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Abstract

Triosephosphate isomerases (TPIs) from Taenia solium (TsTPI) and Schistosoma mansoni

(SmTPI) are potential vaccine and drug targets against cysticercosis and schistosomiasis,

respectively. This is due to the dependence of parasitic helminths on glycolysis and because

those proteins elicit an immune response, presumably due to their surface localization. Here

we report the crystal structures of TsTPI and SmTPI in complex with 2-phosphoglyceric acid

(2-PGA). Both TPIs fold into a dimeric (β-α)8 barrel in which the dimer interface consists of

α-helices 2, 3, and 4, and swapping of loop 3. TPIs from parasitic helminths harbor a region

of three amino acids knows as the SXD/E insert (S155 to E157 and S157 to D159 in TsTPI

and SmTPI, respectively). This insert is located between α5 and β6 and is proposed to be

the main TPI epitope. This region is part of a solvent-exposed 310–helix that folds into a

hook-like structure. The crystal structures of TsTPI and SmTPI predicted conformational

epitopes that could be used for vaccine design. Surprisingly, the epitopes corresponding to

the SXD/E inserts are not the ones with the greatest immunological potential. SmTPI, but

not TsTPI, habors a sole solvent exposed cysteine (SmTPI-S230) and alterations in this res-

idue decrease catalysis. The latter suggests that thiol-conjugating agents could be used to

target SmTPI. In sum, the crystal structures of SmTPI and TsTPI are a blueprint for targeted

schistosomiasis and cysticercosis drug and vaccine development.

Author summary

Because of the worldwide prevalence of schistosomiasis and cysticercosis, it is critical to

develop drugs and vaccines against their causative agents. The glycolytic enzyme triose-

phosphate isomerase (TPI) is a dual-edged sword against diseases caused by parasitic hel-

minths. This is because helminths heavily depend on glycolysis for energy and because the
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surface localization exhibited by TPIs that elicits an immune response against those

organisms. Here we provide the crystal structures TPIs from Taenia solium and Schisto-
soma mansoni as a first step for vaccine and drug design. As a proof of concept we found

that modifications in the single solvent exposed cysteine of TPI from S. mansoni decreases

catalysis, making this enzyme a novel target against schistosomiasis.

Introduction

Helminths are parasitic worms responsible for diseases that collectively affect one-third of the

human population [1–3]. Helminths are divided in two phyla: nematodes and platyhelminths.

Nematodes include intestinal and filarial worms, whereas platyhelminths include flukes (trem-

atodes) and tapeworms (cestodes) [4, 5]. Species from each phylum are associated with devas-

tating human diseases. For instance, infection with the platyhelminth Taenia solium, may

result in cysticercosis, a major cause of epilepsy in developing countries [6, 7] and nematodes

from the genus Schistosoma, are the causative agents of schistosomiasis (snail fever or bilhar-

zia) in humans [8]. Schistosomiasis in domesticated animals increases livestock morbidity and

mortality resulting in economical losses specially in Asia and Africa [9].

Helminths depend on glycolysis for energy production, and several central metabolic

enzymes from these parasites are candidates for drug design and vaccine development [10–

12]. Among those enzymes, triosephosphate isomerase (TPI) is a widely studied target for

rational drug design in protozoan parasites[13–19]. During glycolysis, TPI interconverts glyc-

eraldehyde-3-phosphate and dihydroxyacetone phosphate with near diffusion-limited rates

[20], a reaction that is necessary for energy production and to build precursors for the biosyn-

thesis of amino acid and lipids and to prevent the accumulation of dihydroxyacetone phos-

phate that drives the accumulation of toxic methylglyoxal [21, 22]. TPIs display a (β/α)8 barrel

or TIM-barrel fold and their active site consists of three invariable catalytic residues (Lys, His,

and Glu)[23, 24]. Mutants that affect dimerization abrogate enzymatic activity, leading to the

concept that TPIs are obligated dimers [25–28]. TPI activity is essential in amitochondriate

parasites and in organisms, such as helminths or trypanosomatids, that heavily depend on gly-

colysis [29]. Besides their metabolic role, TPIs from other parasites like Trichomonas vaginalis,
Paracoccidioides brasiliensis, and Staphylococcus aureus are involved in cell adhesion [30–32].

Upon infection, TPIs from helminths elicit an antibody response as this protein localizes on

the surface of the parasite or is secreted [33–36]. TPI is a vaccine candidate against S. japoni-
cum infection in mice, buffaloes, and pigs [10, 11, 34, 37, 38]. Furthermore, a chimeric vaccine

based on the TPI and the heat shock factor 70 protein of S. japonicum significantly reduced the

infection symptoms in animals [38]. Antibodies prepared against TPsI from T. solium and S.

mansoni inhibit their catalytic activities [39–41]. These results suggest that TPI is potential

component as a vaccine candidate against cysticercosis and schistosomiasis.

