VINS-Mono [21] proposes a robust
and versatile monocular visual-inertial state estimator, which consists of a camera and a
low-cost inertial measurement unit (IMU). A tightly-coupled nonlinear optimization-based
method and a loop detection module are employed in VINS-Mono for high-accuracy visual-
inertial odometry and better global consistency, thus higher performance can be achieved.
Nevertheless, the representative monocular visual-inertial SLAM systems mentioned above,
which are based on multi-view geometric methods, can only generate sparse maps with
fairly sparse 3D landmarks. These representative monocular visual-inertial SLAM systems
are more focused on localization rather than generating a more dense map for other
applications, such as obstacle avoidance or indoor 3D reconstruction.

2.2. Light-Weight Depth Estimation and Completion Networks

Previous approaches [22–25] have proven that depth information can be recovered
by light-weight deep convolutional neural networks (DCNN)-based frameworks with
data-driven strategies. Firstly, the settings that use monocular image and sparse depth as
input are also used for dense depth estimation. Refs. [24,25] propose effective frameworks
for depth recovery with a monocular image and corresponding sparse depth as input.
However, LiDAR or RGB-D sensors are commonly needed, which limit the applications of
these methods. Besides, Refs. [22,23] propose efficient and light-weight encoder–decoder
architecture for depth prediction with only monocular images as input, which are real-
time and applicable to embedded systems. However, the accuracy and reliability of the
depth information obtained by current monocular image-based approaches can not be
guaranteed, which still restricts the applications of Refs. [22,23]. In fact, the majority of 3D
applications are more on visual sequential data instead of separate monocular images and
the dense depth is crucial information for 3D geometry inversion from sequential visual
data. Therefore, welding depth estimation networks with real-time visual SLAM systems
to obtain consistent dense maps has become an interesting research topic recently, and
methods on real-time local dense mapping with the compact depth codes present a number
of outstanding solutions [15,17,18].

2.3. Real-Time Dense SLAM with the Compact Implicit Optimizable Representation

With monocular images as input, compact implicit representation of the dense depth
map can be obtained by CodeSLAM [15] with a small number of parameters (the depth
code), which is suitable for keyframe-based dense monocular SLAM systems. Global
consistency can be achieved by jointly optimizing pose variables and the depth codes of
overlapping keyframes. The depth code, in the form of the low-dimensional vector, is
encoded from the dense depth image by the encoder of the variational auto-encoder (VAE)
network and decoded to recover the dense depth under an auto-encoding scheme in the
training phase. Meanwhile, DeepFactors [17], an improved extension from CodeSLAM [15],
presents a real-time dense SLAM system with a probabilistic framework that combines a
learned compact depth map representation and different types of errors, including pho-
tometric, reprojection, and geometric errors. Hence an effective SLAM system with high
performance can be achieved. However, DeepFactors [17] only predicts coarse-grained
dense depth without a metric scale, since only monocular image data are used without
the consideration of the information of sparse points and inertial data. Furthermore,
CodeSLAM [15] and DeepFactors [17] are limited by intensive computation due to the quit-
heavy-weight network architecture and Jacobian calculation with the auto-gradient method
in deep learning libraries. CodeVIO [18] presents an effective real-time SLAM system that
consists of a light-weight DCNN-based depth estimation network and a tightly-coupled
visual-inertial odometry (VIO) system. At the same time, CodeVIO can provide accurate
state estimates and local dense depth maps of the immediate surroundings. Besides, only
sparse measurements of depth are updated in the depth code of Ref. [18] with a parallel
Jacobian computation method, but CodeVIO [18] is based on the filtering update, which can
not estimate a larger number of points and poses in a tightly-coupled graph optimization



Sensors 2022, 22, 3389 5 of 22

from the co-visibility graph rather than in a small time window. In addition, it consists
of a fairly simple light-weight network leading to a weak robustness and generalization
capability of the depth prediction, especially on an unseen cross-domain dataset. Leverag-
ing a compact scene representation, CodeMapping [19] proposes a novel dense mapping
framework for sparse visual SLAM systems, where the camera trajectory and locations
of landmarks can be accurately and reliably estimated, thus they can be used not only
for local mapping but also globally consistent dense 3D reconstruction. As a result of the
dense mapping thread in CodeMapping [19] under a loosely-coupled manner, the prior
depth estimation generated from the network can not provide more geometric constraints
to improve the tacking results simultaneously. Thus, the tightly-coupled optimization is
performed in our proposed system, guiding the optimization to improve pose and sparse
map estimation, particularly in challenging environments, such as white walls.

3. System Overview

The proposed system is a tightly-coupled monocular visual-inertial SLAM based on
the ORB-SLAM3 [7] by integrating dense depth completion and local dense mapping
modules additionally. Compared to the ORB-SLAM3, our system can provide local dense
3D maps in real-time with low-dimensional depth codes. Specifically, the proposed system
contains three main components: a sparse features-based monocular visual-inertial SLAM
framework, a light-weight depth completion network, and a tightly-coupled graph opti-
mization module for local dense mapping. A general pipeline of our proposed system is
illustrated in Figure 2.

Image Data

Dense DepthMetric Sparse Depth

IMU Data

Tracking & Mapping

Feature Tracking

IMU Integration

...

Depth
Code

UNet & CVAE

IMU & Monocular Camera

Depth Uncertainty

Graph Optimization

ORB-SLAM3

(Monocular-Inertial)
Optimized States

Figure 2. System overview of our proposed framework. The system is based on ORB-SLAM3 in the
monocular visual-inertial modality with a tightly-coupled back-end based on graph optimization
by considering visual, inertial, and depth residuals. RGB/gray images and projected sparse depth
images derived from the geometric SLAM are taken as the inputs for the network encoder.

3.1. Monocular Visual-Inertial SLAM with Sparse Maps

We take the ORB-SLAM3 with the monocular visual-inertial (MVI) mode as the
framework by taking a monocular camera and an IMU data sequence as inputs. The
MVI modality is an ORB feature-based tightly-integrated SLAM system that is completely
derived from the maximum a posteriori (MAP) state estimation. The ORB-SLAM3 shows
significantly more accurate and robust results on tracking and sparse mapping, especially
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in indoor environments [7] with the multi-map data association and robust visual-inertial
fusion techniques.

The MVI system takes the image (RGB or gray) and IMU data for ego-motion estima-
tion and a sparse local map reconstruction. For tracking, the system solves a visual-inertial
optimization problem for the state variables using the last two frames while keeping the
sparse local map unchanged. After obtaining the tracking observations and their corre-
sponding sparse points, the state variables are optimized by the local mapping thread with
the keyframes in a sliding window [7]. At the same time, local mapping optimization also
includes observations from co-visible keyframes with fixed poses of the sparse map points.
Except for the state estimation on body poses and sparse maps, IMU preintegration [26,27]
within optimization contributes to derive a projected scale-metric sparse depth image,
which is taken as an input channel of the light-weight depth completion network.

