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The deep-sea vestimentiferan tubeworm Lamellibrachia luymesi forms large aggregations at hydrocarbon seeps in the
Gulf of Mexico that may persist for over 250 y. Here, we present the results of a diagenetic model in which tubeworm
aggregation persistence is achieved through augmentation of the supply of sulfate to hydrocarbon seep sediments. In
the model, L. luymesi releases the sulfate generated by its internal, chemoautotrophic, sulfide-oxidizing symbionts
through posterior root-like extensions of its body. The sulfate fuels sulfate reduction, commonly coupled to anaerobic
methane oxidation and hydrocarbon degradation by bacterial-archaeal consortia. If sulfate is released by the
tubeworms, sulfide generation mainly by hydrocarbon degradation is sufficient to support moderate-sized
aggregations of L. luymesi for hundreds of years. The results of this model expand our concept of the potential
benefits derived from complex interspecific relationships, in this case involving members of all three domains of life.
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Introduction

Complex positive species interactions have been shown to
expand the ecological niche and increase the persistence of
the organisms involved in a variety of systems. In terrestrial
systems, increased diversity of mycorrhizal symbionts is
correlated with increased biodiversity of plant communities,
resulting in greater stability and longer persistence at the
community level [1]. In marine ecosystems, the coral Oculina
arbuscula harbors a majid crab, Mithrax forceps, that prevents
overgrowth of macroalgae and shading of the corals [2]. This
allows O. arbuscula to maintain its facultative mutualism with
photosynthetic zooxanthellae in well-lit habitats off the
Atlantic coast of North Carolina, increasing the amount of
energy available to the coral for growth and reproduction. At
cold seeps in the Cascadia [3,4] and Aleutian [5] subduction
zones, bioirrigation through burrow formation and biotur-
bation by clams (Calyptogena spp.) has been shown to
significantly affect the distribution of microbial anaerobic
methane oxidation.

Lamellibrachia luymesi inhabits areas associated with advec-
tion of hydrocarbons and other reduced chemicals to the
seafloor (hydrocarbon or brine seeps) on the upper Louisiana
slope (ULS) of the Gulf of Mexico from 400 to 1,000 m depth.
L. luymesi does not posses a digestive system; rather, it acquires
energy via internal sulfide-oxidizing bacterial symbionts [6].
L. luymesi differs from other vestimentiferan tubeworms by its
ability to use a posterior extension of its body, the “root,” to
acquire sulfide from interstitial pools in sediments [7,8]. Near
the anterior plumes of tubeworms, sulfide concentrations
typically decline below 0.1 uM as the tubeworms approach 1 m
in length [9]. By using its roots, L. luymesi is able to delve into
deeper sediment layers, providing access to more persistent
sulfide sources. In the apparent absence of lethal predation
[10,11], the most significant hazard that this vestimentiferan
tubeworm faces is sulfide limitation. Its high uptake rate of
sulfide from hydrocarbon seep sediments, estimated at over 30
pmol - h™' for a moderate-sized individual [12], suggests that
sulfide flux may be limiting in L. luymesi’s habitat.
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A diverse chemosynthetic community relies on the sulfide
generated as a by-product of anaerobic degradative pro-
cesses in the Gulf of Mexico [10,11]. Reduction of seawater
sulfate utilizing methane or other hydrocarbons as electron
donors produces the majority of sulfide available at ULS
seeps [13,14]. Anaerobic methane oxidation is most com-
monly carried out by microbial consortia consisting of
sulfate-reducing bacteria along with methanogenic archaea
executing reverse methanogenesis [15,16]. Methane oxidation
linked to sulfate reduction and subsequent authigenic
carbonate precipitation constrain ocean-atmosphere carbon
fluxes [3,4], accounting for up to 20% of the global methane
flux to the atmosphere [17]. Oxidation of other hydrocarbons
and organic material, carried out by sulfate-reducing
bacteria in monoculture and in consortia with other
microbes [18], may account for a larger proportion of sulfate
depletion in ULS sediments [14]. These processes can result
in a decoupling of sulfate reduction and methane oxidation
rates [14], and form carbonates consisting mainly of non-
methane-derived carbon [19]. L. luymesi may influence these
anaerobic processes by utilizing its roots to release the
sulfate generated by its symbionts during sulfide oxidation
[7,8,12]. This hypothetical mechanism would provide sulfate
for anaerobic methane oxidation and hydrocarbon degrada-
tion at sediment depths normally devoid of energetically
favorable oxidants, thereby augmenting exogenous sulfide
production.
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In this study, we address the question of whether known
biogeochemical processes could supply sulfide at rates
sufficient to match the requirements of long-lived L. luymesi
aggregations. In the diagenetic model presented here, the
hypothesized release of sulfate in sediments with sufficient
electron donors results in sulfide generation at rates
matching the sulfide uptake rate of L. luymesi aggregations
for over 250 y. We speculate that the mutual benefits derived
from the syntrophy among symbiotic tubeworms and micro-
bial consortia implicit in the model would expand our
current concept for the potential complexity of positive
interspecific interactions and the benefits they confer.

Results/Discussion

L. luymesi Sulfate Release Allows Persistence of
Aggregations

The model predicts that inputs from known sources,
including diffusion and advection of deep sulfide along with
reduced seawater sulfate, will support a moderately-sized
aggregation of 1,000 individuals for an average of 39 y (range,
22 to 78 y) (Figure 1). A smaller aggregation of 200 individuals
could be maintained with these sources for an average of 64.1
y (standard deviation, 10.6 y). In this model configuration, the
duration of adequate sulfide flux is not congruent with the
known sizes of aggregations and existing age estimates of
L. luymesi individuals and aggregations. Adding sulfate release
by tubeworm roots to the model results in sulfide generation
and flux at rates that match the demands of large
aggregations, allowing the tubeworms to survive for over
250 y (Figure 1). This additional source of sulfate results in a
two-orders-of-magnitude increase in sulfate flux in older
(>100 y) aggregations, accounting for over 90% of sulfate
available after only 24 y. The sulfate released by the
tubeworms would be used for anaerobic methane oxidation
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Figure 1. Ratio of Sulfide Supply to Sulfide Uptake Rate of L. luymesi
Aggregations

Equilibrium line (1:1 ratio) and average, maximum, and minimum
values for 1,000 iterations presented. Supply rate based on known
sources without sulfate release by tubeworm roots shown in blue.
Sulfide supply declines below demand after approximately 40 y.
Supply rate including sulfate release from tubeworm roots shown in
red, with sulfate release constrained by tubeworm symbionts’ sulfide
oxidation rate. Sulfide supply exceeds demand for the duration of the
model.