Phylogenetic analysis indicates that TPIs from parasitic flatworms harbor a three amino

acids motif (SXD/E) not present in TPIs from non-parasitic flatworms or TPIs from the hosts.

This region is a putative target to design vaccines or drugs against schistosomiasis and cysticer-

cosis [42]. Although triosephosphate isomerases are a possible target for vaccine and drug

design against helminth associated diseases, the only structural information of a triosepho-

sphate isomerase from a helminth is the one from the trematode Opisthorchis viverrini
(OvTPI) [43]. Here we determined the crystal structures of TPIs from Taenia solium (TsTPI)

and Schistosoma mansoni (TsTPI) in complex with their inhibitor 2-phosphoglyceric acid
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(2-PGA) to assess whether those structures could be used as direct scaffolds against cysticerco-

sis and schistosomiasis.

Methods

TsTPI and SmTPI subcloning and protein purification

The nucleotide coding sequences of TPI from T. solium (TsTPI) and S. mansoni (SmTPI)

(GenBank: AAG21132.1 and XP_018647623 respectively) [44, 45] were codon optimized and

synthetically synthesized for their expression in E. coli (S1 Table). The synthetic genes were

subcloned into the Nde I and Bam HI restriction sites of a modified pET19 vector. Both pro-

teins were expressed in an E. coli strain devoid of its endogenous triosephosphate isomerase

gene [46] and purified following the protocol for Trichomonas vaginalis TPIs [47]. Recombi-

nant TPIs have three additional amino acids (Gly, Pro, and His) before their initial N-terminal

methionine. Proteins were stored in a buffer containing 100 mM TEA pH 7.4, 50 mM NaCl,

2mM DTT, and 1mM EDTA at 4˚C for no more than two weeks. TPIs were reduced previ-

ously to all biochemical assays with 20 mM dithiothreitol (DTT) for 1 h at room temperature.

Excess DTT was removed by using a prepacked Sephadex G-25 column.

Enzyme kinetics and in vivo complementation assays

Catalytic activity was measured in the direction of glyceraldehyde 3-phosphate (G3P) to dihy-

droxyacetone phosphate (DHAP) by a coupled enzymatic assay assisted by α-glyceropho-

sphate dehydrogenase (α-GDH) [48]. Assays were performed in 0.1 M TEA-HCl pH 7.4, 10

mM EDTA, 0.2 mM NADH, 1 μg α-GDH, and 1 mM of D-L glyceraldehyde 3-phosphate.

Enzymatic reactions started by addition of SyTPI or TsTPI and enzymatic activities were cal-

culated by the decrease in absorbance at 340 nm at 21 ºC. The determination of the kinetic

constants, KM and kcat, was performed varying G3P concentrations from 0 to 5 mM. In vivo
complementation assays were conducted on a Δtpi BL21 DE3 E. coli strain as previously

described [46, 47].

Protein crystallography and structural determination

Concentrated TsTPI and SmTPI (20 mg/ml) were incubated with 10 mM of 2-phosphoglyceric

acid (2-PGA) for 30 minutes on ice in protein storage buffer. Crystallization trails were assayed

employing the sitting drop method using 1 μl of protein-inhibitor complex and 1 μl of the res-

ervoir solution. Pyramidal crystals of TsTPI appeared after 2 days in a reservoir solution con-

taining 0.04 M potassium phosphate monobasic and 16% w/v polyethylene glycol 8,000,

whereas SmTPI crystals appeared overnight in a solution containing 0.05 M cesium chloride,

0.1 M MES monohydrate pH 6.5, and 30% v/v Jeffamine M-600. TsTPI crystals were dipped

into a cryo-protectant solution containing 20% of glycerol, whereas SmTPI crystals were

directly taken from the crystallization drop and both flash-frozen in liquid nitrogen. Diffrac-

tion was collected on a Micromax 002+ diffractometer (Rigaku) equipped with a sealed tube

conventional X-ray source. A single dataset was integrated and scaled using XDS and XSCALE

respectively [30]. Phases were solved by molecular replacement using the program PHASER

[31] and the crystal structure of TPI from Litopenaeus vannamei [49] as a search model. Initial

model and refinement were executed using COOT and PHENIX. Structural coordinates were

deposited with PDB accession numbers 6OOG and 6OOI, for TsTPI and SmTPI, respectively

(S2 Table).
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Fluorescence-based thermal-shift assay (TSA)

TSA was performed on a real time PCR device (Step One Instrument 48 wells, Applied Biosys-

tems), accordingly to published protocols [50]. Briefly, purified proteins were diluted in 25

mM Tris buffer pH 8.0, 100 mM NaCl to a final concentration of 4 μM. Nine microliters of

4 μM protein solution were mixed with 1 μL of Sypro Orange dye 20X. The final concentration

of Sypro Orange dye in the sample was 2X and the final volume was 10 μL. Excitation was at

490 nm and fluorescence was recorded at 575 nm. The melting curve was set from 25 to 95˚C,

increasing the temperature by 1˚C each two minutes. Data were analyzed using the Protein

Thermal Shift software from Applied Biosystems. Assays, performed in triplicate.