3.2. Light-Weight Depth Completion Networks with Attention Mechanisms

To obtain local dense maps in real-time, we leverage a light-weight depth estimation
and completion network based on FastDepth [23] and the conditional CVAE. The depth
estimation network can support various input modalities, such as RGB, RGB + sparse
depth, gray, and gray + sparse depth. Except for the dense depth estimation, it can also
produce the uncertainty of the depth estimation. As shown in Figure 3, we use the light-
weight MobileNet [28] as the backbone, which takes advantage of depth-wise separable
convolutions with real-time performance. Furthermore, in order to improve the accuracy
of depth estimation with the more low-dimensional depth code than in previous works,
we introduce two types of light-weight attention modules as convolutional block attention
modules (CBAM) [29] and selective kernel (SK) modules [30]. They are employed to refine
deep feature extraction and feature fusion, respectively, for improving the accuracy and
robustness of depth prediction. More details are described in Section 4.

or
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Figure 3. The architecture of our proposed light-weight network with attention mechanisms for
uncertainty-aware dense depth estimation and completion. The network supports multiple input
modalities: RGB, RGB + Sparse Depth, Gray, and Gray + Sparse Depth. The top stream is a UNet
network to extract input features and outputs the dense depth uncertainty map. The bottom stream
is the CVAE network conditioned on the features from the above UNet and predicts the dense
depth map.

3.3. Tightly-Coupled Graph Optimization with Depth Residuals

For visual-inertial SLAM with sparse maps, the system state vectors to be optimized
can be noted as:

Si
.
= {Ti, vi, bg

i , ba
i } (1)

where Ti = [Ri, pi] ∈ SE(3), vi, bg
i , ba

i is the sensor body pose, velocity in the world refer-
ence system, gyroscope, and accelerometer biases of the frame in timestamp i, respectively.
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In addition, to attain the dense mapping tightly integrated with the whole system, the
proposed system considers taking the latent depth codes of selected keyframes as system
states in the back-end optimization. For these selected keyframes with optimizable depth
codes, the state vectors in our system can be expressed as:

Sk
.
= {Tk, vk, bg

k , ba
k, ck} (2)

where ck ∈ RC×1 is the C-dimensional depth code of the corresponding keyframe and
is the input of the decoder of the CVAE stream in the proposed light-weight network to
generate a dense depth map of the keyframe. Specifically, the depth code in our system is a
vector with the extremely low dimension C = 8. In order to achieve local dense mapping in
real-time, the depth residuals from fixed sparse map points in tracking and local mapping
modules and the parallel finite difference method for the numerical computation of the full
Jacobian of the predicted dense depth map with respect to the depth code vector through
the CVAE decoder inspired by CodeVIO [18] are applied in the back-end optimization. We
describe the module in detail in Section 5.

4. Light-Weight Depth Estimation and Completion Network with Attention Mechanisms

Figure 3 shows the architecture of the proposed light-weight network for depth esti-
mation and completion with latent depth codes. In order to achieve real-time performance
in depth prediction, all convolution layers of the network are depth-wise separable. An
efficient MobileNet with depth-wise decomposition serves as the encoders in both the UNet
stream (top stream) for feature extraction and the CVAE stream (bottom stream) for dense
depth auto-encoding. The upsampling layers leverage depth-wise separable convolutions
with a kernel size of five and nearest-neighbor based interpolation in the decoders. In the
CVAE stream, during the training phase, the bottom stream takes dense depth as input
for transforming the dense depth to a low-dimensional depth code first and then decodes
the depth code to a dense depth conditioned on the image features extracted from the
top stream. During the online inference, with the trained model, the network predicts the
dense depth map from a depth code sampled from the standard normal distribution [31].
The sampled depth code passes the decoder of CVAE conditioned on the features from
the top UNet stream, and the encoder of the bottom CVAE stream is not needed since the
dense depth maps of keyframes are unknown in online inference. The architecture of the
trained network in the online inference phase is shown in Figure 2, where the VAE encoder
is ignored. Light-weight attention modules are used for deep feature refinement and fusion,
leading to the more accurate depth prediction from more low-dimensional depth codes.
Shorter depth codes can achieve fast inference and graph optimization with lower latency.

The network is designed for multiple input modalities of the RGB image, the RGB
image concatenated with a sparse depth map, the gray image, and the gray image concate-
nated with a sparse depth map. As shown in Figure 3, the input dimensions of UNet stream
for different modalities mentioned above are 224× 224× 3, 224× 224× 4, 224× 224× 1,
and 224× 224× 2, respectively. For a trained network model used in the visual-inertial
SLAM system, we exploit the RGB or gray image stacked with a sparse depth map modality
to make use of the information of sparse map points with a metric scale projected from the
SLAM sparse maps. Notably, although attention modules will bring a slightly additional
computation burden, the inference time of the proposed network is close to that of the
network in CodeVIO because of the low-dimensional depth code.

4.1. Deep Feature Extraction with CBAM Attention Modules

To refine the feature extraction in the network, the effective attention modules for
feed-forward convolutional neural networks called convolutional block attention modules
(CBAM) [29] are utilized for adaptive feature refinement with a negligible increment of
computation. A CBAM attention block consists of the channel and spatial attention modules.
The channel attention exploits the inter-channel relationship of features and focuses on
extracting the meaningful deep features from a given input image. Spatial attention makes
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use of the inter-spatial relationship of deep features. Different from channel attention,
the spatial attention focuses on selecting the informative part of features, which can be
complementary to channel attention. Given an intermediate feature map F ∈ RH×W×C

as input, CBAM sequentially infers a 1D channel attention map Mc ∈ R1×1×C and a 2D
spatial attention map Ms ∈ RH×W×1. The overall attention process can be summarized as:

Fc = Mc(F)⊗ F

Fs = Ms(Fc)⊗ Fc

Frefined = Fs ⊕ F

(3)

where ⊗ and ⊕ denote tensor element-wise multiplication and addition, respectively, and
Frefined is the final refined output feature map passed by the CBAM block. We integrate
CBAM attention blocks in the decoders of UNet and CVAE streams as a residual pass way
fused with input features.