DOI: 10.1371/journal.pbio.0030077.g001
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and hydrocarbon degradation. The nature of the relationship
between symbiotic tubeworms and microbial consortia that
we are proposing is a coupling of the sulfur cycle only, and
not carbon. Light dissolved inorganic carbon (DIC) resulting
from the oxidation of hydrocarbons is apparently not taken
up by tubeworms as the carbon stable isotope signatures of
L. luymesi are heavier than would be expected from a
methane-derived DIC source [20,21]. In addition, the well-
studied hydrothermal vent tubeworm, Riftia pachyptila, ob-
tains carbon in the form of COy across its plume [22].
However, this does not necessarily exclude the passive
diffusion of DIC across the root surface, which could account
for some of the variability observed in L. luymesi carbon stable
isotope signatures [20,21]. By augmenting the sulfate supply
to microbial consortia for sulfate reduction, large aggrega-
tions of tubeworms may survive for hundreds of years in the
model, mirroring the population sizes and individual lengths
regularly observed and collected at seeps on the ULS [23].

Model Results Are Robust to Parameter Variation

An alternate hypothesis to explain the discordance
between estimated sulfide supply and uptake rates is the
presence of locally elevated seepage rates. Sensitivity analyses
were carried out to determine the potential effects of
uncertainty in seepage rate on supply estimated for aggrega-
tions without root sulfate release. A 10% increase in seepage
rate resulted in a 5.6% increase in sulfide supply to
aggregations 200 y old and older. This corresponds to only
16.4% of the sulfide required, which does not serve to extend
aggregation survivorship (average, 39 y; range, 21 to 79 y)
beyond that determined for lower flow rates. To supply the
sulfide flux required by older aggregations, seepage rate
would have to be at least 363 mm - yil. This is over ten times
greater than the rate used in the model (32 mm - y_l), which is
the highest region-wide estimate for the Gulf of Mexico [24].
A rate of over 300 mm - }7l approaches rates reported for
active venting of fluids (Table 1). Active venting would result
in the visual manifestation of seepage in the form of methane
bubbles and oil droplets, which are generally restricted to
mussel (Bathymodiolus childressi) beds at these sites [25]. In
addition, larger, and therefore older [26], aggregations have
lower epibenthic sulfide concentrations [8,9,25] suggesting
that seepage becomes less vigorous over time and is not in the
form of active venting in larger tubeworm aggregations.
While difficult to obtain, in situ measures of advection rate of
fluids at Gulf of Mexico seeps could be used to test these
assumptions and may lend insight into the relationship
between variability in tubeworm growth rate and sulfide
availability.

The high degree of variability in growth rate and recruit-
ment rate could also affect the ratio of supply and demand in
the model. In an aggregation exhibiting anomalously low
recruitment, the size of the rhizosphere would increase more
rapidly than the biomass of the aggregation. This would lead
to high rates of sulfide delivery and generation and low rates
of sulfide uptake by tubeworm roots. When initial recruit-
ment rate (@ in equations 1 and 2) is decreased by 10%, the
length of time that supply exceeds demand increases by 3.7%.
This effect appears to be linear, with a 20% decrease in initial
recruitment rate resulting in a 7.4% increase in persistence.
If growth rate is increased, thereby increasing the rate of
rhizosphere growth in terms of surface area for diffusion and
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Table 1. Reported Seepage Rates for Hydrocarbon and Methane
Seeps

Site Published Millimeters Notes and Source
per Year

Gulf of Mexico 1.4 m3/1,000 km?/d 15 Region-wide seepage [24]

Gulf of Mexico 30 m*/1,000 km%/d 32 Region-wide seepage [24]

Gulf of Mexico 7 km/1 My 7 Oil migration [53]

Juan de Fuca 2 mm/y 2 “Strong upwelling” [54]

Juan de Fuca 4,000 m/My 4 Maximum of modeled
rates [54]

Cascadia 5.107"2 m¥/m%s 0.26 Vertical compaction
model [55]

Cascadia 10 m*/m?/s 52,000 Measured at “small”
vent [55]

Nankai 10 to 30 m/y 20,000 Temperature profiles
at active vent [56]

Barbados 0.2 to 10 mm/y 5.1 Temperature profiles
(Darcy Velocity) [57]

Barbados 6 cm/y 60 Temperature profiles
(Darcy Velocity) [57]

Aleutians 34 mly 3,400 To support benthic
oxygen flux [5]

Eel River, CA 10 cm/y 100 In situ measurement [58]

Indonesia 0.15 m/y 1,500 Expulsion of warm
fluids [59]

Indonesia 3.1-10° mly 0.31 “Marginal area” near
vent [59]

— 1 kg/m?/y 1.61 Theoretical [60]

DOI: 10.1371/journal.pbio.0030077.t001

advection, there appears to be little effect of the ratio of
supply to demand (20% increase in growth—0% change in
persistence time). In fact, increasing growth to the upper
limits of the error term (equation 5) lowers the amount of
time that the aggregation can be supported since biomass and
sulfide demand increase more rapidly than increases in
supply resulting from additional surface area. By decreasing
growth rate, aggregations may be supported for longer
periods of time, with a 20% decrease leading to a 6.3%
increase in persistence time and a decrease of 88% leading to
persistence for over 250 y. While an 88% lower growth rate
lies outside of the range of existing growth data, this could be
accomplished by ceasing growth for extended periods of time
in a quiescent stage. This possibility remains to be inves-
tigated in L. luymesi. By utilizing a variable recruitment rate in
the model, both between realized aggregations and between
years within a model run, along with a growth error term
encompassing the full range of observed growth data, the
model is capable of generating aggregations within the range
of the 10%-20% variability tested in this analysis. Even these
outlying aggregations (presented as maxima and minima in
Figure 1) support the qualitative conclusions drawn from
model results.

