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Background
A stringent significance threshold is required to identify robust genetic associations in 
genome-wide association studies (GWAS) due to multiple testing constraints. Leverag-
ing relevant auxiliary data, such as functional genomic data, has the potential to boost 
statistical power in order to detect associations that exceed the stringent significance 
threshold.

The conditional false discovery rate (cFDR) is a Bayesian FDR measure that addition-
ally conditions on auxiliary data to call significant associations. Let p1, . . . , pm ∈ (0, 1] 
be a set of p values corresponding to the null hypotheses of no association between 
SNPs 1, . . . ,m and a trait of interest (denoted by H0 ). Let q1, . . . , qm be auxiliary data 
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values corresponding to the same SNPs. Assume that p and q are realisations of ran-
dom variables P, Q satisfying:

The cFDR is then defined as the probability that a random SNP is null for the trait given 
that the observed p values and auxiliary data values at that SNP are less than or equal to 
values p and q respectively [1, 2]. That is,

It should be noted that, although the Bayes-optimal decision quantity 
Pr(H0|P = p,Q = q) [3, 4] is asymptotically more powerful for hypothesis testing, it is 
practically more difficult to estimate accurately in finite-sample settings [5].

The cFDR approach was originally developed to leverage GWAS p values from 
related traits, thereby exploiting genetic pleiotropy to increase GWAS discovery [1, 
2, 6]; however, these early methods failed to control the FDR. Consequently, Liley and 
Wallace [5] developed an extension to the cFDR approach that transforms cFDR esti-
mates into “v-values” which are analogous to p values and can therefore be used to 
control FDR (for example in the Benjamini–Hochberg procedure [7]).

Motivated by the enrichment of GWAS SNPs in particular functional genomic 
annotations [8], Flexible cFDR was developed to extend the usage of the cFDR 
approach to the accelerating field of functional genomics [9]. Several related methods 
exist for multiple testing in the presence of auxiliary information [4, 10–12], but Flex-
ible cFDR has been shown to outperform these methods in terms of usability, versatil-
ity, accessibility and FDR control [9]. Nonetheless, a disadvantage of Flexible cFDR is 
that it cannot be used to leverage auxiliary data with a binary representation, such as 
whether SNPs are synonymous or non-synonymous, or whether they reside in regions 
of the genome with specific activity states.

Here we present an extension to the cFDR approach that supports binary auxiliary 
data, called Binary cFDR. In a simulation-based analysis, we compare the perfor-
mance of Binary cFDR to that of an existing approach, Boca and Leek’s FDR regres-
sion [13], which has been shown to outperform other methods in terms of FDR 
control, power, applicability and consistency of results by an independent research 
group [14]. We introduce a cFDR toolbox in the form of an R package (https://​github.​
com/​annah​utch/​fcfdr) that supports various auxiliary data types and which is avail-
able on CRAN (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​fcfdr/​index.​html). Finally, 
we demonstrate the utility of our methods and software by iteratively leveraging three 
distinct types of relevant auxiliary data with GWAS p values for type 1 diabetes to 
uncover additional genetic associations.

Implementation
The cFDR framework

We begin by describing the standard cFDR framework. Bayes theorem and standard 
probability rules are used to derive:

(1)

(2)cFDR(p, q) = Pr(H0|P ≤ p,Q ≤ q).

https://github.com/annahutch/fcfdr
https://github.com/annahutch/fcfdr
https://cran.r-project.org/web/packages/fcfdr/index.html


Page 3 of 15Hutchinson et al. BMC Bioinformatics          (2022) 23:310 	

To construct a conservative estimator of the cFDR, approximate 
Pr(P ≤ p|H0,Q ≤ q) ≈ p (from property (1); note that if property (1) holds and P is cor-
rectly calibrated then this approximation is an equality) and Pr(H0) ≈ 1 (since associa-
tions are rare in GWAS):

where  is used to denote that these are estimates under the assumption
. The methods used to estimate the cumulative densities in equation (4) vary across 
approaches. For example, in the original cFDR approach they are estimated using empir-
ical cumulative density functions [1, 5, 15] whilst in Flexible cFDR they are estimated 
using kernel density estimation [9].

However, the  values do not directly control the FDR [15]. Instead, a method 
proposed by Liley and Wallace [5] can be used to generate v-values, which are essen-
tially the probability of a newly-sampled realisation (p, q) of P, Q attaining an as extreme 
or more extreme  value than that observed, given H0 . The v-values are therefore 
analogous to p values and can be used in any conventional error-controlling multiple 
testing procedure. The derivation of v-values also allows for the method to be applied 
iteratively to incorporate additional layers of auxiliary data.