2-nitro-5-thiocyanobenzoic acid (NTCB) cysteine footprinting

NTCB cleavage was performed as previously described [51]. Purified proteins were incubated

for 1 hour at 37˚C in reduction buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl and 5 mM

DTT) to remove disulfide bonds. Reduced proteins were dialyzed against 50 mM Tris-HCl pH

8.0 and 100 mM NaCl to remove DTT. A 10-fold molar excess of NTCB over protein cysteine

content was added to each sample. After incubation of 2 hours at 20˚C proteins were dialyzed

against sample buffer to remove non-reacted NTCB. For denaturation, proteins were buffer

exchanged into unfolding buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl and 5 M urea).

Cleavage was initiated by raising the pH of the sample to pH 9.0 with 1 M NaOH. The reac-

tions were incubated overnight at 37˚C, stopped by addition of 3 mM β-mercaptoethanol and

analyzed by SDS-PAGE.

Spectrophotometric determination of reactive thiols

The number of free thiols of SyTPI and TsTPI were determined spectrophotometrically with

5,50-Dithiobis(2-nitrobenzoic acid) (DTNB) [52]. For this assay 90 μL of previously quantified

protein was added to a solution containing 200 μM of DTNB (SIGMA, USA) in 100 mM

Na2PO4 pH 8.0. Absorbance at 412 nm was determined after 5 min. of incubation at room

temperature. A L-cysteine calibration curve was used to calculate the concentration of titrated

sulfhydryl groups.

Site-directed mutagenesis

Residue TsTPI-C222 was mutated to Asp (D), Tyr (Y), Lys(K), and Ser (S) by site directed

mutagenesis using the Q5 protocol from New England Biolabs and confirmed by Sanger

sequencing.

Results

Multiple Sequence Analysis and Purification of TsTPI and SmTPI

TPIs exhibit a similar length in their secondary structural elements and are not prone to inser-

tions or deletions [53]. TsTPI and SmTPI share 59% amino acid identity and a distinctive fea-

ture is the presence of a region of three amino acids, (S155 to E157 and S157 to D159, in TsTPI

and SmTPI, respectively) conserved among flatworms that is not present in HsTPI and non-

parasitic helminths [42]. (Fig 1A). Both TsTPI and SmTPI contain six cysteines that could

serve as targets for rational drug design using thiol-conjugating agents.
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Kinetic properties and biophysical characterization of TsTPI and SmTPI

SmTPI and TsTPI were purified to homogeneity with a yield of approximately 5 mg/ml after

two purification steps (S1 Fig). Steady-state kinetics of recombinant TsTPI and SmTPI show

that those enzymes present similar kinetic profiles to those previously reported and with the

activity ranges of TPIs from Fasciola hepatica and Brugia malayi [33, 44, 45, 54, 55] (Table 1).

SmTPI has a melting temperature of 82 ºC and Fasciola hepatica TPI (FhTPI) of 67 ºC [45,

54]. To ask if these high melting temperatures are a common feature in TPIs from helminths,

we measured the melting point of TsTPI and SmTPI. Our analysis indicates that SmTPI and

TsTPI exhibit a Tm of 75 and 57 ºC, respectively. (Fig 1B). The thermal stabilities observed by

FhTPI and TsTPI are similar to the melting temperature exhibited by HsTPI and yeast TPI

(ScTPI), that are 66.2 and 63˚C, respectively [56] (Table 2). Thus, the high melting tempera-

ture displayed by SmTPI is not conserved among TPIs from other helminths that exhibit simi-

lar melting temperatures to TPIs from other mesophilic organisms.