4.2. Deep Feature Fusion with SK-like Attention Modules

Inspired by selective kernel networks (SK) [30], SK-like units take the place of the addi-
tion operation to fuse feature maps via Fuse and Select operators from two different branches
(previous convolutional layers and skip connections) adaptively using softmax [32] atten-
tion, which is guided by the information in these branches. We regard two feature maps
from previous convolutional layers and skip connections as features from two branches
with different kernel sizes mentioned in the original SK implementation [30]. Given two fea-
ture maps from two branches F1, F2 ∈ RH×W×C with the same shapes, firstly, we fuse these
feature maps via an element-wise summation, the global average pooling for channel-wise
information, and the guidance feature generating:

F̂ = F1 ⊕ F2

Sc = AVG(F̂c) =
1

H ×W

H

∑
i=1

W

∑
j=1

F̂c(i, j)

Z = FC(S)

(4)

where Sc and F̂c are the channel-wise map in channel c of S and F̂, respectively, AVG(·)
is the average pooling through spatial dimensions H ×W, and FC(·) is a simple fully
connected (FC) layer to generate a compact feature Z ∈ Rd×1 to enable the guidance for the
precise and adaptive selections next. In Select, soft-attention-across channels are used to
adaptively select different spatial information, which is guided by the compact feature Z.
Specifically, we employ the softmax operator in the channel dimension to generate the soft
attention and finally fuse the input feature maps:

[A1, A2]
T = So f tmax([FC1(Z),FC2(Z)]T)

Ffused = A1F1 ⊕A2F2
(5)

where Ffused is the fused feature map, FC1(·) and FC2(·) are fully connected layers to
map the compact feature Z into the original input channels for F1, F2. A1, A2 are the soft
attention for input features F1, F2, respectively. As described in Sections 5 and 6, SK-like
units can achieve more accurate and robust feature selection and fusion with an ignorable
increment of computation and latency because of the light-weight network architecture
and the parallel numerical Jacobian computation.

4.3. Loss Functions

In the training phase, the loss function is the summation of the uncertainty-aware
dense depth reconstruction loss and the KL divergence (KLD) loss [31] for the CVAE part.
The uncertainty-aware depth reconstruction loss evaluates the negative log-likelihood
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of the predicted dense depth and forces the network to attenuate the loss of difficult
regions and to focus on reconstructing parts that can be well explained [15]. The learned
uncertainty can also serve to gauge the reliability of the dense depth reconstruction. The
CVAE KL divergence loss tries to enforce the depth code manifold distribution to be close
to a standard zero-mean Gaussian distribution. The network outputs a dense depth map
and an uncertainty map. The uncertainty-aware dense depth reconstruction loss is:

Lrec =
1
|Ω| ∑

x∈Ω

|D̂rec(x)− DGT(x)|
B̂(x)

+ log(B̂(x)) (6)

where Ω is the set of all valid pixels in the input dense depth of ground truth DGT . D̂rec and
B̂ are the predicted dense depth and uncertainty, respectively. The KL divergence loss is:

LKLD =
1
2 ∑

i
[µ2

i + σ2
i − log(σ2

i )− 1] (7)

where µi and σi are the encoded mean and standard deviation of the predicted distribution
from the output of the CVAEs encoder. Then, the total loss function of the proposed
network in training can be noted as:

Ltotal = Lrec + LKLD (8)

5. Tightly-Coupled Graph Optimization with Depth Residuals
5.1. Visual and Inertial Residuals

For the optimization problem in the SLAM system, visual residuals are defined as the
reprojection errors rij related to the image frame i and the 3D map point j at the position xj.
Therefore, the visual residual in the form of the reprojection error is [7]:

rij = uij −Π(T−1
bc T−1

i � xj) (9)

where Π(·) is the projection function for the corresponding camera model, uij is the observa-
tion of point j at the image of frame i with an observation covariance matrix Σij, Tbc ∈ SE(3)
represents the rigid reference transformation from the camera frame to the IMU sensor
body, and � is the transformation operation of the SE(3) group over R3 elements. In a
visual-inertial SLAM system, IMU preintegration measurements [26] can be obtained by
the measurement integration between consecutive image frames, i and i + 1, for rotation,
velocity, and position with the formulation on manifolds [27], noted as ∆Ri,i+1, ∆vi,i+1, and
∆pi,i+1, respectively:

∆Ri,i+1 =
i+1−δt

∏
k=i

Exp((ω̃k − bg
k − η

gd
k )δt)

∆vi,i+1 =
i+1−δt

∑
k=i

∆Ri,k(ãk − ba
k − ηad

k )δt

∆pi,i+1 =
i+1−δt

∑
k=i

(∆vi,kδt +
1
2

∆Ri,k(ãk − ba
k − ηad

k )δt2)

(10)

where ω̃k, bg
k , and η

gd
k are the sensor measurement, the slowly varying sensor bias, and

the additive white noise for the gyroscope in discrete time, and ãk, ba
k , and ηad

k are for
accelerometer, respectively; δt is the discrete time step for IMU measurements [27]. For
the system states Si and Si+1 in Equation (1) or Equation (2), the inertial residual between
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consecutive frames rIi,i+1 with a covariance matrix ΣIi,i+1 for the whole measurement vector
can be derived from preintegration as [7]:

rIi,i+1 = [r∆Ri,i+1 , r∆vi,i+1 , r∆pi,i+1
] (11)

where r∆Ri,i+1 , r∆vi,i+1 , and r∆pi,i+1
are the component of the inertial residual for rotation,

velocity, and position, respectively:

r∆Ri,i+1 = Log(∆RT
i,i+1RT

i Ri+1)

r∆vi,i+1 = RT
i (vi+1 − vi − g∆ti,i+1 − ∆vi,i+1)

r∆pi,i+1
= RT

i (pj − pi − vi∆ti,i+1 −
1
2

g∆t2
i,i+1)− ∆pi,i+1

(12)

where the function Log(·) maps variables from the Lie group to the real 3D vector space.