Extension for binary covariate data

We introduce an extension to the cFDR framework that permits binary covariate data, 
and call our method “Binary cFDR”.

As before, let p1, . . . , pm ∈ (0, 1] be a set of p values corresponding to the null 
hypotheses of no association between the SNP and the trait of interest. Now, let 
q1, . . . , qm ∈ {0, 1} be a set of binary covariates for the same m SNPs. Denote the null 
(no association) and alternative (association) hypotheses as H0 and H1 respectively and 
assume that p and q are realisations of random variables P, Q satisfying property (1). We 
follow the standard methodology introduced by Liley and Wallace [5] to derive a v-value, 
vi , for each (pi, qi) pair.

Since all q are binary, the support of P, Q is two lines (0, 1)× {0, 1} . We consider rejec-
tion regions of the form L(p0, p1) = (P ≤ p0,Q = 0) ∪ (P ≤ p1,Q = 1), where p0 and p1 
are to be determined.

We wish to find v-values such that for all α,

That is, the v-values behave like typical p values in that they are uniform under the 
null, but are as small as possible under the alternative hypothesis. Appendix A.1 in [5] 

(3)

cFDR(p, q) = Pr(H0|P ≤ p,Q ≤ q)

=
Pr(P ≤ p|H0,Q ≤ q)× Pr(H0|Q ≤ q)

Pr(P ≤ p|Q ≤ q)

=
Pr(P ≤ p|H0,Q ≤ q)× Pr(Q ≤ q|H0)Pr(H0)

Pr(P ≤ p,Q ≤ q)
.

(4)

(5)
Pr(vi < α|H0) = α

Pr(vi < α|H1) is maximal.
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(and also [16] and [17], for example) show that this corresponds to rejection regions 
formed by the set of points for which f0(p, q)/f1(p, q) < k(α) , for some k, where 
f0(p, q) = f (P = p,Q = q|H0) and f1(p, q) = f (P = p,Q = q|H1) . If f1(p, q) is non-
increasing in p, then such optimal rejection regions are of the type L(p0, p1) defined 
above (we describe behaviour in other cases in Additional File 1). That is, p0 and p1 will 
satisfy the property

Let

where π0 = Pr(H0) . Then equation (6) implies that

To solve equation (6) for p0 and p1 , we approximate

where  and m is the number of SNPs. Approxi-

mation (10) is discussed in Additional File 1. If qi = 0 then we set p0 = pi and use 
approximation (12) to solve equation (6) for p1 . If qi = 1 , then we set p1 = pi and solve 
for p0 . In practise, we do this using a fold-removal protocol for estimation to ensure that 
rejection rules are not applied to the same data on which those rules were determined. 
Specifically, we leave out each chromosome in turn and use the remaining SNPs to esti-
mate the values for the held out SNPs.

We derive the final v-values by integrating the distribution of P, Q under the null hypoth-
esis over the rejection regions:

(6)
f0(p0, 0)

f1(p0, 0)
=

f0(p1, 1)

f1(p1, 1)
.

(7)f (p, q) = f (P = p,Q = q) = π0f0(p, q)+ (1− π0)f1(p, q),

(8)
f (p1, 1)

f0(p1, 1)
=

f (p0, 0)

f0(p0, 0)
.

(9)
f0(pi, qi)

f (pi, qi)
=

Pr(P = pi,Q = qi|H0)

Pr(P = pi,Q = qi)

(10)≈
Pr(P ≤ pi,Q = qi|H0)

Pr(P ≤ pi,Q = qi)

(11)=
Pr(P ≤ pi|Q = qi,H0)Pr(Q = qi|H0)

Pr(P ≤ pi|Q = qi)Pr(Q = qi)

(12)

(13)
∫

L(p0,p1)
df0 = Pr((P,Q) ∈ L(p0, p1)|H0)

(14)= Pr((P ≤ p0,Q = 0) ∪ (P ≤ p1,Q = 1)|H0)
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where .
The v-value, vi , can be interpreted as the probability that a randomly-chosen (p, q) pair 

has a more extreme cFDR value than cFDR(pi, qi ) under H0 . That is, a quantity anal-
ogous to a p value. This means that, as in the original cFDR approach [5], the Binary 
cFDR method can be applied iteratively to incorporate additional layers of auxiliary data, 
whereby the v-values from the previous iteration are used as the principal trait p values 
in the current iteration. The derivation of v-values analogous to p values also means that 
they can be readily FDR controlled using any FDR controlling procedure that allows for 
slightly dependent p values (as in GWAS), such as the Benjamini–Hochberg procedure 
[5].