While the model was based on empirical data to the
greatest degree possible, estimates of many of the parameters
necessary to resolve the model were not available or are
extremely difficult to measure in deep water with existing
technology. Uptake rates were measured in the laboratory [8]
for relatively small individuals (<50 cm). While we attempted
to approximate metabolic scaling by covarying uptake and
growth rates, it is possible that large individuals require even
lower sulfide flux. Model predictions are not overly sensitive
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to variability in this parameter. A reduction by 10% of the
overall sulfide uptake rate results in a 52% increase in
persistence time. To maintain an aggregation for over 250 vy,
mass-specific uptake rate would have to be reduced 6-fold.
While this could also be accomplished by entering a period of
quiescence as mentioned before, there is no existing evidence
for this ability in vestimentiferans.

The second version of the model is based on the
assumption that L. luymesi is capable of releasing sulfate
through its roots. It should be noted that in the model, sulfate
release is constrained by the rate of sulfate generation by the
tubeworm’s sulfide-oxidizing symbionts, resulting in the near
1:1 ratio of supply and demand in Figure 1. Though modeled
sulfate flux across the roots into the rhizosphere may exceed
20 mmol - h™" in older aggregations, the roots provide an
ample respiratory surface such that rates of sulfate flux per
unit root surface area do not exceed 0.4 pmol - h™'- em™ i
the model. It remains possible that a proportion of the sulfate
could be released through the plume of the tubeworms,
though the energy required to pump sulfate against a
concentration gradient (seawater [SO4] = 29 mM) [13]
suggests that it would be more energetically favorable for
the sulfate to passively diffuse out of the roots. It is also
possible that sulfate flux could be increased by active
bioirrigation delivering seawater to deeper sediment layers
through the tubeworm tubes. This could allow the sulfide-
oxidizing symbionts to store some of the oxidized sulfide as
elemental sulfur rather than releasing it as sulfate, while
maintaining sufficient sulfate flux to deeper sediment layers
for sulfide generation. These mechanisms remain hypo-
thetical and require further experimental investigations to
evaluate their potential role in this system.

n

Tubeworms Impact Seep Biogeochemistry

Tubeworm sulfate release, in conjunction with high sulfide
uptake rates, could contribute to the observation of declining
advection rate in older aggregations. By increasing sulfate
flux to deeper sediments, L. luymesi increases integrated rates
of anaerobic methane oxidation and hydrocarbon degrada-
tion, which would enhance authigenic calcium carbonate
precipitation within the rhizosphere. Under the conditions of
root sulfate release in the model, calcium carbonate
precipitation is rapid (0.109 to 0.316 pmol - ' - sec™) in
the first 53 y, with rates declining exponentially thereafter. By
creating a barrier to fluid advection [4], this could result in
the observed decrease in epibenthic sulfide concentration in
older aggregations [8,9] and the predicted cessation of
tubeworm recruitment around this time [12,23].

In order to prevent the precipitation of carbonate directly
on the root surface, L. luymesi individuals may release hydro-
gen ions as well as sulfate through their roots. While hydro-
gen ion flux through the roots has not yet been empirically
demonstrated, none of the nearly 5,000 tubeworms examined
as part of this study were observed to have carbonate formed
directly on their roots, suggesting that this form of
precipitation is inhibited in some manner. In the model,
diffusion of hydrogen ions across the root surface (the only
form of release explicitly modeled) accounts for less than
40% of ion generation when carbonate precipitation is most
vigorous. We speculate that L. luymesi may utilize the excess
hydrogen ions generated by their sulfide-oxidizing symbionts
to periodically raise the rate of hydrogen ion flux from their
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roots. This would not only supply additional hydrogen ions to
sulfate-reducing bacteria, but could inhibit carbonate pre-
cipitation on the tubes and subsequent reduction of the root
area utilizable as a respiratory surface. Further pH reduction
could dissolve existing carbonate in sediments beneath the
rhizosphere, thereby opening seepage pathways and allowing
further root growth. This possibility is corroborated by the
observation of young tubeworms that had apparently bored
through bivalve shells in an experimental system (R. Carney,
personal communication). Empirical measurements of hydro-
gen ion flux across the root tissue of L. luymesi are required to
test these hypothetical mechanisms.

The release of sulfate by tubeworm roots potentially
explains the frequent observation of highly degraded hydro-
carbons in the vicinity of large tubeworm aggregations [27].
The majority of sulfate supplied by tubeworm roots is utilized
for microbial hydrocarbon degradation in the model
(Figure2). This process alone accounts for over 60% of the
sulfide available to aggregations after approximately 80 y. In
the absence of liquid and solid phase hydrocarbons, methane
flux would have to be approximately four times the rate in
the model in order to fuel sufficient sulfate reduction to
support an aggregation for over 200 y. This could occur in
sediments overlying rapidly sublimating gas hydrates, and
hydrate abundance has been previously suggested as a
potential factor influencing the distribution of chemosyn-
thetic communities in the Gulf of Mexico [10]. However,
model results indicate that large chain hydrocarbons are the
most significant energy source for sulfate reduction in
tubeworm-dominated sediments. Increased integrated rates
of hydrocarbon degradation would lead to highly biologically
altered hydrocarbon pools among the roots of tubeworm
aggregations. Hydrocarbon oxidation has been implicated as
one of the dominant processes in the carbon cycle at ULS
seeps, accounting for over 90% of the carbon in carbonates
collected in the vicinity of tubeworm aggregations [19].
Model analysis indicates that the minimum amount of

sulfide supply (mmol hr-1)

0 50 100 150 200
time (years)

Figure 2. Sources of Sulfide Available to Tubeworm Aggregations over
Time in the Model

Sources of sulfide include advection and diffusion of sulfide from
deep sources (yellow) or sulfate reduction using methane (blue),
buried organic carbon (green), or Cg; hydrocarbons (dark grey) as
electron donors. Sulfate is provided by diffusion from sediments
surrounding the rhizosphere, diffusion at the sediment-water inter-
face, and release from tubeworm roots.