5.2. Depth Residuals: Geometry and Consistency

In order to tightly optimize the results of local dense mapping with visual-inertial
states online, the system needs to introduce the residuals related to depth representations
of keyframes. Optimization on every pixel of the depth image in a naive way, obviously,
is computationally redundant and impractical for a real-time SLAM system. From the
light-weight depth completion network described in Section 4, we can obtain a compact
and optimizable low-dimensional depth representation of selected keyframes to achieve
the tightly-coupled optimization with visual and inertial state variables for dense mapping.
The keyframe with a depth code initialized from the zero-mean normal distribution can
infer a dense depth image using the light-weight network (Section 4), where the encoder of
the bottom CVAE stream is ignored in the online phase. The predicted dense depth image
dk = F (Ik, Sk, ck) can be formulated as a function of the RGB/gray image Ik, projected
sparse depth image Sk from the valid 3D map points, and the depth code ck of the keyframe
k through the network. For a keyframe with a corresponding depth code, there are two
depth residuals related to the predicted dense depth image that can be formulated on
sparse points of the keyframe [18]. The depth zkj derived from projecting a key point in 3D
position xj to the keyframe k at the pixel coordinate P j = [p, q]T and the depth from the
predicted dense depth image dk[p, q] can form the geometric depth residual rkj:

rkj = zkj − dk[p, q]

= [T−1
bc T−1

k � xj]z −F (Ik, Sk, ck)[p, q]
(13)

where [·]z extracts the z component of the transformed vector.
Besides, the depth of the corresponding projected points should be consistent among

keyframes from different views. To jointly refine the consistency of the reconstructed
geometry, the system formulates the depth consistency residual, which gauges the pixel-
wise difference between the dense depth maps of sampled sparse points after warping them
to a uniform reference frame. As for two different keyframes k1, k2 with depth codes ck1 ,

ck2 and a corresponding point j at the 2D image coordinates P j
1 = [p1, q1]

T, P j
2 = [p2, q2]

T

of k1, k2, the depth consistency residual rj
k1k2

:

rj
k1k2

= dk1(P
j
1)− [Tk1k2 � Π−1(P j

2, dk2(P
j
2))]z

= F (Ik1 , Sk1 , ck1)[p1, q1]−

[Tk1k2 � Π−1(P j
2, F (Ik2 , Sk2 , ck2)[p2, q2])]z

(14)

where Tk1k2 is the transformation from k2 to k1, Π−1(·) is the inverse projection function
for the camera model.
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For depth consistency residuals, we propose a sparse point sampling strategy to pro-
vide constraints in textureless or featureless regions for local dense mapping (Figure 4).
We can divide the keyframe image into nine (3× 3) cells and compute the spatial distribu-
tion of extracted 2D feature points. According to the number distribution of the feature
points among the nine cells, we can maintain a weight queue Qw = {ql |l = 1, . . . , 9}
to measure the normalized relative amount of feature points, which every cell contains
(∑9

l=1 ql = 1). We can reversely sort the queue Qw and obtain the corresponding reverse
queue Yw = {γl |l = 1, . . . , 9} (∑9

l=1 γl = 1). Given the number of points of a keyframe
for the depth consistency residual Nconsis, the uniformly sampled point number nconsis
in the cell l can be derived using Yw: nconsis = γl Nconsis. For these featureless patches
without enough feature points, we uniformly sample more image pixels in that patch for
optimization. As is shown in Figure 4, the proposed sampling strategy is based on the
spatial cellular distribution of extracted 2D feature points in the divided image cells (3× 3)
and is inclined to sample points from the featureless regions. Therefore, depth consistency
residuals can provide more constraints in textureless or featureless regions for local dense
mapping (Section 6). This can improve the robustness of the SLAM system in challenging
environments, such as a white wall. Depth consistency residuals, which tend to capture
geometric constraints in the featureless regions, can provide more geometry information to
improve tracking accuracy and robustness under a tightly-coupled manner, particularly
in textureless or featureless environments where sparse feature-based SLAM systems are
prone to be lost or seriously drifted.

In general feature-based visual SLAM methods, the correspondence of points is
from feature matching. In the depth consistency residuals of the proposed method, the
point correspondence is directly derived from the motion transformation to minimize
the error of predicted depths. It is similar to the direct method-based SLAM frame-
works [12,33], which minimize the photometric error with the correspondence from the
direct motion transformation.

Figure 4. Illustration of the robust point sampling strategy for depth consistency residuals. The
sampling method is based on the spatial distribution of 2D feature points in the divided image
cells (3× 3) and is inclined to sample more points from the featureless regions (green points are 2D
feature points extracted by SLAM system for feature matching; red points are sampled points for
depth consistency residuals). Notice that the depth consistency residuals are based on the randomly
sampled points rather than 2D feature points.

5.3. Tightly-Coupled Graph Optimization with the Numerical Parallel Jacobian Computation

Therefore, the optimization problem of the system can be posed as a keyframe-based
minimization problem combining visual, inertial, and depth residual terms [34]. For a
given set KF of m keyframes within the sliding-window with a set of corresponding states
Sm

.
= {S0, . . . , Sm−1}, a set of n 3D map point states Xn

.
= {x0, . . . , xn−1}, and a set of the
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compact depth codes of selected m′ (0 < m′ < m) keyframes Cm′
.
= {c0, . . . , cm′−1}, the

minimization formula of the optimization problem can be stated as:

min
Sm ,Xn ,Cm′

(
m−2

∑
i=0
||rIi,i+1 ||

2
Σ−1

Ii,i+1

+

n−1

∑
j=0

∑
i∈KF j

ρHuber(||rij||Σ−1
ij
)+

n′−1

∑
j=0

∑
k∈KF j

ρHuber(||rkj||Σ−1
kj
)+

n′′−1

∑
j=0

∑
k1,k2∈KF j

k1 6=k2

||rj
k1k2
||2

Σj−1
k1k2

)

(15)

where ρHuber(·) is the robust kernel function with Huber kernel [35] to reduce the influence
of outliers for rij and rkj owing to the spurious matching on key points, n′ is the configurable

number of selected map points for rkj, n′′ is the sample number of image points for rj
k1k2

,

KF j is the keyframe subset ofKF , which have the observations to the point j, Σkj and Σj
k1k2

are the corresponding covariance matrices fetched and propagated at the coordinates from
the predicted depth uncertainty map, respectively. Here, apart from the graph optimization
conducted by the basic sparse SLAM framework, a sliding-window of the five most co-
visible keyframes selected by the co-visibility graph is employed to the optimization,
introducing the depth residuals for local dense mapping. Figure 5 shows that the system
assembles a tightly integrated back-end based on the factor graph optimization, including
visual, inertial, and depth residuals for real-time tracking and local dense mapping.

Map Points

T0 T1 Tn

v0

b0

v1

b1

vn

bn

...

...

c0 c1 cn

Re-projection Residual Inertial Residual
IMU Random Walk Residual Depth Residual

Figure 5. Factor graph of the system considering visual reprojection residuals, inertial residuals,
IMU random walk residuals, and depth residuals on sparse points from the output of the depth
completion network. Tn: pose states, vn: velocity states, bn: IMU bias states, cn: depth codes.