fcfdr R package

We have created a CRAN R package, fcfdr, that implements the Flexible cFDR and 
Binary cFDR approaches (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​fcfdr/​index.​html). 
Our recently updated package supports a wide range of auxiliary data types and is par-
ticularly suited to leveraging functional genomic data with GWAS test statistics, as 
explored below and also in several fully reproducible vignettes that are available on the 
package web-page (https://​annah​utch.​github.​io/​fcfdr/).

Results
Simulation based analysis

We evaluated the performance of Binary cFDR as implemented in the fcfdr R package 
using a simulation-based analysis. In each simulation, we applied Binary cFDR iteratively 
5 times to represent leveraging multi-dimensional binary covariates. We additionally 
compared our results to those when using a comparator method, Boca and Leek’s FDR 
regression (BL) [13], which has been shown to outperform other methods by an inde-
pendent research group [14].

We expect that leveraging irrelevant data should not change our conclusions about 
a study. Figure 1A shows that the sensitivity and specificity remain stable across itera-
tions and that the FDR was controlled at a pre-defined level when using Binary cFDR to 
leverage independent binary auxiliary data with arbitrary GWAS p values. In contrast, 
when leveraging relevant data we hope that the sensitivity improves whilst the specificity 
remains high, which is what we observed for Binary cFDR in Fig. 1B.

It is known that the cFDR approach should not be used to iterate over correlated 
auxiliary data that is capturing the same functional mark, as SNPs with a modest p 
but extreme q will incorrectly attain greater significance with each iteration (for a 
more detailed explanation see [9]). Our final set of simulations involved iterating over 

(15)
= Pr(P ≤ p0,Q = 0|H0)

+ Pr(P ≤ p1,Q = 1|H0)

(16)
= Pr(P ≤ p0|Q = 0,H0)Pr(Q = 0|H0)

+ Pr(P ≤ p1|Q = 1,H0)Pr(Q = 1|H0)

(17)= p0 × (1− q0)+ p1 × q0

https://cran.r-project.org/web/packages/fcfdr/index.html
https://annahutch.github.io/fcfdr/
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correlated auxiliary data values (mean Pearson correlation coefficient = 0.3) that cap-
ture the same “functional mark” (80% of functional SNPs were expected to have an 
auxiliary data value of 1 in each iteration). The lack of FDR control in these sets of 
simulations (Fig. 1C) serves as a salutary reminder that care should be taken not to 
repeatedly iterate over functional data that is capturing the same genomic feature.

Fig. 1  Simulation results for Binary cFDR and BL. Mean +/− standard error for the sensitivity, specificity and 
FDR of FDR values (derived from the Benjamini–Hochberg procedure) from Binary cFDR when iterating over 
independent (A; “simulation A”) and dependent (B; “simulation B” and C; “simulation C”) binary auxiliary data. 
BL refers to results when using Boca and Leek’s FDR regression to leverage the 5-dimensional covariate data. 
Iteration 0 corresponds to the original FDR values. Results were averaged across 100 simulations



Page 7 of 15Hutchinson et al. BMC Bioinformatics          (2022) 23:310 	

When bench-marking the performance of Binary cFDR against that of BL, we found 
that BL was consistently less powerful than Binary cFDR when leveraging dependent 
auxiliary data (Fig. 1B, C). In contrast, BL was more powerful than Binary cFDR when 
leveraging independent auxiliary data, but this was at the cost of a marginal loss of 
FDR control (Fig. 1A). In fact, the FDR control of BL was similar across all simula-
tions, even when using correlated auxiliary data in Fig. 1C.

Application to type 1 diabetes

We demonstrate the utility of fcfdr in an application to type 1 diabetes which is 
fully reproducible (https://​annah​utch.​github.​io/​fcfdr/​artic​les/​t1d_​app.​html). Using p 
values from an Immunochip study of type 1 diabetes [18] as our primary data set, 
we iteratively leveraged p values from an Immunochip study of a related immune-
mediated trait (rheumatoid arthritis; RA), binary data measuring SNP overlap with 
regulatory factor binding sites and enhancer-associated H3K27ac ChIP-seq data in 
cell types relevant to type 1 diabetes (Fig. 2).