Crystal structures of TsTPI and SmTPI

We solved the crystal structures of TsTPI and SmTPI in complex with the inhibitor 2-PGA at

2.1 and 2.3 Å, respectively (Fig 2). TsTPI crystallized as one monomer per asymmetric unit

that forms a biological dimer with a symmetry-related molecule, whereas SmTPI contained 8

monomers (or 4 dimers) in its asymmetric unit. The electron density for all 250 and 253

amino acids of TsTPI and SmTPI, respectively, are visible in their electron density maps and

the 2-PGA inhibitor is bound in all monomers. The all-atom rmsd (root mean square devia-

tion) between both TsTPI and SmTPI is 0.572 Å. TPIs are dimeric enzymes with a large buried

accessible area. The total accessible area in the dimeric SmTPI and TsTPIs as dimers is 18,610

Å2 and 19,402Å2, respectively [57]. SmTPI and TsTPI display dimer surface interface areas of

1567 and 1018 Å2 per monomer, respectively, that compares with the surface interface area of

1681 Å2 of HsTPI [58]. As in other TPIs, the dimer interactions are mainly held by inter-sub-

unit contacts between loop 3 of one subunit with a hydrophobic surface from the other subunit

(Fig 2A and 2B). In TIM-barrels, the loops located after the β-strands assemble the front or

catalytic part of the barrel and the loops situated after the α-helices assemble the posterior or

structural part of the barrel. In the front part of the barrel, the essential catalytic amino acids

acid of TsTPI (K12, H94, E167) and SmTPI (K14, H96, E169) are positioned to directly

Fig 1. Structural alignment and thermal stability of helminths and human TPIs. A) Amino acid sequence alignment of TPIs from T.

solium, S. mansoni, O. viverrini, and H. sapiens. The three invariable catalytic amino acids are colored in blue. Residues K12, H94, E167

correspond to T. solium and K14, H96, E169 are from S. mansoni. Cysteine residues and the SXD/E motif are colored in red. B) Thermal

unfolding curves of TPIs from T. solium, S. mansoni, and H. sapiens measured by a fluorescence-based thermal-shift assay. The curves

show the first derivative of the changes in fluorescence. For these data, the Tm is calculated as the inflection point in the curve. Data were

produced in triplicate.

https://doi.org/10.1371/journal.pntd.0007815.g001

Table 1. Steady-state kinetic parameters of recombinant TsTPI and SmTPI in comparison to HsTPI.

Enzyme Km(mM) kcat(s-1) kcat/Km(M-1 s-1) Fold decrease

HsTPI 0.61 ± 0.02 4010 ± 6.54x106 -

TsTPI 0.31 ± 0.03 993 ± 44.0 3.15x106 -

SmTPI 0.48 ± 0.07 2872 ± 138 5.80x106 -

SmTPI-C221S 0.87 ± 0.12 2494 ± 196 2.84x106 2.04

SmTPI-C221K 2.57 ± 0.93 1396 ± 312 5.41x105 10.7

SmTPI-C221Y 1.60 ± 0.50 875 ± 145 5.45x105 10.6

SmTPI-C221D 2.84 ± 0.88 1215 ± 205 4.27x105 13.5

https://doi.org/10.1371/journal.pntd.0007815.t001
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interact with the 2-PGA inhibitor (Fig 2A and 2B). The SXD/E insert is located in the poste-

rior part of the barrel between α5 and β6. In both SmTPI and TsTPI the SXD/E insert folds as

a 310-helix that connects α5 and β6, whereas this secondary structural element is absent in

other TPIs like HsTPI (Fig 2C)

Closed conformation of TsTPI and SmTPI

Crystal structures of TPIs in the presence and absence of ligands, have shown that in the absence

of substrate analogs TPIs adopt an “open” conformation, whereas in the presence of ligands, TPIs

exhibits a “closed” conformation in which loop 6 moves towards the active site [60–62]. Loop 6 is

a highly dynamic structural element that alternates between different conformers. A structural

superposition of TsTPI and SmTPI (crystallized in the presence of 2PGA), with the crystal struc-

ture of TPI from the parasitic helminth Opisthorchis viverrini (OvTPI) (crystallized in the absence

of substrate [43]), shows that the main differences between these structures is related to the orien-

tation of loop 6 (Fig 3A). In TsTPI and SmTPI, loop 6 adopts a “closed” conformation necessary

for catalysis. The closed conformation is recognized by a 7.5 Å displacement of residue G175 at

the tip of loop 6 in TsTPI with respect to the corresponding residue in OvTPI (G177) (Fig 3B).

No crystallographic contacts are observed in residues near loop 6 in TsTPI and SmTPI, support-

ing the role of substrate binding in promoting the closed conformation. The universally con-

served catalytic residues Lys, His, and Glu are located in identical positions in TsTPI and SmTPI

and are in an optimal position to interact with the substrate analog (Fig 3A). As in other TPIs,

residues from loop 6 interact with the conserved tyrosine and serine residues from the YGGS

motif of loop 7 via hydrophobic and hydrogen bond interactions (Fig 3B) [63, 64]. Accordingly,

the hydroxyl group of Ser 213 in TsTPI and SmTPI interacts with the substrate analog, whereas

in OvTPI the hydroxyl group of this residue moves away from the substrate (Fig 3B). The crystal

structures of helminthic TPIs are consistent with the role of loops 6 and 7 to modulate structural

rearrangements necessary for substrate binding and catalysis.