DOI: 10.1371/journal.pbio.0030077.g002
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organic carbon (including hydrocarbons as well as buried
organic material) in sediments required to supply sulfide at
rates matching aggregation demand (1:1 supply:uptake ratio)
is 1.03% by weight, remarkably close to the lowest value
found in any of the seep sediment core samples (1.2%)
[13,28], and greater than that found in ULS sediments away
from seeps (0.71%) [29]. Determination of organic carbon
concentration in sediments beneath tubeworm aggregations
is necessary to test the prediction that elevated carbon
content at seeps, primarily resulting from oil seepage,
provides the energy source required to generate sufficient
sulfide for tubeworm aggregations.

Additional sulfate flux from tubeworm roots could also
explain the high apparent sulfate diffusion coefficients
determined for tubeworm-impacted sediments [13]. Anom-
alous sulfate fluxes have been proposed to be a result of
bioturbation and bioirrigation by macrofauna [3,5], and
recycling by microbial mats [13]. The results of the model
presented here provide evidence for macrofaunal sulfur
recycling, an additional component to be considered in
future investigations of cold seep biogeochemistry. The
hypothesized release of sulfate by tubeworm roots potentially
explains numerous, apparently disparate observations, hint-
ing at the great impact that L. luymes: aggregations may have
on their abiotic environment.

While the proposed interactions between symbiotic tube-
worms and sulfate-reducing bacteria are essential for the
persistence of L. luymesi aggregations in the model, we suggest
that there are significant effects on the microbial community
as well. This syntrophy will increase the abundance of sulfate-
reducing bacteria and therefore increase the rates of
anaerobic methane oxidation and hydrocarbon degradation
carried out by microbial consortia that rely on sulfate as an
oxidant. Tubeworm-generated sulfate supplies a more en-
ergetically favorable electron acceptor below the normal
depth of sulfate penetration at seeps, relaxing the limitation
on anaerobic oxidative processes at these sediment depths.
Deeper sediment layers then become habitable to sulfate
reducers, significantly altering the microbial community
structure within the rhizosphere. Model configurations
neglect the potential role of bioirrigation of seawater sulfate
through L. luymesi tubes, which could further increase sulfate
supply to deeper sediment layers. The possible role of
tubeworm roots as substrata for the growth of microbial
consortia, analogous to the habitat afforded mycorrhizal
symbionts of higher plants, remains another possible benefit
for the microbes. These predictions may be tested by
determination of the relative abundance of microbial
consortia at different depths of sediments both impacted by
and isolated from tubeworms. Localization of the microbes
on the root surface would provide evidence for a more
intricate relationship. It is our hope that the results of this
model may provide the impetus for future rigorous exper-
imental tests of these ideas.

Summary

The model results presented here are consistent with the
hypothesis that L. luymesi releases sulfate into hydrocarbon-
rich sediments to fuel sulfide generation, allowing for the
persistence of the longest-lived animal known. The impor-
tance of this process to sulfide generation in the modeled
rhizosphere implies a complex relationship between an animal
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with bacterial endosymbionts and external sulfate-reducing
bacteria, often in consortia with methane-oxidizing or hydro-
carbon-degrading microbes. This positive interspecific rela-
tionship, including members of all three domains, would
benefit both the tubeworms and the microbial consortia
involved. This expands our existing concept of the potential
for complexity in mutualisms and the benefits they may confer.
Further complex relationships are likely to be discovered
through continued research into the role of positive species
interactions at the individual and community levels.

Materials and Methods

This study couples an individual-based population growth and
sulfide uptake model [12] to a diagenetic diffusion/advection model to
compare the relative magnitude of sulfide supply and uptake for
long-lived tubeworm aggregations. A series of 1,000 iterations of the
model under three different initial conditions (known sources of
sulfate, known sources plus root sulfate supply, and known sources
with elevated seepage rates) were carried out. The rhizosphere
(volume of sediment encompassed by the root system of an
aggregation) is modeled as an inverted dome beneath the sediment
with a radius equal to the average root length of the population
(Figure 3). The rhizosphere was approximated by a series of two-
dimensional discs at 2-cm intervals in order to reduce the complexity
of a three-dimensional solution for a sphere of changing size. Sulfate
(S0,%7), methane (CH,), sulfide (HS), bicarbonate (HCOs ), and
hydrogen ion (H') fluxes across the rhizosphere boundary are
determined. Sulfate reduction rates using methane, larger chain
hydrocarbons, and buried organic matter as electron donors are
modeled in order to estimate the sulfide available to tubeworm
aggregations as they change in size over the course of 250 y.

Population growth model. The population growth model follows
the methodology presented in [12] and includes population growth,
mortality rate, individual growth rate, and sulfide uptake rate. The
parameters underlying the population growth model were refined
using growth data from an additional 615 individuals and population
data from an additional 11 aggregations comprising 4,908 individuals.
The model presented here includes data from a total of 23 tubeworm
aggregations from three nearby sites (Green Canyon oil lease blocks
184, 232, and 234) collected over a period of 7 y on the ULS to arrive
at generalized population growth parameters.

L. luymesi individuals are dioecious, with males releasing sperm into
the water column. Fertilization is believed to be external [30], though
sperm has been found within the oviducts of females of the
hydrothermal vent tubeworm R. pachyptila [31]. Eggs and embryos
are positively buoyant and develop into a swimming trochophore-like
larval stage within 3 d of fertilization [32]. Larvae are lecithotrophic
and may remain in the water column for several weeks [32]. They
require hard substrata for settlement, and acquire symbionts from
their environment after metamorphosis [33,34]. Settlement is initially
rapid, and continues until the available substrate is occupied
[12,23,35]. Population sizes of aggregations collected with existing
sampling devices typically vary between 100 and 1,500 individuals
([12,23]; this study), though far larger aggregations covering tens to
hundreds of square meters are common at the sites sampled. Previous
studies have shown that L. luymesi has an average longevity of 135y
[12], and requires an average of 210 y to reach 2 m in length [26], a
size not uncommon among collected animals. Mortality events are
exceedingly rare, dropping below 1% annual mortality probability
for animals over 30 cm [12]. The expanded datasets of growth and
mortality rates included here extend the longevity estimate for
L. luymesi to an average of 176 y and the estimated age of a 2-m-long
animal to 216 y.