Our method identified 101 SNPs as newly FDR significant ( FDR ≤ 3.3× 10−6 which 
corresponds to p ≤ 5× 10−8 ; see Methods). These SNPs had relatively small p values 
for RA (median p = 0.007 compared with median p = 0.422 in full data set), were more 

Fig. 2  Summary of cFDR results from type 1 diabetes application. A FDR values (derived from the Benjamini–
Hochberg procedure) before and after each iteration of cFDR, coloured by the auxiliary data values. B 
Manhattan plot of ( −log10 ) FDR values (y-axis truncated to aid visualisation). Green points indicate the four 
lead variants that were newly FDR significant after cFDR. Black dashed line at FDR significance threshold 
( FDR = 3.3× 10

−6)

https://annahutch.github.io/fcfdr/articles/t1d_app.html
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likely to be found in regulatory factor binding sites (40.6% in binding sites compared to 
23.4% in full data set) and had larger H3K27ac fold change values in relevant cell types 
(median value was 1.44 compared with 0.576 in full data set). In contrast, 45 SNPs that 
were significant in the original GWAS data set became not significant after applying 
cFDR, and these had relatively high p values for RA (median p = 0.620 ), were less likely 
to be found in regulatory factor binding sites (4.4% in binding sites) and had smaller 
H3K27ac fold change values (median value was 0.431).

The original GWAS identified 38 significant genomic regions (based on our definition 
of genomic regions; see Methods). All of these were found to be significant in the cFDR 
analysis, which additionally identified 4 genomic regions with index SNPs that became 
newly significant (Table 1). When using a larger Immunochip study of type 1 diabetes 
for validation [19] (see Methods) we found that three out of the four lead variants were 
present and that these had smaller p values in the validation GWAS data set than the 
discovery GWAS data set: rs1052553 validation p = 1.65× 10−15 , rs3024505 validation 
p = 9.13× 10−14 and rs13415583 validation p = 4.76× 10−9.

When using BL to leverage the same auxiliary data, only 46 SNPs were identified 
as newly FDR significant, and these had larger p values for RA (median p = 0.1942 ), 
were less likely to be found in regulatory factor binding sites (32.6% in binding sites) 
and had similar H3K27ac fold change values (median value was 1.48) compared with 
the 101 SNPs identified as newly significant in the cFDR analysis. At the locus level, BL 
only identified 1 newly significant index SNP, rs3024505, which was also identified by 
cFDR. No SNPs that were significant in the original GWAS data set became not signifi-
cant after applying BL.

Conclusions
We have described Binary cFDR, a novel implementation of the cFDR approach that 
supports binary auxiliary data. Binary cFDR controls the FDR and increases sensitivity 
where appropriate, and outperforms an existing method in terms of sensitivity and FDR 
control. Binary cFDR is implemented in an all-encompassing CRAN R package, fcfdr, 
that can be used to implement the cFDR approach for a wide variety of auxiliary data 
types. We have demonstrated the versatility of our software in an application to type 1 
diabetes, whereby we incorporated both binary and continuous auxiliary data simulta-
neously to uncover additional genetic associations that were replicated in a larger study.

Methods
Simulation analysis

Simulating GWAS results (p)

Following Hutchinson et al. (2021) [9], we first simulated GWAS p values for the arbi-
trary “principal trait”. We collected haplotype data for 3781 individuals from the 
UK10K project (REL-2012-06-02) [20] at 80,356 SNPs residing on chromosome 22 with 
MAF ≥ 0.05 (to match the convention that genetic association studies identify common 
genetic variation). We split the haplotype data into 24 LD blocks representing approxi-
mately independent genomic regions defined by the LD detect method [21]. We then 
further stratified these so that no more than 1000 SNPs were present in each block, sub-
sequently recording the LD block that each SNP resided in.
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We used the simGWAS R package (https://​github.​com/​chr1s​walla​ce/​simGW​AS) [22] 
to simulate Z-scores for SNPs within each block. The simulate_z_scores function 
in thee simGWAS R package requires input for (i) the number of cases and controls (ii) 
the causal variants (iii) the log odds ratios at the causal variants and (iv) haplotype fre-
quencies. For our simulation analysis, we selected 5000 cases and 5000 control samples, 
and within each block we randomly sampled 2, 3 or 4 causal variants with log OR effect 
sizes simulated from the standard Gaussian prior used in case-control genetic fine-
mapping studies, N (0, 0.22) [23]. For the haplotype frequency parameter, we supplied 
a data.frame of haplotypes using the UK10K data, with a column of computed fre-
quencies for each haplotype. We collated the Z-scores from each region and converted 
these to p values representing the evidence of association between the SNPs and the 
arbitrary principal trait.