The system utilizes the the Levenberg–Marquardt algorithm [36,37] to solve the opti-
mization problem in the back-end. The depth residuals in Equations (13) and (14) involve
predicted dense depth maps related to depth codes. To optimize the depth code states, the
system requires the Jacobians of depth residuals with respect to depth codes:
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J
rkj
ck =

∂rkj

∂cT

∣∣∣∣
c=ck

=
∂rkj

∂F

∂F

∂cT

∣∣∣∣
c=ck

J
rj

k1k2
ck =

∂rj
k1k2

∂cT

∣∣∣∣
c=ck

=
∂rj

k1k2

∂F

∂F

∂cT

∣∣∣∣
c=ck

(16)

Apart from the Jacobians with analytical or closed forms, the system actually needs a
numerical solution to obtain the Jacobian of the dense depth map generated from the net-
work with respect to the depth code ck according to the chain rule, i.e., ∂F

∂cT

∣∣
c=ck

. Although
general deep learning libraries are able to calculate the gradient vectors among variables, it
is really a time-consuming task to derive the full Jacobian matrices in the full dimension
of [H, W, C] (H: image height, W: image width, C: depth code dimension) by general
deep learning libraries because of keeping intermediate variables in the auto-gradient. For
the purpose of computing the full Jacobian in real-time, the system performs a numerical
method based on the parallel finite difference, leveraging the batch forward on GPUs to
compute ∂F

∂cT

∣∣
c=ck

[18]:

JF
ck

=
∂F

∂cT

∣∣∣∣
c=ck

=
∂F (Ik, Sk, ck)

∂cT

∣∣∣∣
c=ck

≈ F (Ik, Sk, ck + δc)−F (Ik, Sk, ck)

δcT

(17)

where δc ∈ RC×1 is the zero-approaching perturbation vector with the same dimension
as the depth code ck. The system can obtain the numerical approximate Jacobian fast by
using Equation (17) rather than backward() and grad() operations in deep learning libraries.
We implement the Jacobian computation module in a parallel way inspired by Ref. [18],
based on the batch forward on GPUs but with a extremely lower dimensional depth code
(depth code dimension C = 8 in our method). Specifically, we can construct a 4D tensor γ
with a dimension of [C, C, 1, 1] from repeating the original depth code C (in the shape of
[C, 1]) times in the batch size dimension. Then, for every depth code vector ck from γ in
the batch size dimension, we only add the perturbation δ to one corresponding entry of ck,
respectively, and operate it to the tensor γ for every entry over the batch size dimension,
respectively. Finally, we take γ as the batch input of our network and compute the full
Jacobian JF

ck
in the dimension of [H, W, C], as in Equation (17). For the depth code Jacobian

related to a particular pixel in Equation (13) or Equation (14), we can directly take the
corresponding Jacobian vector of the pixel from the full Jacobian obtained above to the
optimization solver.

To achieve an optimal perturbation δ for an accurate Jacobian estimation, a grid search
experiment of δ from 1.0−5 to 1.0 with 600 images randomly collected from the NYU
Depth V2 [20] and EuRoC [38] datasets was performed. In this experiment, we set δ
equally for all dimensions of the depth code. The evaluation results are given in Figure 6a,
where the X-axis is the search range of δ and the Y-axis is the absolute error between the
proposed numerical Jacobian estimation and the deep learning framework. From Figure 6a,
we can see that the optimal δ is around 1.0−2, which gives the most accurate numerical
Jacobian estimation.

Furthermore, in order to validate the best δ for different dimensions in the depth code,
we also test a range of δ from 1.0−5 to 1.0 for every dimension of the depth code (8D) while
fixing the δ = 1.0−2 for the other seven dimensions. As shown in Figure 6b, the average
absolute error of Jacobian computation reaches the minimum around δ ≈ 1.0−2 for all eight
dimensions. Therefore, we fix δ = 1.0−2 for all eight dimensions in the proposed method
to compute the Jacobian numerically in experiments mentioned later. In addition, thanks
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to the shorter depth codes in the proposed network, the average time taken by Jacobian
computation is about 4.5 ms on our machines (CPU: Intel Core i7-9700@3.0 GHz, GPU:
NVIDIA GTX 1660Ti). It is obviously more fast than ~340 ms of the method using the deep
library in DeepFactors [17] and ~10 ms of CodeVIO [18] with 32-dimensional depth codes
under the close computation resources (NVIDIA GTX 1080 GPU in DeepFactors, NVIDIA
GTX 1080Ti GPU in CodeVIO).

(a) (b)

Figure 6. The absolute error of Jacobian computation between the proposed numerical method and
auto-gradient functions in the deep learning library. (a) Comparison of the results with the proposed
method and deep libraries by varying the perturbation δ from 1.0−2 to 1.0; (b) absolute Jacobian error
for a certain dimension by varying the δ from 1.0−2 to 1.0, while fixing the δ for other dimensions.

6. Experimental Results

The light-weight network described in Section 4 has been trained on the NYU Depth
V2 dataset [20] with the official split of data and evaluated on NYU Depth V2 and EuRoC
MAV [38] datasets for in-domain and cross-domain performance, respectively. The trained
model was embedded into the visual-inertial SLAM system and we evaluated the trajectory
accuracy of the visual-inertial dense SLAM system in the 6 indoor Vicon room sequences
of EuRoC dataset. All evaluation experiments are conducted on the commercial desktop
computer with an Intel Core i7-9700@3.0 GHz CPU and an NVIDIA GTX 1660 Ti GPU.

6.1. Evaluation of Depth Estimation on NYU Depth V2 Dataset

NYU Depth V2 dataset consists of RGB and depth images collected from 464 differ-
ent indoor scenes with a Kinect RGB-D camera [20]. For training of the network, data
augmentation was performed online with a sequence of random transformations [24]:

• Scale: input RGB/gray images are scaled by a random scale s ∈ [1.0, 1.5] and corre-
sponding input depth images are divided by s;

• Rotation: input RGB/gray and depth images are rotated with a slightly larger angle
α ∈ [−10.0, 10.0] in degrees to simulate the dynamic motion of sensor bodies;

• Color Jitter: input RGB/gray image brightness, contrast, and saturation are adjusted
by a random factor fcolor ∈ [0.8, 1.2];

• Horizontal Flips: input RGB/gray and depth images are synchronously flipped in the
horizontal side by a probability of 50%.

Finally the input RGB/gray and depth images are cropped in center into the
224× 224 resolution. In order to fit the front-end of SLAM systems, in the training phase
of modalities with sparse depths, we detect FAST corners [39] on the RGB/gray images
and randomly perturb the depth ground truths of these corners by introducing the noise
under the normal distribution (std = 0.1 m) for the robustness to the inaccurate sparse point
depths from the SLAM system in the online phase.