At the beginning of each iteration, population growth parameters
are chosen for the following population growth model:

dN aN

@ T @) W
where N is population size, ¢ is time (in years), K is carrying capacity
(set to 1,000 individuals for all simulations presented here), a
describes the initial slope of the line, b defines the degree of density
dependence, and ¢ is a shape parameter. The first parameter (a) was
generated using the following function:

a = 0.7451 + (0.444 - €[N(0, 1)]) (2
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Figure 3. Model Construction

Population model includes individual size-specific growth and
mortality rates, and population size-specific recruitment rate. Growth
rate was determined by in situ staining of tubeworm aggregations
using a blue chitin stain (in situ photograph of stained aggregation
demonstrating annual growth shown here) and collection after 12-14
mo. Diagenetic model included advection and diffusion of sulfate,
sulfide, methane, bicarbonate, and hydrogen ions as well as organic
carbon content of sediments. Fluxes across the rhizosphere (root
system) boundary were compared to sulfide uptake rates for
simulated aggregations to determine whether sulfide supply could
match the required uptake rates of aggregations (for specific
methodology see methods). HC, Cg. hydrocarbons; orgC, organic
carbon; ox, oxidation reaction; red, reduction reaction.

DOTI: 10.1371/journal.pbio.0030077.g003

where €[N(0,1)] is a normally distributed random deviate with an
average of zero and a standard deviation of one. This allows the initial
recruitment rate to vary within the range of all recruitment
trajectories that have been observed [12]. The other parameters were
not normally distributed; therefore, the log-transformed distribu-
tions were used to define the distribution of the random numbers
generated. As the three parameters in the model were significantly
correlated (In(z) and In(), r = —0.853, p < 0.001; In(e) and In (c),
r = —0.461, p = 0.036), values of b and ¢ were chosen from their
relationship with a:

In(b) = —6.53091n(a) + 3.4174 (3)

In(c) = —0.37891n(a) + 1.3561 (4)

The value of a was allowed to vary each year according to the pooled
standard error associated with the estimates of a from the empirical
data (standard error, 0.105). Once population size equaled or
exceeded carrying capacity, recruitment was ceased, representing
the lack of additional substrate or sulfide available in the water
column.

Once recruitment was determined for that year, the individual-
based portion of the model began. Each individual was traced
through time with respect to its length, root length, mass, mortality
probability, mass-specific sulfide uptake rate, sulfate excretion rate,
and hydrogen ion elimination rate. Growth rates of tubeworms were
determined by staining tubes in situ (Figure 3) and collection 12 to
14 mo later ([26]; this study). Individual growth rate was determined
from the following function (Figure 4):

%: 455467001209+ (9,007, 00057! . ¢[N (0, 1)]) (5)
Length (0) is defined here as the distance from the anterior end of the
tube to an outer tube diameter of 2 mm following the methodology
of [26]. All growth rates were standardized to 365 d. The error term
is an additional function fitted to the residuals of the first regression
function (Figure 4B), resulting in a variable growth rate. This error
term was used rather than varying growth within the 95% confidence
interval of the regression of length and growth rate because of the
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high degree of variability in growth among individuals. It should also
be noted that there is a certain degree of variability in growth rate
between aggregations (Figure 4). This may be attributable to spatial
or temporal variability in seepage rate or sulfide concentration
between aggregations. Aggregations may be subject to persistently
differing conditions on a small (meter) scale, or may encounter
periodic fluctuations in habitat characteristics. Because we are
uncertain whether this variation is persistent on the temporal scales
that we are simulating, between-aggregation variability is not ex-
plicitly modeled, though by chance certain realized aggregations
deviated from mean growth rate.

The ratio of root length to tube length was determined from
individual length using the following function:

ris=6.1347"7% £ 1.0 (6)

Annual mortality rate was approximated as the size-specific
frequency of empty tubes in collected aggregations [12] with an
overall annual mortality rate of 0.569%. This approximation is
conservative and likely overestimates yearly mortality, as available
data indicate that empty tubes should persist longer than 1y [12,36].
Mortality probability was determined for each 10-cm size class using
the following function:

m = 0.0298¢0-0446! (7)

where m is mortality probability and [ is length. Individuals were
considered dead if their probability of mortality exceeded a uniform
random number between zero and one.

By using generalized population growth parameters in the model
presented here, we attempt to encompass the range of empirical data
from sampled aggregations in our examination of sulfide uptake and
supply rates. Taken together, the population growth model including
recruitment, growth, and mortality provides a good qualitative if not
quantitative fit for any individual aggregation, reflecting the size
frequency of tubeworms within sampled aggregations [12]. It should
be noted that the modeling of specific aggregations was not the aim
of this study; rather, an attempt has been made to encompass the
variability observed in the various populations of tubeworms that
have been sampled. To examine the effect of uncertainty in the
population growth parameters, sensitivity analyses were carried out.
The initial slope of the recruitment rate (¢ in equation 1) was varied
while individual size-specific growth rate was held constant (no error
term in equation 5). Growth rate was then varied while holding the
initial rate of population growth constant (no error term in
equation 2). The effect of a 10% change in each parameter was
determined, and then changes of greater magnitude were examined
to determine the fastest rate of population or individual growth that
could be supported by the sulfide available to the aggregation in the
absence of sulfate release.

