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Abstract: How and why distinct genetic alterations, such as BRCA1 mutation, promote tumorigenesis
in certain tissues, but not others, remain an important issue in cancer research. The underlying
mechanisms may reveal tissue-specific therapeutic vulnerabilities. Although the roles of BRCA1, such
as DNA damage repair and stalled fork stabilization, obviously contribute to tumor suppression, these
ubiquitously important functions cannot explain tissue-specific tumorigenesis by BRCA1 mutations.
Recent advances in our understanding of the cancer genome and fundamental cellular processes on
DNA, such as transcription and DNA replication, have provided new insights regarding BRCA1-
associated tumorigenesis, suggesting that G-quadruplex (G4) plays a critical role. In this review,
we summarize the importance of G4 structures in mutagenesis of the cancer genome and cell type-
specific gene regulation, and discuss a recently revealed molecular mechanism of G4/base excision
repair (BER)-mediated transcriptional activation. The latter adequately explains the correlation
between the accumulation of unresolved transcriptional regulatory G4s and multi-level genomic
alterations observed in BRCA1-associated tumors. In summary, tissue-specific tumorigenesis by
BRCA1 deficiency can be explained by cell type-specific levels of transcriptional regulatory G4s and
the role of BRCA1 in resolving it. This mechanism would provide an integrated understanding of the
initiation and development of BRCA1-associated tumors.

Keywords: BRCA1; G-quadruplex (G4); R-loop; tissue-specific-tumorigenesis; basal-like breast
cancer; high-grade serous ovarian carcinoma (HGSC); BRCAness; oxidative genome damage; base
excision repair

1. Tissue-Specific Tumor Susceptibility of BRCA1

Mutations in BRCA1, which encodes breast cancer type 1 susceptibility protein
(BRCA1) [1,2], significantly increase the cancer incidence in several tissues. According to The
Cancer Genome Atlas PanCancer Atlas analysis on oncogenic molecular processes, heterozy-
gous carriers with germline BRCA1/2 mutations develop cancer at younger ages compared
to the wild-type in ovarian serous cystadenocarcinoma, lung squamous cell carcinoma, and
breast invasive carcinoma [3]. The previously best-known tissues exhibiting cancer suscep-
tibility of BRCA1 are the breasts and ovaries [4]. BRCA1-mutant tumors in the breast tend
to exhibit a basal-like phenotype and often have a triple-negative breast cancer (TNBC) phe-
notype that lacks the expression of estrogen receptor, progesterone receptor, and human
epidermal growth factor receptor 2 [5,6]. In ovarian tissue, BRCA1-mutant tumors are mostly
high-grade serous carcinoma (HGSC) [5,6]. Despite differences between these tissues, these
two best-known BRCA1-deficient tumors share many molecular properties [7,8] including
mutations in the tumor suppressor gene TP53, the amplification of the MYC oncogene, ex-
treme levels of genomic instability and copy number variation (CNV), and sensitivity to DNA
damage agents. These properties are termed BRCAness [5,6]. However, BRCA1 deficiency is
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not always associated with BRCAness, as BRCA1 alterations in non-BRCAness cancer seem
neither related to tumor pathogens nor therapeutically actionable [9,10].

This tissue-specific tumorigenesis has been a critical question from the beginning
of BRCA1 research [11], in that the mechanism underlying tissue-specificity of cancer-
associated molecular alteration may also reveal tissue-specific therapeutic vulnerabilities
and preventive strategies. Cancer driver genes that are expressed in a wide variety of
tissues, not restricted to tissues from which the cancer originates, could contribute to tissue-
specific tumorigenesis through (i) tissue-specific oncogenic functions of cancer drivers, and
(ii) the characteristics of the cell-of-origin, that is, tissue context [12]. In terms of molecular
function, the tissue-specific function of BRCA1 has not yet been reported. The roles of
BRCA1 in genetic stability, such as homologous recombination-based double-strand break
(HR-DSB) repair and replication fork stabilization [13,14], are known to contribute to tumor
suppression. However, these ubiquitously important functions per se cannot account
for tissue-specific tumorigenesis. In addition, tumorigenic effects of BRCA1 mutation
are strongly associated with somatic biallelic inactivation. However, haploinsufficiency
may also promote the formation and progression of tumors [6,15], and the rate of biallelic
inactivation of BRCA1 in pathogenic germline carriers is cancer type-specific [9]. Therefore,
tissue context has become an inevitable and natural consideration in BRCA1-associated
tumors and throughout in cancer biology [12,16]. Tissue-specificity exists not only in
tumorigenesis, but also in the therapeutic action of common molecular alterations shared
between different tumor types. Recent basket trials using off-label targeted drugs in patients
with the same genomic alterations but with different cancer types have provided evidence
that the response to a molecular alteration-specific anticancer drug often depends on the
anatomical cancer type [12]. Tissue context can be described as follows: different cell types
have different epigenetic states dictating which genes are expressed and which genes are
potential to be activated in response to stimuli, and thereby have different epi-proteome
states determining which signals are capable to be sensed and in what manner a cell can
respond [12,16]. This includes environmental factors as well.

A recent review of tissue-specific tumorigenesis by BRCA1/2 mutations summarized
aspects of this tissue context [17]. The explanation given for tissue-specific tumorigenesis
by BRCA1 deficiency thus far is that repetitive exposure to estrogen causes a greater need
for HR-DSB repair [18], or that BRCA1 loss of function can only be tolerated in these
tissues via estrogen-induced pathway response [19]. These hypotheses are relevant only for
BRCAness tumors originating in hormone-responsive tissues. A more recent suggestion
is that tissue-dependent tumor-suppression of BRCA1 may be associated with its roles
in transcriptional and epigenetic regulation [20]. However, these arguments still remain
phenomenological and do not provide a unified explanation at the molecular level [16].