The evaluation of depth estimation for light-weight networks has been performed
among multiple modalities and networks. With regard to light-weight networks for dense
visual-inertial SLAM and embedded systems, the evaluation includes networks in Fast-
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Depth [23], CodeVIO [18], and this paper in 4 modalities (RGB, RGB + Sparse Depth, Gray,
and Gray + Sparse Depth). Additionally, we also add the experimental results of our
implementation of the network in CodeVIO with 32D depth codes (CodeVIO (32D)) and
our implementation of the network in CodeVIO with 8D depth codes (CodeVIO (8D)) for
ablation experiments about attention modules and the dimension of depth codes. Notice
that both CodeVIO (32D) and CodeVIO (8D) do not contain any attention modules. In
the evaluations of modalities with the sparse depth input, the sampled sparse depth num-
ber of FAST corners always keep 125 without noise for the comparison with networks in
CodeVIO [18]. The error metrics used in the evaluation include: root mean squared error
(RMSE), inverse root mean squared error (iRMSE), mean absolute relative error (Abs Rel),
mean absolute error (MAE), mean absolute percentage error (MAPE), and the percentage
of predicted image pixels within a threshold of relative error (δ1, δ2, δ3) [40]. We also report
the inference time results of all methods (in millseconds: ms).

Table 1 shows the evaluation results of depth estimation on NYU Depth V2 dataset.
Over all input modalities (RGB, Gray, RGB + Sparse Depth, and Gray + Sparse), our method
combined with attention modules (CBAM and SK-like attention) outperforms the other
light-weight depth estimation networks embedded in dense SLAM by a large margin.
Figures 7 and 8 show some representative prediction results in RGB and Gray + Sparse
Depth modalities on NYU Depth V2 dataset. Particularly, the results illustrate that depth
estimation aided by sparse depth with the metric scale significantly promotes the prediction
accuracy and generates more fine-grained results. This is suitable for visual-inertial SLAM
systems, which maintain sparse maps with the metric scale. It is reasonable that the depth
uncertainty tends to fit the region where gray scale and depth values change sharply.
Notably, the dimension of implicit latent depth codes in our network is only 8 instead of 32
in the previous literature [18]. Although the dimension of depth codes in our method is 75%
shorter than the other research [18], the depth prediction shows more accurate results with
less memory usage, computation consuming, and inference time. This is actually important
for robotic or embedded systems, which are concerned about the real-time performance on
devices with limited computational resources.

Table 1. Depth evaluation of typical light-weight depth estimation methods and our proposed
network with different modalities (RGB (RGB), Gray (G), RGB + Sparse Depth (RGB-S), and Gray +
Sparse Depth (G-S)) on the NYU Depth V2 dataset. The best is shown in bold.

Modalities Methods RMSE ↓ iRMSE ↓ Abs Rel ↓ MAE ↓ MAPE ↓ δ1 ↑ δ2 ↑ δ3 ↑ Time ↓

RGB

FastDepth 1 0.598 0.098 0.161 0.443 0.139 76.6% 93.9% 98.2% 2.498

CodeVIO 2 0.545 0.090 - 3 - 0.130 83.0% 95.1% 98.5% 3.713
CodeVIO (32D) 4 0.557 0.099 0.127 0.398 0.137 83.3% 92.0% 96.3% 3.932
CodeVIO (8D) 5 0.582 0.110 0.144 0.401 0.150 81.8% 93.6% 96.2% 3.480

Ours 0.498 0.075 0.119 0.328 0.121 86.8% 96.6% 98.7% 3.764

G

CodeVIO 0.535 0.089 - - 0.133 83.3% 95.3% 98.6% 3.796
CodeVIO (32D) 0.551 0.085 0.136 0.395 0.131 80.4% 92.3% 95.9% 3.782
CodeVIO (8D) 0.587 0.116 0.147 0.397 0.141 83.2% 90.4% 94.5% 3.237

Ours 0.515 0.079 0.133 0.394 0.130 85.2% 96.1% 98.8% 3.689

RGB-S

CodeVIO 0.316 0.052 - - 0.066 94.4% 98.6% 99.6% 3.745
CodeVIO (32D) 0.331 0.063 0.083 0.191 0.078 93.3% 98.2% 97.8% 3.940
CodeVIO (8D) 0.337 0.075 0.094 0.202 0.075 93.1% 96.5% 98.1% 3.547

Ours 0.298 0.047 0.070 0.179 0.062 94.9% 98.3% 99.3% 3.738

G-S

CodeVIO 0.315 0.055 - - 0.071 93.9% 98.5% 99.5% 3.746
CodeVIO (32D) 0.327 0.072 0.070 0.185 0.073 93.2% 98.2% 97.3% 3.792
CodeVIO (8D) 0.343 0.075 0.081 0.191 0.090 91.8% 95.1% 98.4% 3.403

Ours 0.290 0.042 0.061 0.170 0.059 95.1% 98.9% 99.5% 3.760

1 Results of FastDepth were from the model released by authors [23]. 2 Results were obtained from Ref. [18].
3 denotes the item data and the source code of the corresponding method are not released by authors. 4 CodeVIO
(32D) is our implementation of the network in CodeVIO [18] with the depth code in 32 dimensions. 5 CodeVIO
(8D) is our implementation of the network in CodeVIO [18] with the depth code in 8 dimensions. The networks of
CodeVIO (32D) and CodeVIO (8D) do not contain any attention modules.
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Figure 7. Some result visualizations of dense depth and depth uncertainty predictions on NYU Depth
V2 dataset in RGB modality. From left to right column: input RGB images, dense depth ground truth,
and predictions of dense depth and depth uncertainty maps.

Figure 8. Visualization of dense depth and depth uncertainty prediction on NYU Depth V2 dataset
in Gray + Sparse Depth modality. From left to right column: input gray images, dense depth ground
truth, sampled sparse FAST corners, and predictions of dense depth and depth uncertainty maps.

6.2. Evaluation of Depth Completion on EuRoC Dataset

To evaluate the dense mapping performance of the proposed system, experiments
of depth prediction evaluation have been also accomplished on all 6 indoor Vicon room
sequences of EuRoC MAV dataset [38]. The EuRoC dataset consists of 6 indoor sequences
in a laboratory equipped with the Vicon system and 5 sequences in a large machine hall.
The dataset includes visual (from 2 cameras) and inertial (from 1 IMU) data collected by
micro-aerial vehicles (MAVs). There is a LiDAR point cloud data of the indoor environment
for every Vicon room sequence. We project the LiDAR point cloud onto every frame using
the ground truth of frame poses and leave the minimum depth value at every local cell
because of occlusions to render depth maps, which serve as the depth ground truth for
each frame.