growth

250

length

Figure 4. L. Jluymesi Growth Rate
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Individual sulfide uptake was allowed to vary within the range of
laboratory-determined sulfide uptake rates according to that indi-
vidual’s growth rate for that year:

u:m(1.60+4.40[1g—0]) (8)
where u is uptake rate (in micromoles per gram per hour), m is mass
(in grams), and g is growth rate (in centimeters per year). Growth rate
was divided by the maximum growth rate (10 cm - yﬁl) such that
highest growth rates resulted in highest uptake rates. By scaling
uptake rate with growth, we approximate metabolic scaling, resulting
in a decline in uptake rate by a factor of 3.7 over the range of
tubeworm sizes in this study [12]. The amount of sulfate that could be
excreted by each individual was determined from the amount
generated by sulfide oxidation carried out by the internal chemo-
autotrophic symbionts assuming constant internal sulfate concen-
tration, thereby accounting for changes in body volume. We do not
account for the binding of sulfur by free amino acids, as this is
believed to relatively minor compared the flux rates of sulfate and
sulfide, and is reversible [37]. Hydrogen ions are also generated in
the oxidation of sulfide by the tubeworm symbionts. Hydrogen ion
elimination rate was determined in the model in the same fashion
as sulfide uptake, with growth rate determining the variability in
this metabolic flux according to laboratory-measured ion fluxes
(mean, 10.96 pmol - g71 -h7!; standard deviation, 1.88 pmol - g71 -h7h
[38]. Simple diffusion of hydrogen ions across the root surface was
included in the model, though the exact mode of proton flux has not
yet been determined experimentally for L. luymesi [38]. As diffusion
across the roots accounts for a relatively small proportion of total
proton flux (less than 10% in large individuals), additional pathways
are likely and require further investigation.

Geochemical setting. Known sources of sulfide available to
L. luymesi aggregations are sulfide transported with seeping fluids
[10] and sulfide generated via reduction of seawater sulfate [39,40].
The majority of the sulfide present at ULS sites is believed to be
related to sulfate reduction coupled to anaerobic hydrocarbon
oxidation [14,39]. Other potential sources of sulfide associated with
seepage include anaerobic oxidation of deeply buried organic
material [10], “sour” hydrocarbons containing a proportion of sulfur
[41], and hydrocarbon interactions with sulfur-bearing minerals such
as gypsum and anhydrite found in the salt dome cap rocks of the ULS
[8,42,43].

Concentrations of all chemical species in the sediments surround-
ing the rhizosphere were derived from the dataset included in
Arvidson et al. [13] and Morse et al. [28]. Only those sediment cores
taken around the “drip line” of tubeworm aggregations that
contained detectable sulfide concentrations were used. Due to the
vagaries of sampling with a submersible in sediments heavily
impacted by carbonate and roots, those cores with detectable sulfide

= + 2000
g = 4573
-4

g + 4575
T |+ 4569
i + 4570

length

Size-specific growth of L. luymesi determined from stained tubeworms. Different colors indicate growth data from different aggregations. Blue
points labeled “2000” are all from Bergquist et al. [26]. Other colored points refer to submersible dive numbers from 2003 when stained

aggregations were collected.

(A) Growth function and 95% confidence interval for size-specific growth.

(B) Error function fitted to the residuals of the model.
DOI: 10.1371/journal.pbio.0030077.g004
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are believed to more accurately represent conditions around the
periphery of the rhizosphere.

Dissolved organic carbon (DOC) concentration was used as an
estimate of methane concentration. While other forms of DOC make
up this total concentration, methane accounts for 90%-95% of the
hydrocarbon gasses dissolved in pore waters [28]. In seep sediments,
the majority of DOC is likely to be in the form of hydrocarbon gasses.
Because estimates of organic acid concentrations were not available,
they could not be explicitly modeled. This would not affect the
overall concentration of electron donors in the model, but could
affect the sulfate reduction rate. Since sulfate reduction rate
estimates for methane seeps in the Gulf of Mexico are among the
highest recorded [14,39], any differences in DOC composition (e.g.,
higher relative concentrations of dissolved organic acids) would serve
to lower the overall sulfate reduction rate and sulfide availability.
Sulfide supply estimates presented are likely overestimated most by
the model without root sulfate release owing to the greater reliance
on anaerobic methane oxidation in this form of the model.
Simulations including sulfate release by tubeworms are affected to
a lesser extent as the concentration of electron donors is not limiting
in this model configuration.

Solid and liquid phase organic carbon was separated into hydro-
carbons and buried organic material according to their relative
concentrations in hydrocarbon seep and surrounding Gulf of Mexico
sediments. Background sediments on the ULS contain 0.71% organic
carbon by weight [29]. At hydrocarbon seeps on the ULS, organic
carbon accounts for 4.47% of total weight. This was assumed to be the
sum of background organic input plus carbon in the form of Cgy
hydrocarbons. It is possible that the higher biomass located at ULS
seeps in the form of non-living macrofaunal and microbial materials
may also contribute to the increased organic carbon concentration,
but without empirical estimates, this could not be accounted for in
the model. Hydrocarbons may consist of between 50% and 95%
labile materials [44,45,46]. Based on existing data on degradation
rates and residual hydrocarbons subjected to degradation [42,47], a
value of 50% labile material was used here. These assumptions of
hydrocarbon concentration and degradation potential are therefore
believed to be conservative.