Recent advances in our understanding of the cancer genome and fundamental cellular
processes on DNA at molecular levels, such as transcription, replication, and 3D genomic
organization, have provided new insights into BRCA1-deficient tumorigenesis. These
advances have allowed us to better understand the interrelationships between molecular
processes occurring on DNA and cancer mutational landscapes. Collectively, these findings
suggest that one of DNA secondary structures, G-quadruplexes (G4s), plays a critical role.
In addition to the general importance of the G4 structure, G4 exhibits significant relevance
to BRCA-deficient tumors, in that G4-stabilizing ligands are synthetic lethal with BRCA1/2
deficiency [21–25]. Herein, we review recent studies on the importance of G4s in the muta-
tional landscapes of the cancer genome and in cell-type-specific transcriptional regulation,
and summarize the evidence that the accumulation of unresolved G4s is responsible for
tissue-specific tumorigenesis by BRCA1 deficiency.

2. G-Quadruplex
2.1. Introduction to the G-Quadruplex

G4s are non-B DNA secondary structures of stacked guanine (G) quartets, in which
four guanine molecules form a square planar arrangement via hydrogen bonds (Figure 1).
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These structures have vast structural diversity depending on the length and the constituent
bases of the loops, the constituency and the direction of the strands, and the specific
G-tracks involved in G4 formation if there are more than four G-tracks.

Figure 1. The structure and topologies of G4. (A) Structure of a G-quartet formed by hydrogen bonded
four guanines and central cation (blue). (B) The consensus sequence of G4. Representative topologies of
unimolecular G4s based on the strand direction: (C) antiparallel, (D) parallel, and (E) hybrid.

DNA exist predominantly in the form of a double helix B-conformation in cells, and the
G4 structure was previously considered to be adopted by DNA only in vitro [26]. However,
the G4 structure began to attract attention when it was reported that the human telomeric
DNA sequences form the G4 structure [27]. In the same year, it was directly demonstrated
that this structure exists in the promoter of the representative oncogene, c-MYC, and c-MYC
expression is down-regulated by a G4 stabilizing small ligand [28]. Numerous studies have
since investigated the G4 structure in the MYC promoter region and its interaction with
small molecules to regulate MYC expression [29–31].

The genome-wide prevalence of G4 has been demonstrated. Bioinformatics studies
have revealed that potential G4 forming sequences (PQSs) are prevalent in the human
genome [32,33], particularly in regulatory regions [34], including in the promoter region
of various oncogenes such as c-Kit, KRAS, VEGF-A, Bcl-2, and Hif-1α [35]. These find-
ings were reproduced and strengthened in the experimental detection of G4s [36,37]. In
an in vitro experiment, 716,310 G4s were identified, of which more than 60% were not
predicted by the bioinformatics method [36]. This also showed a significant association
between G4 and oncogenes, tumor suppressors, and somatic CNVs [36]. In an endoge-
nous chromatin context, chromatin immunoprecipitation and next-generation sequencing
(ChIP-seq) of G4 resulted in the detection of approximately 10,000 G4s, predominantly
in regulatory nucleosome-depleted regions associated with genes showing elevated tran-
scription [37]. An enrichment of G4s in cancer-related genes and/or somatic CNVs was
also re-demonstrated. MYC showed the highest G4 ChIP signal among all cancer-related
somatic CNV amplification and oncogenes [37]. These results support a previously sug-
gested role [38] for G4 structures in tumor progression. Moreover, the fact that G4s are
particularly enriched in somatic CNVs [36,37] draws attention to the relevance of G4s in
BRCA1-deficient tumors in that these tumors display high levels of CNVs [8,39].

The single-molecule visualization of G4s either in vitro or in live cells revealed that G4s
dynamically fluctuate between folded and unfolded states at a time scale of a few seconds.
Their formation was found to be associated with the active processing of DNA, that is,
replication and transcription [40]. Currently, G4s have become an emerging therapeutic
target in oncology [38,41–44] because of its significant association with oncogenes, its
potential for transcriptional regulation, and its structural diversity suggestive of selectivity.
General reviews of G4 can be found in recent articles [45–47].

2.2. G4s as the Determinants of Mutagenesis

G4s are strongly associated with mutagenesis and CNVs. Even before demonstration
of genome-wide enrichment of G4s in somatic CNVs [36,37], the correlation between non-B
DNA structures, including G4s, and CNVs was first reported through a direct experiment
by the transformation of the engineered plasmid into E. coli and induction of a report gene
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expression [48]. A 2.5 kilobase sequence known to form non-B DNA structures was found
to increase the frequency of plasmid alterations, including long deletions, in conjunction
with DNA repair processes and transcription.

The crucial contribution of G4 to mutational landscapes has been revealed by large-
scale whole genome sequencing (WGS) analysis [49,50]. It was previously known that
mutation rates in the human genome depend on megabase-sized characteristics such as
replication timing and chromatin organization [51,52]. However, local features influencing
mutation rates, such as non-B structure motifs, have only recently been identified through
an enrichment analysis at short genomic length scale, in combination with regression
models predicting mutation rates [49,50]. Density analysis of non-B structure forming
motifs at a small window size of 2-kilobases using WGS of 1,809 patients from 10 cancer
types clearly showed their enrichment at sites of somatic mutation [49]. Furthermore,
the increased mutability associated to non-B motif depends on the physical formation of
secondary structures. That is, the elevated mutation densities are domain-specific within
the non-B DNA structures and associated with biophysical characteristics such as a loop
length. For example, within inverted repeats that tend to form hairpins or crosses, loop
sequences exhibit more abundant substitutions than stem sequences. G4s have about 1.15
to 1.8 times higher mutation frequency in loops than in G-tracks. G4s with average loop
size of up to 3 nucleotides are more mutable than those with larger loops [49]. All these
statistical analyses support that non-B secondary structures were not simply associated
with increased mutation density but were causally implicated [49].

Similar results were reproduced in an independent study using deep whole genome
sequencing data from 300 individuals [50]. Even for large-scale regional variations in the
frequency of nucleotide substitutions at a 1-megabase window, non-B DNA structures
could explain more variation than any other predictors such as replication timing, histone
marking and distance to telomeres in multiple regression models. This showed that loci
capable of forming non-B DNA structures are a major driver of variation in nucleotide
substitution levels across the genome, at both small and large scales [50].