Structural comparison of the SXD/E insert

The three amino acid SXD/E insert between β6 and α6 generates a distinctive solvent surface

area in those enzymes (Fig 4A). In HsTPI and non-parasitic helminths β6 and α6 are con-

nected by a short 310-helix (D156-K159) (Fig 4B) [42]. In TPIs from helminths this 310 helix

consists of seven amino acids (residues S155 to K161 in TsTPI; S157 to R163 in SmTPI and

S157 to H163 in OvTPI) (Fig 4B). The character of the serine and acidic amino acids (aspartate

or glutamate) is conserved. Both SmTPI and OvTPI harbor an alanine in the middle of the

SXD/E insert, whereas TsTPI harbors a lysine (Figs 1A and 4B). In SmTPI, the 310-helix is sta-

bilized via hydrogen bond interactions between residue E160 with residues S157 and Q115,

and in TsTPI residue S155 forms a hydrogen bond with residue D117 (Fig 4C and 4D). These

Table 2. Melting temperatures of Wild-type and mutant TPIs.

Enzyme Tm,˚C

HsTPI 61.0 ± 0.7

TsTPI 57.0 ± 0.5

SmTPI 75.0 ± 0.1

SmTPI-C221S 74.5 ± 0.3

SmTPI-C221K 69.8 ± 0.2

SmTPI-C221Y 70.7 ± 0.4

SmTPI-C221D 69.1 ± 0.6

https://doi.org/10.1371/journal.pntd.0007815.t002
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interactions contrast with the hydrogen bond interactions between residues S157 and Q115 in

OvTPI [43]. In SmTPI, residue E160, located one amino acid after the SAD insert, forms a

hydrogen bond with residue Q115. This amino acid mediates a hydrogen bond network

between the SXD/E insert and αhelix 4. In TsTPI residue S157 forms a hydrogen bond

Fig 2. Crystal structures of TsTPI and SmTPI in comparison to HsTPI. A) Ribbon representation of SmTPI. Monomer A is

colored in magenta and monomer B is colored in black. Residues corresponding to the SXD/E motif are colored in orange. The

2-PGA inhibitor is colored in red and represented as spheres. B) Ribbon representation of SmTPI. Monomer A is colored in

green and monomer B in black. The SXD/E motif is also colored in orange. C) Ribbon representation of HsTPI. Monomer A is

colored in blue. In this crystal structure the inhibitor 2-PGA is bound in only one subunit [59]. The right part of the figure

shows a magnification of monomer A for SmTPI, TsTPI, and HsTPI. Loop 3, involved in the assembly the dimer interface, is

colored in red. The conserved structural secondary elements are labeled only for SmTPI.

https://doi.org/10.1371/journal.pntd.0007815.g002
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interaction with residue D117 that is located two amino acids after the analogous Q115 residue

of OvTPI (Fig 4C and 4D).

Conformational epitope prediction of TsTPI and SmTPI

We used the program ElliPro [65] to interrogate the crystal structures of TsTPI and SmTPI for

linear and conformational epitopes (Fig 5). A total of 5 linear epitopes with a score greater

than 0.7 are predicted to be present in TsTPI and SmTPI. Those 5 linear epitopes are con-

served between TsTPI and SmTPI, although their indicators as probable elicitors of an

immune response are not the same (Fig 5). The linear epitopes include: 1) a segment of loop 3

(residues 65 to 78 in SmTPI and 66 to 77 in TsTPI), 2) a 310 helix that connects β5 with α5 (res-

idues 131 to 139 in SmTPI and 129 to 137 in TsTPI), 3) an α310 helix located between α6 and

β7 (residues 197 to 203 in SmTPI and 195 to 201 in TsTPI) 4) the C-terminal of α1 and the

loop that connect this α-helix with β2 (residues 27 to 37 in SmTPI and 25 to 35 in TsTPI) and

5) the α310 helix that harbors the SXD/E inserts, 153 to 159 in SmTPI and 153 to 157 in TsTPI

(Fig 5). The epitope with the lowest score predicted to elicit immune response corresponds to

the SXD/E inserts in both SmTPI and TsTPI (SmL5 and TsL5). A structural analysis using the

crystal structure of HsTPI in complex with 2-PGA also produced 5 linear epitopes with a score

higher than 0.7 (S2 Fig). From those 5 epitopes, only one epitope is conserved between HsTPI

and TPIs from S. mansoni and T. solium. This epitope corresponds to the C-terminal part of

α1 and the loop that connects this α-helix with β2 (residues 26 to 36 in HsTPI) (S1 Fig). This

observation suggests that linear epitopes STPIL1, STPIL2, STPIL3 and TsTPIL1, TsTPIL2, TsTPIL3

could be used in combination with the previously characterized SXD/E derived epitopes

(SmL5 and TsL5) to elicit an immune response against T. solium and S. mansoni.