Simulating auxiliary data (q)

We considered three use-cases of Binary cFDR (simulations A-C) defined by dependence 
on the principal trait p value ( pi ) and correlations between realisations of q. In simulation 
A we leveraged binary auxiliary data that was independent of pi : qi ∼ Bernoulli(0.05) . 
In simulations B and C we leveraged binary auxiliary data that was dependent on pi by 
first defining “functional SNPs” as causal variants plus any SNPs within 10,000-bp (to 
incorporate SNPs residing in the same arbitrary “functional mark”), and “non-functional 
SNPs” as the remainder. We then sampled qi from different distributions for functional 
and non-functional SNPs. Specifically, in simulation B we sampled:

Our method will likely be used to leverage functional genomic data iteratively, and so 
we also evaluated the impact of repeatedly iterating over auxiliary data that captured the 
same functional mark. Thus, in simulation C we iterated over realisations of q that were 
highly correlated:

Note that the auxiliary data is correlated in simulation C because the functional SNPs 
are the same across iterations in each simulation.

Implementing Binary cFDR and BL

We used the fcfdr::binary_cfdr function to implement Binary cFDR in our simu-
lation analysis. To avoid overfitting we used a leave-one-out procedure, whereby the LD 
block [21] was used as the group variable. In each simulation for each simulation sce-
nario, we applied Binary cFDR iteratively 5 times to represent leveraging multi-dimen-
sional covariates.

To implement BL, we used the lm_qvalue function in the swfdr Bioconductor R 
package (version 1.16.0) [24], using a covariate matrix that consisted of five columns 
for the auxiliary data values to derive adjusted p values.

(18)qi ∼

{
Bernoulli(0.05), if SNP i is non-functional

Bernoulli(0.4), if SNP i is functional.

(19)qi ∼

{
Bernoulli(0.05), if SNP i is non-functional

Bernoulli(0.8), if SNP i is functional.

https://github.com/chr1swallace/simGWAS
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Evaluating sensitivity, specificity and FDR control

To quantify the results from our simulations, we used the Benjamini–Hochberg pro-
cedure to derive FDR-adjusted v-values from Flexible cFDR, which we call “FDR 
values” for conciseness (that is, we used the stats::p.adjust R function with 
method=“BH”). We then calculated proxies for the sensitivity (true positive rate) 
and the specificity (true negative rate) at an FDR threshold of α = 5× 10−6 , which 
roughly corresponds to the genome-wide significance p value threshold of 5× 10−8 
(the maximum FDR value amongst SNPs with raw p value ≤ ×10−8 was 5.4 × 10−6 ). 
We defined a subset of “truly associated SNPs” as any SNPs with r2 ≥ 0.8 with any of 
the causal variants. Similarly, we defined a subset of “truly not-associated SNPs” as 
any SNPs with r2 ≤ 0.01 with all of the causal variants. (Note that there are 3 non-
overlapping sets of SNPs: “truly associated”, “truly not-associated” and neither of 
these). We calculated the sensitivity proxy as the proportion of truly associated SNPs 
that were called significant and the specificity proxy as the proportion of truly not-
associated SNPs that were called not significant.

To assess whether the FDR was controlled within a manageable number of simula-
tions, we raised α to 0.05 and calculated the proportion of SNPs that were called FDR 
significant but were truly not-associated (that is, r2 ≤ 0.01 with all of the simulated 
causal variants).

Application to type 1 diabetes

GWAS data

We downloaded full harmonised GWAS summary statistics for type 1 diabetes [18] 
from the NHGRI-EBI GWAS Catalog [25] (study GCST005536 accessed on 08/10/21) 
and used these as the principal trait p values. This data was for 6670 European type 
1 diabetes cases and 12,262 European controls. We used the LDAK software (https://​
dougs​peed.​com/​ldak/) to obtain LDAK weights for each SNP, and defined our inde-
pendent SNP set (used to fit the KDE in Flexible cFDR) as the set of SNPs given a non-
zero LDAK weight (an LDAK weight of 0 means that its signal is (almost) perfectly 
captured by neighbouring SNPs). We used MAFs estimated from the CEU sub-popula-
tion samples in the 1000 Genomes Project Phase 3 data set [26], and for any SNPs with 
missing MAF we randomly sampled a value from the empirical distribution of non-
missing MAFs.