This significant contribution of G4s in mutation rates can also be attributed to the fact
that G4s exhibit a strong association with other large-scale factors influencing the muta-
tional landscape. For example, G4 structures are involved in functions of key architectural
proteins such as CTCF [53] and YY1 [54]. CTCF is known to cluster at the boundaries
of topologically associating domains (TADs) [53,55], and also mediates enhancer-promoter
interactions [56–58] through promoter-proximal binding [59,60]. In general, chromatin
organization, in which architectural proteins play a key regulatory role, has a major in-
fluence on regional mutation rates in human cancer cells [61]. Indeed, CTCF binding
sites are frequently mutated in cancers, including colon cancer, stomach cancer, and
melanoma [62–66]. G4s influence the regional variations of mutation rates associated
with CTCF, in that CTCF are preferentially located surrounding G4 which can strengthen
the insulation ability of CTCF binding sites [67]. An in vitro assay demonstrated that G4s
contribute to CTCF recruitment [68]. Another structural regulator of enhancer-promoter
loops, YY1 [54], is also a DNA G4-binding protein, and YY1-mediated long-range DNA
looping occurs through its recognition of the G4 structure [69].

G4 structures are also associated with replication timing, the first recognized genomic
feature related to the mutation rate in humans [70]. The DNA replication origins are
preferentially associated with an origin G-rich repeated element that potentially forms G4s,
and G4s are functionally important in replication initiation [71,72]. It is generally accepted
that chromatin organization and replication timing shape the mutational landscape of
cancer together [61,73,74], and are in fact associated with each other [75]. Recently super-
resolution imaging has shown that the spatiotemporal propagation of human replication
foci is mediated by CTCF-organized chromatin structures [76]. All these results suggest the
importance of G4s in the mutational landscape of the cancer genome.

The most correlated genetic structural element with G4s is a R-loop, a three-stranded
nucleic acid structure containing a DNA-RNA hybrid duplex and a displaced single DNA
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strand. This structure has received great attention due to growing evidence that it is
essential for gene regulation and DNA repair, despite being considered previously a
toxic by-product of transcription, triggering genomic instability. Such dual effects of R-
loop, as cellular regulators and genomic threats, have been extensively discussed in other
reviews [77–79]. The primary evidence for an association between R-loop and G4 was
provided by a study on ChIP-seq of R-loop (DRIP-seq), and G4. DRIP-seq peaks show a
prevalence at the 5’ and 3’ ends of GC-skewed, transcriptionally active loci [80–82], similar
to G4 ChIP-seq. More recent reports have shown that the formation of a G4 in one strand is
highly favored by a DNA:RNA hybrid duplex in the opposite strand, and vice versa [83–85].
This characteristic points to a novel structure, termed G-loop, containing a G4 on one strand
and an R-loop on the other, which is transcription-dependent [86].

In some cases, R-loop formation precedes and facilitates G4 formation [84,85]. In other
cases, G4 folding in the promoter region is independent of transcriptional activity, thereby
preceding transcription [87]. Although the detailed mechanism of G-loop formation has yet
to be fully elucidated, it is clear that R-loops and G4s are intertwined and can promote each
other during transcription. Their interplay during transcription may be position- or context-
dependent in that the terminal R-loop formation, in contrast to the promoter-proximal
R-loop, is not as highly associated with GC skew, thereby implying a different mechanism
of G-loop formation at each gene end [82]. It is likely that in the promoter-proximal
region with a high GC content, G4 folding precedes and facilitates R-loops, whereas in
the terminal region, R-loops promote G4 formation. The interrelation between G4s and
R-loops is not limited to transcription, but also exists when causing DNA damage [88]. G4
ligand-induced DNA damage and genome instability are mediated by R loops. The close
structural interplay between G4s and R-loops has been well documented elsewhere [89].

2.3. G4s Are Key Genomic Structural Elements in Transcriptional Regulation

From the beginning of G4 research in the early 2000s, the regulatory potential of
G4s on transcriptional activity has been an important motivation. The role of G4s in
transcriptional regulation has been strongly supported by reports on the down regulation
of individual oncogenes (e.g., MYC [28] and H-RAS [90]) by G4 stabilizing ligands (i.e.,
pyridostatin). The genome-wide enrichment of G4s in the promoter region [36,37,91]
also supports this hypothesis. The single-molecule visualization of G4s revealed that
dynamic G4 formation is associated with transcription, as G4 dynamics are disrupted by
the inhibition of transcription [40]. The same conclusion was derived by a genome-wide
interaction study between PQS and single nucleotide variation (SNV) and their impact
on transcription [92]. SNV in PQS can impact the G4 structure, thereby resulting in G4
variation (G4V). The majority of G4Vs overlap with gene regulatory elements, such as
transcription factor (TF) binding sites and enhancers, and G4Vs in the regulatory regions
have been reported to exhibit a significant influence on gene expression [92].

A growing number of studies even suggest that the G4 structure may be sufficient to
direct cell-type specific transcription, rather than simply involved in transcription. While
two cell lines have different G4-folding states in the same loci, high transcript levels are
consistently associated with G4-folding, and TF binding sites are highly enriched within G4
ChIP peaks [93]. This study concluded that promoter G4s and TFs cooperate to determine
cell-specific transcriptional programs [93]. A similar result was observed independently
by S. Balasubramanian’s group [87,94]. G4s operate as common binding hubs for many
different TFs to promote transcriptional output [94]. Furthermore, they provided evidence
that promoter G4 folding precedes transcription by showing that promoter G4 formation
does not depend on transcriptional activity; the transcriptional inhibition of the catalytic
subunit of PTEF-b did not cause statistically significant changes in the promoter G4 ChIP
signal at most of sites [87].

A recently revealed molecular mechanism of oxidative DNA damage-mediated tran-
scriptional activation provides an explanation for the transcriptional regulatory role of
G4 [95,96]. This is congruent with the previously known mechanism in which genera-
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tion of 8-oxo-7,8-dihydroguanine (8-OxoG) in a promoter region and a subsequent base
excision repair (BER) process are the essential initiating steps for transcription activa-
tion [97–99]. These regulatory processes have been observed for various transcriptional ac-
tivation, including NF-κB (nuclear factor kappa B) activation [100,101], and estrogen- [102],
hypoxia- [103], Myc- [104,105], and retinoic acid-induced transcription [106].