Structural rational for SmTPI inhibition by thiol conjugating agents

TsTPI and SmTPI harbor 6 cysteine residues in their primary sequence (Fig 1A). Accordingly,

to the crystal structures of TsTPI and SmTPI, the only thiol group that is partially solvent

Fig 3. Closed and open conformations of TPIs from helminths. A) Close-up view of the active site of TsTPI and SmTPI in comparison to OvTPI.

Structural alignments of TPIs from helminths solved in the presence of 2-PGA (TsTPI and SmTPI) and in its absence (OvTPI). The loop 6 and β-stand 7

of TsTPI and SmTPI are colored in yellow, whereas in OvTPI these structural elements are colored in orange. The conformational change in loop 6 results

from a hinge motion in the presence of substrate. B) Substrate binding assembles the active site in helminth TPIs. Ribbon representation of residues

corresponding to loops 6 and 7 in OvTPI and TsTPI. The figure illustrates the positions of residues TsTPI-S213 and SmTPI-S215. The position of the

conserved YGGS motif of the phosphate binding loop are colored in blue and cyan. The active site amino acids of TsTPI are in a ball-stick representation

and black colored.

https://doi.org/10.1371/journal.pntd.0007815.g003
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exposed in TsTPI and SmTPI is the one from residue C221 from SmTPI (Fig 6A). Although

residues SmTPI-C89, TsTPI-C85, TsTPI-C87, and TsTPI-C45 have their Cβ side chain or

main chain exposed to the solvent, their thiol groups are completely buried (Fig 6A and 6B).

Fig 4. Structural localization of the SXD/E insert in TPIs from helminths. A) Surface representation of human and

helminth TPIs focusing on the immunogenic SXD/E insert. The hook-like structure that adopts the SXD/E insert in

both SmTPI and TsTPI is colored in orange B) Ribbon representation of the α6, 310-helix, and β6 in representative

TPIs. The SXD/E insert of SmTPI and TsTPI are colored in orange and in yellow for OvTPI. C and D) Close view of

the hydrogen bond interactions that stabilize the SXD/E insert in SmTPI and TsTPI.

https://doi.org/10.1371/journal.pntd.0007815.g004
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The number of cysteines harboring thiol accessible groups in TsTPI and SmTPI was deter-

mined by the use of 5, 50-dithiobis (2-nitrobenzoic acid) (DTNB) and 2-nitro-5-thiocyanoben-

zoic acid (NTCB) footprinting. Accordingly, to the DTNB reaction, 0.52 and 1.02 accessible

cysteines are present in TsTPI and SmTPI, respectively (Table 3).

Similarly, TsTPI is not cleaved by a NTCB reaction, whereas the addition of NTCB to

SmTPI produces a single proteolytic cut (Fig 6C). The fractional number of accessible thiols

per monomer determined by DTNB in TsTPI may be a consequence of the intrinsic flexibility

of this enzyme that transiently exposes to the solvent the buried thiol groups. The migration

pattern of the proteolytic product of SmTPI suggests that NTCB reacts and cuts near residue

C221. In order to corroborate that residue SmTPI-C221 is the sole solvent exposed cysteine in

SmTPI, we mutated this residue to serine and performed a NTCB cleavage assay (Fig 6C). The

mutation SmTPI-C221S is not cleaved by NTCB, corroborating that the only accessible thiol

in SmTPI is located at residue C221 (Fig 6C).

Mutations in residue TsTPI C221 that mimic oxidative stress or thiol

conjugating agents decrease enzymatic activity

Residue SmTPI-C221 is located at the N-terminus of α7, just a few amino acids after the con-

served YGGS motif (residues 212 to 215). In order to investigate if modifications in

Fig 5. Prediction of linear and discontinuous epitopes in SmTPI and TsTPIs. The amino acid corresponding to the linear epitopes are

depicted by their start and end, whereas the amino acids that compose the discontinuous epitopes are indicated using a single letter code. The

probability score and the color code of epitope is indicated. The localization of individual epitopes is present only in molecule A of SmTPI and

TsTPI accordingly to their code. The predicted epitopes harboring the SXD/E insert are colored in orange.

https://doi.org/10.1371/journal.pntd.0007815.g005

Structural studies of triosephosphate isomerases from parasitic helminths

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007815 January 10, 2020 11 / 19

https://doi.org/10.1371/journal.pntd.0007815.g005
https://doi.org/10.1371/journal.pntd.0007815