To define independent loci for our locus-level results, we first calculated LD between 
each pair of SNPs using haplotype data from the 503 individuals of European ancestry 
in the 1000 Genomes Project Phase 3 data set [26]. We then used PLINK’s LD-clumping 
algorithm with a 5-Mb window and an r2 threshold of 0.01. This conservative clump-
ing approach sorts SNPs into ascending order of p value and then moves down the list, 
sequentially removing SNPs within a 5-Mb window and with r2 > 0.01 . The SNP with 
the smallest p value in the data set in each LD clump was called the “lead variant”.

Validation GWAS data set

We downloaded full harmonised GWAS summary statistics for type 1 diabetes [19] from 
the NHGRI-EBI GWAS Catalog [25] (study GCST90013445 accessed on 08/10/21) and 

https://dougspeed.com/ldak/
https://dougspeed.com/ldak/
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used this as our validation GWAS data set. The samples in the discovery GWAS data set 
[18] were a subset of those in the validation data set, and so we said that a discovery vali-
dated if it’s corresponding p value was smaller in [19] than [18]. The validation data set 
was for 16,159 European type 1 diabetes cases and 25,386 European controls.

Auxiliary data

We downloaded full harmonised GWAS summary statistics for rheumatoid arthri-
tis (RA) [27] from the NHGRI-EBI GWAS Catalog [25] (study GCST005569 accessed 
on 08/10/21). We mapped each SNP in the type 1 diabetes GWAS data set to its corre-
sponding p value for RA using genomic coordinates and rsIDs. We removed 6044 SNPs 
from the analysis which did not have a corresponding p value for RA.

We downloaded SNP-level annotations for all 1000 Genomes SNPs from the base-
line-LD model (version 2.2) described in [28]. We extracted values for the binary 
annotation “DGF_ENCODE” which quantifies sites of transcription factor occupancy. 
Briefly, this annotation is derived from merging all DNase I digital genomic footprint-
ing (DGF) regions from the narrow-peak classifications across 57 cell types [29, 30]. 
DGF regions (corresponding to DGF annotation values of 1) are expected to precisely 
map sites where regulatory factors bind to the genome [31]. We matched each SNP in 
the type 1 diabetes GWAS data set to its binary DGF annotation using genomic coor-
dinates. We removed 2811 SNPs from the analysis that did not have a corresponding 
DGF annotation value.

We downloaded consolidated fold-enrichment ratios of H3K27ac ChIP-seq counts 
relative to expected background counts from NIH Roadmap Epigenomics Mapping 
Consortium [32] in nine primary tissues and cells relevant for type 1 diabetes (CD3, 
CD4+ CD25int CD127+ Tmem, CD4+ CD25+ CD127- Treg, CD4+ CD25- Th, 
CD4+ CD25- CD45RA+, CD4 memory, CD4 naive, CD8 memory, CD8 naive). Specifi-
cally, we downloaded the bigWig files, converted these to wig files and then to bed 
files, and then mapped each SNP in the type 1 diabetes GWAS data set to its corre-
sponding genomic region in the bed files and recorded the H3K27ac fold change values 
in each cell type using the bedtools intersect utility. For SNPs on the boundary 
of a genomic region (and therefore mapping to two regions) we randomly selected one 
of the regions. We observed that the fold change values across relevant cell types were 
highly correlated ( r > 0.65 ) and therefore averaged values across cell types to avoid 
iterating over highly correlated auxiliary data that is likely capturing the same func-
tional mark. We transformed the averaged fold change values ( q := log(q + 1) ) to deal 
with long tails.

Implementation

We used the fcfdr::flexible_cfdr and fcfdr::binary_cfdr func-
tions to leverage the auxiliary data with type 1 diabetes GWAS p values iteratively. 
We used the chromosome for which each SNP resided for the group parameter in 
fcfdr::binary_cfdr, and we used the estimated MAF values for the optional 
maf parameter in the fcfdr::flexible_cfdr function. We used the stats::p.
adjust function with method=“BH” to derive FDR values from the v-values (after 
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the 3 iterations) and used these as the output of interest. We used an FDR threshold of 
FDR ≤ 3.3× 10

−6 to call significant SNPs, which corresponded to the genome-wide sig-
nificance threshold p ≤ 5× 10

−8 (it was the maximum FDR value amongst SNPs with 
raw p values ≤ 5× 10

−8 in the discovery GWAS data set). The full data and code to rep-
licate the analysis are available from https://​annah​utch.​github.​io/​fcfdr/​artic​les/​t1d_​app.​
html.
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