The following functions were fitted to the sulfide, sulfate, and
methane concentration profiles (Figure 5) to determine the boundary
conditions at any given depth:

C,' = (C() — Cx)eiad + Cx (Q)

where C; is initial concentration, C. is concentration at infinite
distance, and C; is concentration at depth d. As there were no existing
data for sediments below 30 cm, concentrations at infinite depth (C.,)
were used (SO,> = 0 mmol - 1!, HS” = 12 mmol - 1"}, DOC = 11
mmol - 17!, DIC = 20 mmol - I"", pH = 7.78). The first derivatives of
the sulfide and methane profiles were used for the calculation of
advective flux from depth. The first derivative of the sulfate profile
was used for diffusive flux across the water-sediment interface of the
rhizosphere, with advection rate subtracted from diffusive flux of
sulfate across this surface. Advection (seepage) rate varied with time
according to the following function:

% = 0.3649¢ "7 1 0.000365 — sed (10)
where ¢ is simulation time in years and sed is sedimentation rate
(6 cm - 1,000 y ') [29]. Early seepage rate approximated the highest
flux rates measured or estimated for methane seeps and declined with
time in the model to the highest estimates for persistent, region-wide
seepage in the Gulf of Mexico (Table 1). This follows a pattern of
hydrocarbon seep development, with the highest seepage rates early
in the evolution of the local seepage source followed by occlusion of
fluid migration pathways by carbonate precipitation, hydrate
formation, and possibly tubeworm root growth. By using the highest
rate estimated (32 mm - yf1 = 0.000365 cm - h™' in equation 10) as the
basal seepage rate, we are testing the possibility that tubeworm
aggregations could survive under the most favorable conditions
possible in the absence of tubeworm sulfate supply.

For sediments encompassed by the rhizosphere, sulfide, sulfate,
methane, DOC, and hydrogen ion concentration profiles were
determined iteratively prior to model implementation using a central
difference scheme:

“)

Ciurry = G+ D(Ciyy — 2Ci + Ciy) — k (KS e

where Cj, is concentration in cell ¢ at time ¢, D is the diffusion
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Figure 5. Concentration Profiles of Sulfate, Sulfide, and DOC

Points represent average concentration at a given depth from 13
sediment cores taken around the periphery of tubeworm aggrega-
tions (see Materials and Methods and original data in [13,28]). Best-
fitted line based on least squares fit of equation 9.

DOTI: 10.1371/journal.pbio.0030077.g005

coefficient, & is the maximum reaction rate, and K, is the half-
saturation constant for the reaction (Table 2). Reactions included
anaerobic methane oxidation (equation 17), tubeworm sulfide uptake
rate (equation 8), and carbonate precipitation rate (equation 22). The
concentration in each 2 X 2 cm cell was calculated at 1 h time steps.
At the end of each year, diffusion distance increased. The number of
cells (total diffusion distance) was determined by the average root
length of L. luymes: populations as realized in independent runs of the
population growth model described above, and included here as
model input only. A separate function was fitted to each of the
concentration profiles:

Ci=(Co— Cx)e™ ™ + Ca (12)

where d is radial distance. The relationship between the parameter a
and distance was used to generate concentration profiles for each
disc comprising the rhizosphere. Because of the tight linear
relationship between diffusion distance and the shape of the curve,
concentration profiles could be generated for a disc of any size using
the following function:

aps =0 d P (13)

where o is 1.7344 and B is 1.0104 for HS™, o is 0.2111 and B is 0.3363
for SO, and o is 0.1626 and B is 0.2518 for CH,. Diffusional fluxes
of sulfide, sulfate, and methane were calculated according to the first
and second derivatives of the concentration profiles as determined by
the diameter of each disc.

Model implementation. The model estimates sulfide availability to
the aggregation as a whole by summing the fluxes separately
determined for each 2-cm disc composing the rhizosphere. Depth-
dependant boundary conditions were set for each disc separately
based on the sediment profiles (Figure 5). Diffusional fluxes into each
disc were calculated from the shape of the concentration profiles
according to the following function [48]:

C .
ac_1 4y, 9¢ (14)
dat r dr dr

where C is concentration, r is disc radius, and D, is the diffusion
coefficient corrected for porosity by:

— DO
T 14n(l1-9)

where D, is the diffusion coefficient corrected for temperature and
pressure, n is the chemical species-specific constant, and ¢ is porosity.
The value of n was set to 2.75 as this was found to be a reasonable fit
for all chemical species examined [49]. The ionic states of each
species at the average pH value of tubeworm-dominated sediments
(7.78) were used for the determination of diffusion coefficients.
Porosity was determined from the following function:

O, = (Gg = do)e ™ + P (16)

D, (15)
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where @, is porosity at depth z, ¢ is porosity at the sediment-water
interface, and ¢, is porosity at infinite depth; ¢, was set at 0.841, ¢o.
at 0.765, and a at 0.210, as determined from the best fit with the
porosity data (Figure 6) from Morse et al. [28].

Diffusion across the sediment-water interface of the rhizosphere
was also considered as an additional input of sulfate and hydrogen
ions. This was included as one-dimensional diffusion across a circular
surface (subtracting the area encompassed by the tubeworm tubes)
with diffusion distance equal to rhizosphere diameter, and concen-
tration differential from seawater concentration to the average
concentration within the rhizosphere. Sulfate and hydrogen ion
diffusion across the root surface was then added (if included in the set
of model realizations) as simple Fickian diffusion. Concentration
differential was the difference between internal concentration and
average concentration for each disc of the rhizosphere assuming
roots were evenly proportioned according to the volume encom-
passed by each disc. Internal sulfate concentration and pH (Table 2)
represented an average of the values determined for R. pachyptila [22],
a hydrothermal vent tubeworm. Internal sulfate concentrations and
pH of L. luymesi have not been reported, but these values are generally
consistent within taxa [50]. Uptake of sulfide and release of sulfate
were summed across the entire tubeworm population, again assuming
an even distribution of roots within the rhizosphere. The paucity of
empirical data on the location of any individual tubeworm’s roots
within an aggregation precluded modeling space explicitly; therefore,
it is assumed that each individual has equal access to the resources
available within the rhizosphere.