SmTPI-C221 may impinge catalysis, we mutated this residue to Asp, Tyr, and Lys that mimic

chemical modifications of a cysteine (S3 Fig). We mutated residue SmTPI-C221 to Asp that

mimics the cysteine oxidation to sulfinic acid, to Tyr that mimics cysteine derivatization with

an aromatic agent like DTNB and to Lys that mimics cysteine derivatization with a linear

adduct like MMTS. A comparison of the catalytic parameters of the point mutants in residue

SmTPI-C221 highlights that a conserved mutation to serine only decreases the catalytic effi-

ciency by 2-fold, whereas mutations that mimic the conjugation or oxidation of residue

SmTPI-C221 reduce their catalytic efficiency between 10.6 to 13.5-fold (Table 1). The intro-

duction of these point mutants does not alter the melting point or the dimeric nature of those

enzymes (Table 2 and S4 Fig), suggesting that the decrease in enzymatic activity is due to con-

formational changes that alter catalysis and not by inducing SmTPI monomerization. We con-

ducted a qualitative analysis using an E. coli strain devoid of tpi by plasmids harboring

mutations in residue SmTPI-C221 (S3 Fig). Only a few colonies are observed in bacterial cells

harboring the less catalytically efficient mutant SmTPI-C221D, bacteria complement with

Fig 6. Crystal structure of SmTPI and TsTPI showing their cysteine residues. A and B) Surface and ribbon representation of SmTPI and TsTPI

showing their exposed cysteines. Molecule A in both TPIs is presented as a surface representation, whereas molecule B is show as ribbons. The

thiol group of each cysteine is colored in black in both molecules A and B. The rest of the atoms of the cysteines are colored in orange for molecule

A and yellow for molecule B, respectively. The thiol group of residue SmTPI-C221 is labeled with a red asterisk. C) Predicted and experimental

NTCB cleavage sites in SmTPI and TsTPI. The upper part of the panel shows the predicted NTCB cleavage sites for SmTPI and TsTPI, whereas the

bottom part of the panel shows a SDS-gel with protein samples treated with NTCB. SmTPI is processed by NTCB at a single site generating a

product of 24.5 kDa and this product is not present in the SmTPI-C221S mutant.

https://doi.org/10.1371/journal.pntd.0007815.g006

Table 3. Accessible thiol per TPI monomer in wild-type and mutant TPIs.

Enzyme Accesible thiols/monomer

TsTPI 0.52

SmTPI 1.02

Cys221Ser 0.49

HsTPI 0.98

https://doi.org/10.1371/journal.pntd.0007815.t003
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mutants SmTPI-C221K and SmTPI-C221Y exhibited less number of colonies and bacteria

complemented with SmTPI-C221S presented similar colonies than wild-type SmTPI-C221.

Discussion

Helminth parasites are causal agents of diseases prevalent in humans. The only structural

information of a TPI from a helminth is the one form the parasite trematode Opisthorchis
viverrini [43], limiting the potential use of this crystal structure to opisthorchiasis and not nec-

essary to other helminths. In order to have a structural scaffold to guide rational drug and vac-

cine design against parasitic helminths, we solved the crystal structures of TPIs from T. solium
(TsTPI) and S. mansoni (SmTPI).

The crystal structures of TsTPI and SmTPI present an archetypical (β- α)8 or TIM-barrel

fold composed of 8 alternate β-strand and α-helices [23]. SmTPI is 18˚C more thermostable

than TsTPI. Although these proteins are 60% identical their differences in amino acid compo-

sition are located in α1, β2, and α3. Within these secondary elements, residues R19 and E51

exert a salt bridge, residue K57 interacts with the carbonyl group of A32, and residue F34 is

located in a hydrophobic cleft. The corresponding amino acids in TsTPI do not form a salt

bridge or hydrogen bond that may contribute to stability (S5 Fig). The sum of the stabilizing

interactions in SmTPI correlates with its higher melting point.

The most prominent characteristic of TPIs from parasitic helminths is the presence of a

three amino acids insert (SXD/E) located between β6 and α6, that is not present in TPIs from

non-parasitic helminths. Our crystal structures reveal that this motif folds into a 310-helix that

is solvent exposed in both TsTPI and SmTPI and that the addition of the SXD/E insertion cre-

ates a “hook-like structure” in both TPIs. The solvent exposure localization of the SXD/E insert

creates a surface recognition zone that associates with the immune response associated with

this motif. The hook-like structure in TsTPI and SmTPI is stabilized by a hydrogen bond inter-

action network.