8-OxoG is generated site-specifically in the promoter regions of specific genes, because
the local reactive oxygen species (ROS) are generated by histone demethylation during
transcription initiation [98,107]. The oxidation of DNA by ROS mostly drives guanine
to 8-OxoG conversion because G-tracks have the highest oxidation propensity and the
duplex DNA can funnel electron holes to oxidation-susceptible sites [108]. When the
target promoter is marked with oxidized guanine, the BER of this 8-OxoG is initiated
by 8-Oxoguanine glycosylase I (OGG1), which cleaves 8-OxoG to generate an abasic
(apurinic/apyrimidinic, AP) site. Transcription induction was found to require OGG1 and
apurinic/apyrimidinic endoDNase I (APE1) [97–99]. In this context, the recent studies
provided a mechanistic link between G4 formation/stabilization and the repair process of
oxidized DNA in transcriptional activation [95,96].

The suggested model encompasses sequential molecular events (Figure 2) [95,96]: local
ROS generate 8-OxoGs from a promoter PQS; OGG1 cleaves the 8-OxoG to generate an AP
site; the AP site opens the DNA duplex and allows a G4 to fold; the G-Track having AP
site is replaced with a spare G-track, and the G4 structure is stabilized; APE1 binds to the
exposed AP site and recruits TFs. Gene activation is known to occur via the redox effector
function of APE1, which increases the DNA binding activity of TFs by modulating the
redox status of reactive Cys residues in the DNA-binding domain of TFs [109]. Many TFs,
such as NF-κB, AP-1, CREB, Egr-1, HIF-1a, and p53, are known to have their DNA-binding
activity regulated by this redox mechanism [109].

Figure 2. Proposed mechanism of G4/BER-mediated transcriptional activation. (A) Local ROS
generates 8-OxoG in the G-rich regions of the promoter, (B) which is removed by OGG1 to form an
AP site. (C) The AP site rearranges the DNA duplex into a G4 structure, and (D) a more stable G4 can
be formed by involving the fifth G track and looping out the AP site. (E) APE1 can bind the AP site
and recruit TFs.

Transcription by this mechanism strongly depends on the positional context of the
promoter G4s. According to a quantitative evaluation of expression levels using the
synthetic promoter PQS, transcription is either up- or down-regulated depending on the
location and the strand in which 8-OxoG or its following AP resides [110,111]. The presence
of G4 on the non-template strand was found to result in a higher expression level. Such
increased transcription in the presence of G4 on the non-template strand is due to the
formation of an R-loop on the opposite strand, that is, the formation of a G-loop [85].

In this genomic structural context of G4/BER-mediated transcription, expression
levels can be modulated by several factors. Representatively, the acetylation/deacetylation
of APE1 plays an important regulatory role, modulating the residence time of APE1 on the
G4 structure, thereby modulating transcription levels [96]. Therefore, p300 and SIRT1 are
important regulatory factors in G4/BER-mediated transcription, since p300 acetylates APE1
and SIRT1 deacetylates APE1 and promotes its dissociation from the G4 structure [112,113].

This mechanism is expected to be prevalent in various respects. First, the same
mechanism was demonstrated in the transcriptional regulation of other genes such as
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NTHL1 [95], KRAS [114], RAD17 [115], and PCNA [116]. The expression of APE1 and SIRT1
is also regulated by the G4-BER mediated mechanism [117,118]. In addition, previous
reports regarding transcriptional regulation by 8-OxoG and BER factors have already
accumulated for various transcription factor activities with a wide range of downstream
transcription activations [97–99]. The genome-wide profiling of G4s and the binding loci of
BER factors upon APE1 knockdown provides further evidence for the prevalence of this
mechanism [96]. Binding locations of G4-specific antibody and acetylated APE1 (acAPE1)
and OGG1 (acOGG1) significantly overlapped with differentially expressed genes following
APE1 knockdown [96]. On the other hand, genome-wide statistics of promoter PQS are
also noteworthy for estimating the prevalence of the mechanism. Among human gene
promoters, 42.7% contain PQSs [34], and more than 40% of all PQSs have five or more G
tracks [119]. Although fine details may differ, the overall mechanism of transcriptional
activation, which includes guanine oxidation in the promoter PQS and BER recruitment
accompanied by replacement of an AP carrying G-track with an extra G-track, appear
to be basically the same. Several reviews have discussed the interplay between guanine
oxidation and promoter G4 folding for transcriptional regulation [108,120,121].

3. The Role of BRCA1 in Resolving Regulatory G4s That Can Induce DNA Damage
3.1. Increased Levels of Transcriptional Regulatory G4s Can Cause DNA Damage

In the previous section, we summarized the role of G4s as a determinant of mutagene-
sis and a key genetic structural element for transcriptional regulation. Moreover, G4s are
significantly enriched in somatic CNVs [36,37]. This leads to speculation of a causal link
between tissue-specific transcriptional activity and genomic alterations, particularly CNVs,
in a G4-dependent manner. Indeed, several studies have reported significant correlations
between distinct transcriptional activity and somatic CNVs. For example, a study screened
proliferation regulators in multiple cell types and investigated whether they were asso-
ciated with recurrent focal regions of CNVs and aneuploidy patterns [122]. The profiled
proliferation drivers exhibited striking cell-type dependence and specific enrichment in
somatic CNVs of cognate tumors. These cell-type-specific proliferation drivers helped
predict tissue-specific aneuploidy patterns. This suggests that the tissue specificity in
proliferation-driving transcriptional control underlies somatic CNVs and CNV-associated
cancer driver selection in different cancers [122].

Furthermore, a comparative analysis of G4 ChIP-seq on 22 breast cancer patient-
derived tumor xenograft (PDTX) models suggests that the correlation between the tran-
scriptional program and CNVs arise in a G4 dependent manner [123]. This study profiled
differentially enriched G4 forming regions (∆G4Rs) in each PDTX, and investigated over-
laps of CNVs and ∆G4R enrichment in the binding sites of 134 TFs. As expected, ∆G4Rs
showed significantly enrichment in regions of CNV and SNV, as well as in the promoter
regions of highly expressed genes. ∆G4R fold enrichment in TF binding sites across PDTX
models revealed distinct TF programs that were differentially active across the PDTXs [123].