We evaluate the depth prediction of the proposed network in Gray + Sparse Depth
modality only trained on NYU Depth V2 dataset for cross-domain performance and the
results are shown in Table 2. We also evaluate the sparse depth accuracy of ORB points from
ORB-SLAM3 system in monocular-inertial mode. Although the image feature from NYU
Depth V2 and EuRoC datasets is quite different, the network only trained on NYU Dpeth
V2 can estimate depth maps reasonably on EuRoC dataset and behaves with improved
accuracy and generalization capability thanks to the attention modules and the input
metric sparse depth. Therefore, the cross-domain generalization capability of the proposed
method allows that we can only train the network on datasets collected by depth detection
sensors (e.g., LiDAR, RGB-D cameras) with dense depth supervision and embed the trained
model to a real-time SLAM system for tracking and dense mapping simultaneously.

The evaluation results of dense depth on the EuRoC dataset with different methods are
given in Table 2, including ORB-SLAM3 (Sparse ORB), CodeVIO from Ref. [18], our imple-
mented CodeVIO with 32D depth codes (CodeVIO (32D)), our implemented CodeVIO with
8D depth codes (CodeVIO (8D)), and our proposed network. Figure 9 shows some results
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on the EuRoC dataset. It is notable that the networks of CodeVIO (32D) and CodeVIO (8D)
do not contain any attention modules. Meanwhile, we include the results of CodeMapping
from Ref. [19] to show our performance is comparable while our method is much faster.
CodeMapping utilizes a more heavy-weight network and the number of input sparse points
of CodeMapping in evaluation is 200–1000 per frame [19]. However, the number keeps
125 unchanged in our network and CodeVIO [18]. In addition, CodeMapping’s timing
results were evaluated with a more powerful GPU, i.e., NVIDIA GTX 3080.

Table 2. Depth evaluation of sparse depth from map points of SLAM (Sparse ORB) and light-weight
dense depth estimation methods in the Gray + Sparse Depth modality on the 6 Vicon room sequences
of EuRoC dataset. The best is shown in bold.

Sequence Methods RMSE ↓ iRMSE ↓ Abs Rel ↓ MAE ↓ MAPE ↓ δ1 ↑ δ2 ↑ δ3 ↑ Time ↓

V101

Sparse ORB 1 0.251 0.058 0.061 0.105 0.049 96.2% 98.7% 99.0% -

CodeMapping 2 0.381 - - 0.192 - - - - 11.00

CodeVIO 3 0.468 0.091 - 4 - 0.107 87.0% 95.2% 97.9% -
CodeVIO (32D) 5 0.488 0.103 0.100 0.251 0.137 83.8% 93.1% 97.5% 3.794
CodeVIO (8D) 6 0.503 0.134 0.132 0.283 0.154 81.4% 91.7% 95.3% 3.412

Ours 0.405 0.069 0.098 0.208 0.091 91.8% 95.7% 98.2% 3.767

V102

Sparse ORB 0.380 0.074 0.089 0.167 0.088 92.4% 96.1% 98.0% -

CodeMapping 0.369 - - 0.259 - - - - 11.00

CodeVIO 0.602 0.118 - - 0.170 78.7% 91.9% 96.4% -
CodeVIO (32D) 0.621 0.123 0.113 0.285 0.173 76.9% 92.2% 97.0% 3.787
CodeVIO (8D) 0.640 0.135 0.112 0.291 0.193 72.4% 90.0% 94.8% 3.337

Ours 0.511 0.103 0.109 0.266 0.117 90.1% 93.2% 97.2% 3.758

V103

Sparse ORB 0.419 0.078 0.097 0.229 0.098 91.0% 94.7% 97.9% -

CodeMapping 0.407 - - 0.283 - - - - 11.00

CodeVIO 0.687 0.103 - - 0.198 73.9% 90.2% 96.5% -
CodeVIO (32D) 0.684 0.125 0.124 0.313 0.213 73.4% 90.1% 94.8% 3.790
CodeVIO (8D) 0.693 0.149 0.130 0.337 0.223 75.9% 89.7% 94.0% 3.414

Ours 0.588 0.097 0.123 0.304 0.158 88.2% 92.1% 96.8% 3.753

V201

Sparse ORB 0.388 0.071 0.110 0.193 0.101 92.3% 95.8% 97.3% -

CodeMapping 0.428 - - 0.290 - - - - 11.00

CodeVIO 0.656 0.117 - - 0.163 77.3% 90.8% 96.0% -
CodeVIO (32D) 0.667 0.126 0.129 0.335 0.173 76.0% 90.2% 95.7% 3.766
CodeVIO (8D) 0.683 0.154 0.125 0.349 0.191 74.5% 90.1% 93.2% 3.409

Ours 0.577 0.096 0.118 0.301 0.150 88.3% 93.4% 96.5% 3.785

V202

Sparse ORB 0.513 0.099 0.120 0.257 0.112 90.3% 92.9% 96.3% -

CodeMapping 0.655 - - 0.415 - - - - 11.00

CodeVIO 0.777 0.125 - - 0.206 72.0% 88.3% 94.9% -
CodeVIO (32D) 0.758 0.113 0.173 0.345 0.193 79.7% 88.2% 95.0% 3.732
CodeVIO (8D) 0.783 0.136 0.181 0.347 0.207 73.8% 85.2% 90.5% 3.389

Ours 0.598 0.105 0.159 0.316 0.159 84.1% 91.3% 96.5% 3.729

V203

Sparse ORB 0.473 0.070 0.109 0.248 0.104 90.9% 93.3% 97.2% -

CodeMapping 0.952 - - 0.686 - - - - 11.00

CodeVIO 0.652 0.097 - - 0.177 75.6% 92.5% 97.3% -
CodeVIO (32D) 0.637 0.092 0.140 0.351 0.173 77.0% 93.4% 97.1% 3.757
CodeVIO (8D) 0.653 0.108 0.161 0.372 0.188 74.8% 91.5% 96.2% 3.458

Ours 0.585 0.092 0.122 0.306 0.156 86.0% 93.1% 97.6% 3.776

1 Sparse ORB results were computed for sparse ORB points from ORB-SLAM3 system in monocular-inertial mode.
2 Results were obtained from Ref. [19]. Notably, the number of input sparse points of CodeMapping in evaluation
is 200–1000 per frame. Besides, its time results were evaluated with a more powerful GPU: NVIDIA GTX 3080.
3 Results were obtained from Ref. [18]. 4 Denotes the item data and the source code of the corresponding
method are not released by authors. 5 CodeVIO (32D) is our implementation of the network in CodeVIO [18]
with the depth code in 32 dimensions. 6 CodeVIO (8D) is our implementation of the network in CodeVIO [18]
with the depth code in 8 dimensions. The networks of CodeVIO (32D) and CodeVIO (8D) do not contain any
attention modules.
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Figure 9. Cross-domain performance. Dense depth and depth uncertainty prediction results on
EuRoC dataset in Gray + Sparse Depth modality of the network only trained on NYU Depth V2
dataset. From left to right column: input gray images, dense depth ground truth, sampled sparse
FAST corners, and predictions of dense depth and depth uncertainty maps.