Within the rhizosphere, sulfide generation may be limited by
sulfate supply, electron donor availability, or sulfate reduction rate.
Sulfate supply was determined as the sum of flux across the series of
discs approximating the rhizosphere dome, across the sediment-
water interface, and from root sulfate (if available). Available sulfate
is utilized for anaerobic methane oxidation first (the more energeti-
cally favorable process), then hydrocarbon and organic matter
degradation. Electron donors included methane, complex hydro-
carbons, and buried organic material. Solid and liquid phase
hydrocarbons and organic material were assumed to be homogenous
within the rhizosphere. Methane supply was determined as the sum of

Table 2. Parameters Involved in Diagenetic Model

Parameter Compound Value
Diffusion coefficients HS™ 1.230
(cm? - sec' - 107°)
S042~ 0.650
CH,4 1.021
HCO;~ 0.726
H™ 6.684
Disassociation Constants® H,S 1.310 X 1077
HSO,~ 6.354
H,CO; 8.154 X 1077
HCO; 4.727 X 10 '°
B(OH); 1634 X 107°
H,0 1.320
CaOH 0.040
CaHCO; 8.722
CaCOs 5043 X 107
CaS0, 4584 X 10~°
CaSO4H,0 2.538 X 10°
MgHCO; 11.203
Maximum reaction rates SO4 + CH4 2.65-107°
(k) (UM - cm® - sec™)
SO, + hydrocarbons 2.50 - 10°°
SO, + organic matter 4901078
Half-saturation constants HS™ 85.8
(Ky) (uMm)
NeYou 1,500

2Diffusion coefficients all corrected for temperature, pressure, and salinity according to Stumm and Morgan [51] and
Pilson [52].

PAll disassociation constants corrected for temperature, salinity, and pressure according to Stumm and Morgan [51]
and Pilson [52] except: CaOH, no correction; CaHCOs3, CaSO,4 CaSO4H,0, MgHCO;, temperature only; H,COs,
temperature and salinity only; and HSO,, temperature and pressure only.

DOI: 10.1371/journal.pbio.0030077.t002
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flux across each rhizosphere disc boundary. Hydrocarbon and
organic material concentrations were determined as the amounts
encompassed within the rhizosphere volume minus that oxidized in
previous years. Sulfate reduction rate was determined from the
relative amounts of the various electron donors with higher rates
(0.71 pmol - mI™! - h™!) for methane oxidation and lower rates (0.083
pmol - mI™" - h™") for organic matter or hydrocarbon degradation
[39]. Microbes carrying out these processes are assumed to be evenly
distributed within the rhizosphere.

Total hydrogen sulfide availability to the aggregation was
determined as the sum of sulfide diffusion and advection across each
rhizosphere disc and sulfide generated within the rhizosphere from
sulfate reduction according to the following reactions:

SO?™ + CH, — HS™ + HCOj + H,0 (17)
SO2™ + 2CH,0 — HS™ + 2HCO; + HyO (18)

SO?™ + 1.47C,Hyyyo — HS™ + 1.47HCO; + HyO (19)

Bicarbonate (HCOg ) is generated at a 1:1 stoichiometry during
anaerobic methane oxidation and a 2:1 stoichiometry in the
degradation of organic material. As hydrocarbons are degraded
forming smaller chain hydrocarbons and organic acids, bicarbonate
is generated at different stoichiometries. Because different-sized
hydrocarbons and organic acids were not accounted for in the model,
a rough average of these stoichiometries (1.47:1) based on toluene,
ethylbenzene, xylene, and hexadecane degradation [18] was used to
determine the amount of bicarbonate generated per mole of carbon.
Hydrogen ions are also used up in a 1:1 stoichiometry with sulfate in
the sulfate reduction half reaction as included in reaction 17.

In order to account for carbonate precipitation, the model traced
DIC concentration, calcium concentration, hydrogen ion concen-
tration, buffer capacity, carbonate saturation, and carbonate precip-
itation rate. The buffer state of the rhizosphere was calculated to
determine changes in pH resulting from hydrogen ion flux. Buffer
capacity (B) was calculated using the following function [51]:

=23 |[H']+[OH ]+ <%)1 +..+ (%)J (20)

where A and B represent the concentrations of the various acids and
bases in the buffer system. In addition to hydrogen and hydroxyl ions,
the buffer system included carbonate (CO,, HyCOs, HCOs, and
CO5%7), sulfide (HoS and HS ), sulfate (HSO,~ and SO,%7),and borate
(B[OH]4 and B[OH]3) speciation. Current pH was used to determine
the ionic state of each species according to temperature-, pressure-,
and salinity-corrected disassociation constants when available [51,52]
(Table 2). Change in pH was determined from hydrogen ion flux and
buffer capacity as follows:

porosity
0.75 0.8 0.85
0

-5 .

sediment depth (cm)
prs

Figure 6. Sediment Porosity Values

Points represent average porosity at a given depth from 13 sediment
cores taken around the periphery of tubeworm aggregations (see
Materials and Methods and original data in [13,28]). Best-fitted line
based on least squares fit of equation 9.
DOL: 10.1371/journal.pbio.0030077.g006

March 2005 | Volume 3 | Issue 3 | e77



dpH _d[HT] (21)
dt dt

Saturation state is highly dependent on the degree to which calcium
and bicarbonate form complexes with other ions. The “free” calcium
was determined as the proportion of calcium that is not associated
with complexed bicarbonate (HCOs ), carbonate (COs™), hydroxyl
(OH™), or sulfate (SO4%) ions. Free carbonate was determined as the
amount not forming complexes with calcium (Ca™) or magnesium
(Mg™) ions in solution. Saturation state was then calculated from the
product of the concentrations of free calcium and carbonate divided
by the solubility product constant. If the saturation state was above
one, then carbonate precipitation occurred at a rate determined by:

d[CaCO;)
e

where k; is 0.005971- mol™" - sec ' and k3 = 0.4561- mol™! - sec”! [51].
Because there is no empirical relationship between weight percent of
carbonate and sediment porosity in tubeworm-dominated sediments
[28], precipitation did not directly affect porosity. Precipitation was
accounted for in the model by subtracting the volume of carbonate
precipitate from the total volume encompassed by the rhizosphere.
At the end of each annual time step, model output included
average length of individuals, population size, sulfide uptake rate,
sulfide supply rate, root sulfate flux (if included), root hydrogen ion

k1[CaT)[HCO3] + ks[Ca™][COs) (22)
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flux, amount of sulfide supply accounted for by each process (sulfide
seepage, anaerobic methane oxidation, organic matter degradation,
and hydrocarbon degradation), number of individuals that could be
supported by sulfide supply, carbonate precipitation rate, volume of
carbonate precipitate, and pH.
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