The causal relationship between G4s and genomic alterations has been well known by
the previous studies. G4s act as obstacles during DNA replication causing the stalling and
collapse of replication forks [124–126]. Double strand break (DSB) and broken forks are the
source of CNVs by non-HR repair mechanism [127]. Genomic instability caused by G4s has
been reported mainly in relation to the function of various helicases such as Pif1 [128] and
FANCJ [129], and has been well discussed in recent reviews [124,130]. However, since the
transcriptional regulatory role of G4 was only recently elucidated, it was not recognized that
G4-associated DNA damage could be associated with cell-type-specific transcriptional activity.

The first observation of the correlation among G4 and transcriptional alteration and
DNA damage was already made ten years ago through the genome-wide mapping of
damaged genes by the G4-stabilizing ligand, pyridostatin [131]. Cells treated with pyri-
dostatin exhibited transcription-and replication-dependent DNA damages, and ChIP-seq
analysis of the DNA damage marker GH2AX showed that pyridostatin targets genes con-
taining PQS clusters. Parallel expression profiling showed that GH2AX-positive genes
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showed significantly altered gene expression compared to the GH2AX-negative control
genes. This indicates a strong correlation among the alteration of the G4 dynamic structure
and transcriptional levels and DNA damage at specific gene loci [131]. The same result was
demonstrated using other G4 ligands, and DRIP-seq analysis further showed that R-loops
are involved in the interplay between DNA damage and transcriptional alteration in the
promoter G4-containing genes [88].

A correlation between DNA damages and co-transcriptional R-loops or G4s (most
probably G-loop) was also observed in hormone-induced transcription activation in breast
cancer cell lines treated with estrogen (E2, 17ß-estradiol) [132]. E2 induces DSBs in a
replication- and transcription-dependent manner. DRIP-seq analysis revealed that estrogen
exposure causes a rapid, global increase in R-loop formation in a transcription-dependent
manner, and genomic rearrangements are enriched in E2-responsive genes. E2-induced
R-loops were colocalized with DNA damage markers on chromatin and ribonuclease H
(RNase H) resolving R-loop reduced E2-induced DNA damage [132]. These results indicate
that replication-dependent E2-induced DNA damage results from these co-transcriptional
R-loops. Here, the co-transcriptional R-loops are actually G-loops. As mentioned before,
co-transcriptional R-loops are highly favored by G4s in the opposite strand [83–85], and
this study confirmed a significant overlap between the DRIP-seq peaks and the previously
profiled G4-forming regions [132].

All these indicate that gene-expression-related genomic stress, G4s or G-loops, is
cell-type specific and is responsible for DNA damage followed by CNVs.

3.2. The Accumulation of Transcriptional Regulatory G4s and DNA Damage Depends on the
BRCA1 Status and This Dependency Is Cell-Type Specific

How much of this transcription regulatory G4/R-loop is generated in basal level
is cell-type specific [133]. DRIP-seq analysis of distinct cell types of fresh normal breast
tissue showed that R-loops are more pronounced in luminal cell populations than in basal
and stromal cells, at transcription start sites and termination sites [133]. In addition, this
cell-type specific R-loop accumulation was more severe in BRCA1 mutation carriers than
in non-carriers. This finding implies that gene-expression-related genomic stress is higher
in BRCA1 mutation carriers and only in a certain cell-type such as luminal cells in breast
tissue. Although the positional overlap between R-loop and G4 was not evaluated in
that study, the observed DRIP peaks had a high GC skew, which is highly probable for
G-loop formation [133]. This result strongly suggests that BRCA1 is involved in regulating
R-loops/G4s and suppressing their accumulation.

The tumorigenic luminal-specific G-loop accumulation in breast tissue is linked to
RANK/RANKL-induced transcriptional activation for two reasons. First, TNBC originates
from luminal epithelial progenitors (LPs) [134–136], and the pathway of receptor activator
of NF-κB (RANK) and its ligand (RANKL) in LP cells is a critical contributor of TNBC
tumorigenesis [137–140]. In addition, RANK expression is luminal-specific, and RANK+
LP cell fraction is much higher in BRCA1 mutation carriers than in BRCA1 wild-type
individuals [139]. Indeed, it has been shown that NF-κB is persistently and autonomously
activated in a subset of BRCA1-deficient mammary luminal progenitors which drives
aberrant proliferation and an accumulation of DNA damage [141]. Second, as mentioned
above, transcription induced by NF-κB activation occurs via the G4/BER-mediated mecha-
nism [100,101].

In summary, certain transcriptional activities, such as NF-κB activation, produce
higher levels of transcriptional regulatory G4s, and consequently, a higher demand for G4
processing makes the BRCA1 status important for maintaining G4 levels and preventing
DNA damage. However, it has not been determined whether R-loop/G4 level is higher in
BRCA1-mutation carriers by E2-induced transcription, which also causes a large amount of
G4/R-loop. It may be so, since it is known that E2-induced gene expression is inhibited by
BRCA1 overexpression [142,143] in a p300-regulated manner [144].
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4. Consequence of BRCA1 Haploinsufficiency
4.1. BRCA1 Heterozygosity Cause a Cell-Type Specific Haploinsufficiency for Resolving G4s

BRCA1 involvement in the link between DNA damage and G4 accumulation was also
revealed by a study that evaluated the functional sufficiency of heterozygous BRCA1 in
histologically normal mammary tissue [145]. This was performed to identify a driving
factor to initiate the mammary tumorigenic process, as inherited mutations in BRCA1 are
known to cause specific molecular and cellular alterations in breast tissue even before
cancer development [146–149]. BRCA1 mut/+ retained normal functions of centrosome
number control, spindle pole formation, and satellite RNA suppression [145]. In addition,
there was no significant difference between BRCA1 +/+ and mut/+ for DNA damage
checkpoints, when assessing the proportion of DNA-synthesizing cells after UV-induced
DNA damage. The same result was observed for DNA repair function, assessed by RAD51
recruitment as an indicator of a key step in HR and sensitivity measurement to PARP
inhibitors. However, in the presence of replicating-stalling agents such as hydroxyurea
(HU) or UV radiation, BRCA1 mut/+ exhibited inefficient recruitment of phospho-RPA32
on chromatin, an abnormally high frequency of collapsed forks, and increased degradation
of the nascent replicating strand. Furthermore, in the presence of sufficient replication stress,
HR-DSB repair was also defective in BRCA1 mut/+ cells. This is known as “conditional
haploinsufficiency” of BRCA1 mut/+ for HR-DSB repair, wherein the pool of BRCA1
available for previously intact functions is reduced [145]. The limited quantity of BRCA1
may induce innate or conditional haploinsufficiency depending on the biological context
or environmental stimulus.