6.3. Evaluation of Trajectory Accuracy on EuRoC Dataset

All six Vicon room sequences of EuRoC dataset contain the 6D pose ground truth
of sensor bodies recorded by a motion capture system. We also evaluate the trajectory
accuracy in the 6 indoor sequences. Trajectory illustration compared with ground truth
and RMS ATE [41] results are, respectively, shown in Figure 10 and Table 3. The trajectory
results reported of ORB-SLAM3 were obtained by running the open-source code with its
default configuration, and results of OpenVINS [42] and CodeVIO are from Ref. [18], since
CodeVIO is not open-sourced, which is based on a particular version of OpenVINS.

Table 3. Trajectory evaluation of monocular visual-inertial SLAM systems with light-weight networks
for local dense mapping on the Vicon room sequences of EuRoC dataset (RMSE of ATE in meters: m).
Framerate results are in FPS. The best is shown in bold.

Methods V101 V102 V103 V201 V202 V203 Mean

ORB-SLAM3 1 0.035 0.013 0.030 0.043 0.016 0.019 0.026
OpenVINS 2 0.056 0.072 0.069 0.098 0.061 0.286 0.107

CodeVIO 3 0.054 0.071 0.068 0.097 0.061 0.275 0.104
Ours (Framerate) 0.036 (16.4) 0.011 (16.2) 0.022 (15.7) 0.041 (16.3) 0.012 (15.5) 0.017 (15.1) 0.023 (15.9)

1 Results were derived by running the released source code with the default configuration. 1,2 These methods are
visual-inertial SLAM system with sparse mapping. 2,3 Results were obtained from Ref. [18] because CodeVIO is
based on a particular version of OpenVINS.

The results of trajectory evaluation indicate that tightly-coupled graph optimization
on visual, inertial, and depth residuals has potential for the improvement of the local-
ization accuracy, especially in textureless or featureless environments, such as a white
wall (Figure 11). In Figure 11, there are few feature points on the white wall so that the
sparse map generated from ORB-SLAM3 does not contain any information from the white
wall. On the contrary, the depth completion network in the proposed system can predict
dense depth maps so that the system is able to perform 3D local dense mapping even in
these textureless scenes. It is useful for mobile robots to generate 3D local dense maps
(e.g., local occupancy grid maps) for obstacle avoidance. Previous feature-based visual
SLAM methods are prone to failure in featureless environments due to the lack of geomet-
ric constraints from rare feature matching. The depth estimation networks, however, can
naturally provide geometric information and handle the rotation-only motion. Therefore,
the depth consistency residual is designed for robustness in featureless scenes based on
sampled points instead of feature points. In the sequences that contain more featureless
periods (e.g., V102, V103), the proposed system estimates a more accurate trajectory. It
benefits from the tightly-coupled optimization scheme. The results demonstrate that lo-
calization and dense mapping can promote each other. Particularly, the SLAM systems
based on geometric methods are more likely to suffer from tracking failures in featureless
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environments. However, depth estimation networks can predict dense depth and provide
geometry information and depth residuals of sampled points from featureless regions to
guide the optimization on state and geometry estimation. This is quite crucial for visual
SLAM frameworks. There are more demonstration examples of the proposed system for
tracking and local dense mapping on EuRoC dataset in Figure 12.

(a) (b) (c)

(d) (e) (f)

Figure 10. Trajectory results of the proposed system on 6 Vicon room sequences of EuRoC dataset.
Trajectory illustration for sequences: (a) V101; (b) V102; (c) V103; (d) V201; (e) V202; and (f) V203.

(a) (b) (c) (d)

Figure 11. Textureless environments: a white wall. (a) The current 2D perspective with sparse
feature points; (b) 3D sparse mapping from ORB-SLAM3; (c) 3D dense point cloud mapped from the
current perspective; (d) 3D local dense mapping of the current sliding-window. There are few feature
points on the white wall so that the sparse map generated from ORB-SLAM3 does not contain the
information from the white wall. However, the depth completion network in the proposed system
can predict dense depth maps so that the system is able to perform 3D local dense mapping, even in
these textureless scenes.
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(a) (b) (c)

Figure 12. Demonstrations of tracking and local dense mapping on the EuRoC dataset. (Top): 2D
feature tracking. (Bottom): 3D local dense mapping. (a,b): V1 sequences in the EuRoC dataset; (c): V2
sequence in the EuRoC dataset.

7. Discussion

The proposed system can perform local dense mapping under the tightly-coupled
graph optimization strategy, which takes advantage of the co-visibility graph managed
by the sparse SLAM framework. Meanwhile, the co-visibility graph can provide not only
the best local keyframes and states to be optimized, but also the best global keyframes [7].
Nevertheless, under the current system architecture, global dense mapping is a compu-
tationally intensive and time-consuming task. Consequently, this work proposes a dense
SLAM system that targets the real-time local dense mapping. Specifically, we achieve the
improvement of localization accuracy, considering the geometric constraints from the depth
estimation under the tightly-coupled graph optimization, particularly in challenging scenes.
In the future, an effective design of the keyframe database management and co-visibility
graph for real-time global dense mapping combined with the proposed methods can be a
research exploration.

8. Conclusions

In this paper, we have developed a real-time dense monocular visual-inertial SLAM
system with the depth code-based representation of dense depth maps. In the proposed
system, the state variables (e.g., poses and sparse maps) and the depth codes are optimized
simultaneously in a tightly-coupled manner by considering visual, inertial, and depth
residuals together. With this type of design, the accurate local dense geometry estimation
can boost both the pose and map optimization. On the one hand, pose and sparse map
estimation in the visual-inertial system can provide precise poses and sparse depth values
with a metric scale to the light-weight network. On the other hand, the trained depth
estimation network can predict the uncertainty-aware dense depth and guide the tightly-
coupled optimization by introducing prior geometric constraints combined with the robust
point sampling strategy, especially in textureless or featureless environments where the
feature-based SLAM system is prone to tracking and mapping failure. Moreover, we
evaluated the proposed network and system on two public datasets and presented that
our methods achieved more accurate and robust results on both depth and trajectory
estimation, even on the never-seen cross-domain dataset. The final experimental results
on the public benchmark have verified the effectiveness of our system. Additionally, the
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proposed methods combined with global consistent dense mapping or other sensors can be
taken as the future research directions.
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