Several groups have used recombinantly expressed TPIs as putative vaccines against schis-

tosomiasis and cysticercosis [8, 9, 13, 14, 27, 46]. The precise determinants for immunogenic

response in proteins are unknown, however factors like solvent accessibility, hydrophobicity,

and flexibility are common features of an epitope. The crystal structures of TsTPI and SmTPI

highlight the presence of four linear epitopes that are predicted to elicit a greater immune

response than the one associated with the SXD/E insert. Relevantly, from those four inserts,

only one is conserved in HsTPI. Thus, the crystal structures of TsTPI and SmTPI predict three

new linear epitopes in each TPI that could be used to generate antibodies against T. solium and

S. mansoni.
The prediction that the SXD/E insert elicits a weak immune response and its conservation

among parasitic helminth are counterintuitive. TPIs from parasitic helminths are secreted pro-

teins [33, 35, 36, 66] and the solvent exposed localization of the SXD/E insert suggests that this

motif may be involved in the moonlighting proteins of parasitic TPIs [33] and thus a key com-

ponent during helminth infection.

Specific derivatization of cysteines in TPIs from protozoan parasites result in the complete

inactivation of these enzymes, making this approach a potential mechanism to design specific

thiol-derivatizing agents. TPI has been a target for the design of specific inhibitors in several

human parasites like Trypanosoma cruzi, Giardia lambia, and Trichomonas vaginalis [17, 67,

68]. Those inhibitors use the subtle differences in three-dimensional structures between TPIs

from the host and the parasite to design inhibitors that are specific against the parasite´s TPI

but are unreactive to the host. TPI inhibitors are divided into two types, those that are aimed

to disrupt the dimer interface and those aimed at exposed cysteines to react with thiol

Structural studies of triosephosphate isomerases from parasitic helminths

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007815 January 10, 2020 13 / 19

https://doi.org/10.1371/journal.pntd.0007815


conjugating agents [32–38]. Our data shown that none of the six cysteines in TsTPI harbors an

accessible thiol group, whereas only one thiol group is accessible in SmTPI at position C221.

Seminal studies demonstrate that in GlTPI thiol conjugating agents react with residue

GlTPI-C222 via a disulfide bridge [29, 35, 39]. Residue GlTPI-C222 is structurally analogous

to SmTPI-C221 suggesting the possibility that SmTPI may be inhibited by targeting its solvent

accessible cysteine. Residues SmTPI-C221 and GlTPI-C222 localize near the YGGS motif that

is necessary to assemble the closed TPI conformation via hydrogen and hydrophobic interac-

tions with loop 6. Point mutations in GlTPI-C222 and the equivalent cysteine residue in the

cytosolic TPI from Arabidopsis reduced the enzymatic activity of those enzymes [69, 70].

Point mutations in SmTPI-C221 partially abrogate catalysis, having a reduction of approxi-

mately 10-fold in catalytic efficiency. This reduction in enzymatic activity correlates with a

deficiency in complementation of an E. coli strain devoid of tpi by plasmids harboring muta-

tions in residue SmTPI-C221 (S4 Fig). In sum, this work provides a blueprint of TPIs from

parasitic helminths as a target for schistosomiasis and cysticercosis vaccine or drug

development.

Supporting information

S1 Fig. Purification of heterologous expressed TsTPI and SmTPI. 10% SDS-PAGE showing

the purified TPsI. The molecular mass of each protein is approximately 25 kDa.

(TIF)

S2 Fig. Prediction of linear epitopes in HsTPI. The amino acid corresponding to the linear

epitopes are depicted by their start and end. The probability score and the color code of epi-

tope is indicated. The localization of individual epitopes is present only in molecule A

(TIF)

S3 Fig. Mutations in residue SmTPI-C221 decrease TPI activity. A) Chemical structure of

possible modification in reactive cysteines and their amino acid mimicry B) Complementation

assay by bacterial strains harboring SmTPI-C221 point mutants that resemble its oxidation of

thiol conjugation.

(TIF)

S4 Fig. Gel filtration elution profile of wild-type and point mutants of SmTPI. The elution

profile of all proteins corresponds to a dimer of approximately 50 kDa.

(TIF)

S5 Fig. Structural rational for the thermal stability exhibited by SmTPI. A) Amino acid

sequence alignment between TsTPI and SmTPI. Both protein share 60% amino acid identity

and the main differences are in α1, β2, and α3 and the C-terminal part of α6. B and C) Ribbon

and surface representation of SmTPI and TsTPI showing the stabilizing interactions present in

α1, β2, and α3 of SmTPI.

(TIF)

S1 Table. Optimized nucleotide coding sequences of TsTPI and SmTPI for its heterologous

expression in E. coli.
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S2 Table. Data collection and refinement statistics.
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