However, deficiency in SFR may not be simply a deficiency in SFR itself, but a con-
sequence of defective G4 resolution. When evaluating BRCA1 functional sufficiency, an
assessment for SFR was performed using the common replicating-stalling agents, HU
and/or UV [145]. Although HU is mostly known to deplete nucleotide pools by inhibiting
ribonucleotide reductase, which catalyzes the rate-limiting step in the biosynthesis of dNTP
precursors [150], a recent report suggested that HU not only depletes nucleotides, but
also induces G4 formation, followed by G4-dependent DNA damage, heterochromatin
formation, and perturbed gene expression [151]. Across the genome, chronic exposure to
HU results in an altered pattern of gene expression similar to that seen in cells lacking
the G4-unwinding helicases FANCJ, WRN, and BLM. The affected genes were enriched
in the G4 motifs [151]. In addition, when assessing the functional sufficiency of heterozy-
gous BRCA1 [145], global G4 accumulation and alterations in gene expression observed in
normal mammary epithelial cells from BRCA1-mutation carriers compared to wild-type
carriers [147,149], were overlooked. Therefore, G4 resolution may be the first defective
function of BRCA1 haploinsufficiency, and BRCA1 haploinsufficiency for SFR may be a
conditional insufficiency after the accumulation of unresolved G4s.

4.2. Altered Gene Expression Caused by BRCA1 Haploinsufficiency Can Lead to Cell-Type-Specific
Genomic Instability and Premature Senescence

Interestingly, rather than BRCA1 haploinsufficiency for SFR, haploinsufficiency for
G4 resolution causing altered gene expression seems to result in cell-type-specific genomic
instability [152]. Once G4s accumulate, haploinsufficiency for SFR is not limited to a certain
cell type, as observed in both fibroblasts and epithelial cells [145]. However, G4/R-loop
accumulation by BRCA1 haploinsufficiency and consequent alterations in gene expression
are cell-type-specific [133]. Among genes whose expression is altered by misregulated
G4s, key phenotypic regulators may be included [152]. BRCA1 haploinsufficiency leading
cell type-specific genomic instability and phenotype was examined in the primary cells of
disease-free breast and skin tissue from either BRCA1 mutant or wild-type carriers [152].
Prolonged passage of BRCA1 heterozygous cells showed cell type-specific phenotypes. Hu-
man mammary epithelial cells from BRCA1 mut/+ have been reported to exhibit increased
genomic instability, rapid telomere erosion, and premature BRCA1 haploinsufficiency-
induced senescence. Primary keratinocytes showed premature senescence, but were not
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associated with telomere dysfunction. Fibroblasts, either from the human mammary or
dermis, did not exhibit premature senescence [152].

This cell-type-specific phenotype caused by BRCA1 haploinsufficiency was found to
be related to NAD+ dependent deacetylase SIRT1 at molecular level [152]. A decrease
in the SIRT1 levels leads to the accumulation of acetylated H4K16 (histone H4 on lysine
16) and acetylated pRb, thereby resulting in telomere erosion, genomic instability, and
pRb-dependent premature senescence. This implies that the phenotype with premature
senescence and telomere erosion in the long-term culture of BRCA1 mut/+ cells is associated
with the misregulation of SIRT1 by BRCA1 haploinsufficiency [152]. SIRT1 is one of the
many genes altered by BRCA1 haploinsufficiency [147,149]. This protein-deacetylase is
involved in various cellular processes [153,154] including DNA damage repair and telomere
maintenance [155–157]. In addition, SIRT1 is a critical modulator of G4/BER-mediated
transcription by deacetylating APE1 [112,113], and its own expression is regulated by a
G4/BER-mediated mechanism [117,118]. Therefore, SIRT1 is a significant feedback factor
that affects G4/BER-mediated transcriptional regulation and phenotype. SIRT1 is known to
have an important and unique association with BRCAness tumors. Its expression level has
been reported to increase in a number of tumor types [153,158]; however, some cancers, such
as breast and ovarian, show down-regulated levels of SIRT1 [159,160]. The effects of SIRT1
on promoting senescence or negatively regulating its own expression in cells are known to
depend on the presence or absence of p53 [153]. It has yet to be elucidated whether SIRT1
down regulation and a high frequency of TP53 mutations in BRCA1-associated tumors
are correlated. However, it has been clearly demonstrated that BRCA1-deficient breast
cancers have lower levels of SIRT1 than the corresponding normal controls, and the ectopic
expression of SIRT1 has been reported to inhibit BRCA1 mutant cell growth and tumor
formation in a mouse model, but not in the BRCA1 wild-type [159].

In addition to SIRT1, BRCA1 deficiency alters the expression of many other factors
that can affect G4/BER-mediated transcription, such as NRF2, CYP1A1, RANKL, OGG1,
and APE1. Primary mammary epithelial cells from BRCA1-deficient mice show low levels
of Nrf2 expression, a master regulator of the cellular antioxidant response, and Nrf2-
transcriptional targeted antioxidant enzymes [161]. They determine the ROS levels and
redox status in cells which influence the oxidation of guanine and G4 folding. BRCA1 also
regulates estrogen metabolism-mediated DSB by repressing the transcription of estrogen-
metabolizing enzymes such as CYP1A1 in breast cells [162]. Regardless of the estrogen
receptor status, estrogen release can cause damage and genomic instability via catechol
estrogen metabolites [163,164]. Tissue-specific conversion to catechol estrogen metabolites,
along with the subsequent formation of ROS and unstable catechol estrogen intermediates,
was one of the early explanations for tissue-specific tumorigenesis due to BRCA1 deficiency
in estrogen responsive tissue [163]. In addition, BRCA1 haploinsufficiency upregulates
RANKL expression and cell proliferation [165], which contributes significantly to TNBC
tumorigenesis from the cell-of-origin [137,138], and RANKL inhibition markedly attenuates
tumor onset [139,140]. BRCA1 also regulates the transcription of major BER enzymes, such
as OGG1 and APE1 [166].

It is not yet known whether altered expression of these genes by BRCA1 haploinsuffi-
ciency is cell type-specific and whether such an alteration in the expression of a certain gene
contributes to a cell-type-specific phenotype. However, these suggest that defects in resolv-
ing transcriptional regulatory G4s cause transcriptional alterations in many genes, among
which a certain gene, such as SIRT1 [155–157], may be associated with a cell type-specific
phenotype as a context-dependent cancer driver.

4.3. BRCA1 Insufficiency Causes Multi-Level Heterogeneous Molecular and Cellular Alterations

BRCA1 heterozygosity can cause sequential conditional haploinsufficiency in the
following three distinct functions of BRCA1. First, BRCA1 haploinsufficiency for processing
G4s may result in altered gene expression even before malignant tumor onset in BRCA1
mutation carriers [146,147]. Second, if BRCA1 deficiency becomes more severe, stalled
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replication forks will accumulate and repair may not be sufficient [145]. Third, once BRCA1
haploinsufficiency results in defective SFR, the impaired stalled forks can leave more
deleterious DSBs [167] and CNVs by non-HR repair mechanism [127]. That is, a severe
accumulation of G4s can induce conditional haploinsufficiency for SFR or HR-DSB repair
sequentially leading to genomic instability. In addition to the conditional haploinsufficiency
for SFR and HR-DSB, the altered expression of certain genes, such as SIRT1 [155–157],
further contributes to genomic instability.

In addition to transcriptional alteration and genomic damage, the dysregulation of
the transcriptional regulatory G4s can cause epigenetic alterations, including changes of
histone marks and DNA methylation pattern. First, poor G4 processing during replication
leads to epigenetic instability in which epigenetic chromatin marks are not well transmitted
to daughter cells (see [168] and references therein). This is because the DNA helicase
and polymerase are uncoupled as the helicase continues to unwind the parental duplex,
even when the leading strand polymerase encounters a persistent G4 structure and is
blocked. Delayed replication of excessive single strand DNAs between the helicase and
the polymerase results in loss of parental histones that can be recycled during reestablish-
ment of chromatin. Parental histone recycling is important for maintaining the parental
expression status by propagating parental histone marks to newly formed chromatin after
replication [168].

In the other hand, DNA G4 structures mold the DNA methylome by sequestering
DNMT1 and locally inhibiting methylation at specific CpG islands [169]. In addition
to regulating DNMT1 transcription [170], this means that BRCA1 influences location-
specific, genome-wide methylation landscape by regulating G4s. This may account for the
epigenetic alterations such as a lower methylation level in CpG island promoters, observed
in BRCA1 deficient tumors [170–173]. Furthermore, the fact that unresolved G4s contribute
to both hypomethylation and DNA damage is also consistent with the existing correlation
between the breakpoints in chromosomal rearrangements and DNA methylation patterns
in breast cancer [174] and HGSC [175]. In breast cancer cells, chromosomal breakpoint
intervals colocalize with differentially methylated regions [174]. For HGSC, global DNA
hypomethylation (+) tumors had significantly higher levels of chromosomal instability
than global DNA hypomethylation (−) tumors, and notably, CNVs were enriched in
hypomethylated blocks [175]. The role of the G4 structure as a mediator of epigenetic
modification was recently documented in another review [176,177].

Multi-level alterations by BRCA1 haploinsufficiency for processing transcriptional reg-
ulatory G4s are illustrated in Figure 3. These alterations can be heterogeneous, depending
on the insufficiency level and intra-cellular spatial distribution of BRCA1. This may give
rise to varying feedback to G4/BER-mediated transcription, which may lead to additional
heterogeneous phenotype evolution. Furthermore, some altered genes, such as SIRT1, may
have their own functions associated with genomic instability and tumorigenesis, and may
therefore contribute to the evolution of distinct phenotypes.
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Figure 3. Model for tissue-specific tumorigenesis by BRCA1 deficiency. (A) How much of transcription
regulatory G4/R-loop is generated at basal level is cell-type specific. (B) High burden on G4 processing
causes multi-level molecular alterations by BRCA1 haploinsufficiency in the form of: (i) transcriptional
alterations, (ii) epigenetic alterations, and (iii) genetic alterations. (C) These alterations contribute to
phenotype evolution and modify the biological context of the cell by various factors, such as SIRT1, NRF2,
estrogen receptor (ER)-E2 signaling, and RANK-RANKL signaling. Clones with the same pattern of copy
number variations (CNVs) or single nucleotide variations (SNVs) expand as the tumor grows. One of the
clonal expansion models for CNV, the Crisis and stasis model [178], is shown.

5. Discussion

G4 is a determinant in shaping the cell type-specific transcription and the mutational
landscape of the cancer genome. The molecular mechanism of G4/BER-mediated transcrip-
tional activation explains (i) the cell-type specificity of transcriptional regulatory G4s and
(ii) the previously observed significant correlation between cell type-specific transcriptional
activities and genome-wide G4 landscape and somatic CNVs. When certain transcriptional
regulations that produces many G4s are activated in specific cells, the role of BRCA1 to
resolve G4s becomes important. If the amount of G4 to be processed is greater than what
can be processed by intracellular levels of BRCA1, genomic and epigenetic alterations
occur by the resulting persistent G4s. This explains the cell-type specificity of BRCA1
haploinsufficiency seen in BRCA1 mutation carriers and provides important insights into
BRCA1-deficient tumors.

This molecular mechanism of cell type-specific tumorigenesis by BRCA1 deficiency
provides an integrated understanding of BRCA1-associated tumors. Until now, deficiency
of HR-DSB repair has been the only considerable clinical factor in BRCAness tumors. How-
ever, as it is still correlated with HR-DSB repair deficiency, but not limited to this pathway,
and addressing an underlying molecular mechanism, this integrated view may extend the
possibilities of anticancer therapy or cancer prevention. Furthermore, the mechanism by
which multi-level alterations are induced by defective G4 processing provides molecular
insights into the nature of tumor clonal evolution. In the case of TNBC, it is known that
CNV and aneuploid rearrangements remain stable after an early short burst of crisis, while
point mutations evolve gradually, generating an extensive clonal diversity with a much
higher mutation rate than ER+ tumor [179,180].

Further questions might emerge, such as whether this pathogenesis is valid for all
BRCAness tumors, even in the absence of pathogenic alterations of BRCA1. There are
reports that a marked increase in the needs for BRCA1 causes BRCAness tumor formation
in normal BRCA1 carrier or in tissues other than in breast or ovary tissue. For instance,
the ectopic expression or endogenous activation of heterochromatin-encoded satellite
RNA phenocopied BRCA1-deficient cells and promoted breast cancer formation. This is
associated with the insufficient function of BRCA1 by binding to satellite RNAs [181,182].
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Ewing sarcoma, due to EWS-FLI1 fusion, also exhibits a phenotype similarity to BRCA1-
deficient tumors [183]. Although Ewing sarcoma cells showed robust BRCA1 expression
with no known mutations, HR was impaired in Ewing sarcoma. It was also demonstrated
that this was highly associated with R-loop accumulation, and BRCA1 overexpression
restored homologous recombination [183].

The recurring question of how CNVs are related to tumor progression, which has
been studied primarily in terms of its impact to gene expression [184–187], can also be
reconsidered. Rather than CNVs as a variation of gene dosage that changes the expression
levels of genes with some degree of a genetic compensation [188], the correlation between
altered gene expression and CNVs should be considered in the context of both originating
from the same cause, unresolved G4s. Because G4 is a key element for transcriptional
regulation, an altered transcriptional activity, implying misregulated G4s, is more likely to
be responsible for CNVs in BRCAness tumors. Then in turn, this suggests considering how
the generated CNVs change G4 structures and gene expression via a G4/BER-mediated
mechanism. Given the crucial role of G4s in 3D genome organization through interactions
with key architectural proteins [67–69], this is in line with recent views of analyzing CNVs
in terms of rearrangement in which distant regions of the genome are brought together [189].
In recent years, many similar studies have been conducted with keywords such as enhancer-
hijacking, TAD disruption, 3D genome rewiring, and insulator dysfunction [189–192].

In addition, because the RANK/RANKL pathway, that is, NF-κB activated transcrip-
tion, in LP cells is a critical contributor to TNBC, an emerging question is whether BRCAness
correlates with deficiency of R-loop/G4 processing and NF-κB activated transcription at
the pan-cancer level. If not, the next question is which transcriptional activation, other than
NF-κB activated transcription, causes high G4 levels. Additionally, how high frequencies
of TP53 mutation and G4/BER-mediated transcriptional activation are correlated needs to
be elucidated.

This cell type-specific tumorigenic mechanism of BRCA1 deficiency reflects the target-
independent and molecular mechanism-based role of BRCA1 in transcriptional regulation.
A similar concept was proposed for the oncoprotein MYC family [193]. In a recent review
of the interactomes of MYC and MYCN, the function of MYC was addressed from new per-
spective, focusing on the mechanisms by which MYC proteins modulate transcription [193].
The function of MYC has been described as a stress resilience of basal transcription, in-
cluding promoting transcription termination upon the stalling of RNA polymerase II
(RNAPII) and coordinating transcription elongation with DNA replication and cell cycle
progression. This may be an oncogenic ability of MYC, which promotes tumorigenesis
independently of either global or specific changes in gene expression [193]. Incidentally,
the target gene-independent functions of these two proteins, the MYC family and BRCA1,
are interrelated. BRCAness tumors exhibit high levels of MYC amplification [5,6]. MYC is a
neighboring node with BRCA1 in the genetic interactome map for high-level somatic CNVs,
and one of the top genes with the largest copy number alteration [194]. Since 8-OxoG in
the promoter and BER processes are essential for initiation of MYC-mediated transcrip-
tion [104,105], MYC is likely to participate in the G4/BER-mediated mechanism. Moreover,
when MYCN fails to release RNAPII from transcriptional pause sites, MYCN recruits
BRCA1 to promoter-proximal RNAPII-stalled regions for transcriptional activation [195].

Returning to the discussion of the target-independent and molecular mechanism-
based role of BRCA1, the tissue-specific tumor susceptibility of BRCA1 cannot be explained
without considering the detailed molecular mechanisms of biological processes in which
BRCA1 is involved and its molecular functions within these processes. The best-known
biological processes in which BRCA1 is involved are DNA damage repair and replication
fork protection [13,196]. Since G4s are obstacles in DNA replication that cause DNA
damage, it was previously known that DNA helicases processing G4s are involved in these
biological processes [197]. However, a direct association between G4s or DNA helicases
and the function of BRCA1 was only recently reported. Recent studies have shown that
BRCA1 is required for DNA damage repair in the form of a complex with helicases that
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resolve G4s and R-loops, such as senataxin (SETX) [198,199] or DHX9 [200,201]. These
BRCA1-DHX9 or BRCA1-SETX complexes play an important role for DSBs occurring at
transcriptionally active loci to be preferentially repaired by HR [199,201]. The molecular
mechanism of DNA repair and replication restart in the presence of G4s or R-loops is very
important for understanding cell-type-specific tumorigenesis by BRCA1 deficiency, but the
details remain to be elucidated.

In this paper, we reviewed the association of BRCA1 with transcriptional regulatory
G4s, considering recent advances on the cancer genome and fundamental cellular processes
on DNA such as transcription and DNA replication. Tissue-specific tumorigenesis by
BRCA1 deficiency can be explained by cell type-specific levels of transcriptional regulatory
G4s and the role of BRCA1 in resolving it. Comprehensive consideration of the conse-
quences of BRCA1 deficiency in relation to G4s at multi-omics allows us for integrated
understanding of individual reports about BRCAness tumors. This molecular mecha-
nism of cell type-specific tumorigenesis by BRCA1 deficiency will provide new insights
into BRCAness tumors, which take us a step further in the direction of developing novel
therapeutic and preventive strategies.
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