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Abstract: The incidence of various types of cancer is increasing globally. To reduce the critical
side effects of cancer chemotherapy, naturally derived compounds have been considered for cancer
treatment. Gymnosperms are a group of plants found worldwide that have traditionally been
used for therapeutic applications. Paclitaxel is a commercially available anticancer drug derived
from gymnosperms. Other natural compounds with anticancer activities, such as pinostrobin and
pinocembrin, are extracted from pine heartwood, and pycnogenol and enzogenol from pine bark.
Gymnosperms have great potential for further study for the discovery of new anticancer compounds.
This review aims to provide a rational understanding and the latest developments in potential
anticancer compounds derived from gymnosperms.

Keywords: gymnosperm; cancer; paclitaxel; traditional medicine; natural products

1. Introduction

Natural plant products have been used as medicines throughout human history
for different purposes. Natural compounds are complex chemical molecules found in
various parts of plants with pharmacological or biological activities and are used for the
treatment of cancer, inflammation, infections, and other diseases [1]. In the past 30 years,
approximately 61% of bioactive natural compounds have been used for cancer treatment,
and 49% of these have also been used for infectious disease treatment [2]. Cancer is the
second leading cause of death globally, with more than six million deaths each year [3].

The use of natural components for cancer prevention and treatment has been widely
studied. Curcumin is a well-known anticancer compound found in the rhizome of Cur-
cuma longa. Curcumin can promote autophagy through the AMP-activated protein kinase
signaling pathway, which is related to cell death [4,5]. Another potential candidate for anti-
cancer agents is resveratrol, a polyphenol found in peanuts, soy, and grapes. Resveratrol
induces autophagy through the ceramide/Akt/mTOR pathway [6]. 6-Shogaol, an active
component of ginger, inhibits cancer cell invasion by blocking the nuclear factor-κB path-
way (NFκB) [7]. In addition, flavonoids have different mechanisms for cancer treatment.
Cyclin-dependent kinases (CDKs) are inhibited by flavonoids, such as quercetin, silymarin,
genistein, luteolin, apigenin, and kaempferol. Different types of cancers are related to
the activation of CDKs due to mutations in CDK genes. Therefore, CDK inhibitors are
novel agents for cancer treatment [8–10]. Epigallocatechin gallate is a polyphenol found
in the dried leaves of green tea that initiates cancer cell apoptosis through the activation

Int. J. Mol. Sci. 2021, 22, 6636. https://doi.org/10.3390/ijms22126636 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4326-0342
https://orcid.org/0000-0002-5285-9138
https://doi.org/10.3390/ijms22126636
https://doi.org/10.3390/ijms22126636
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22126636
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22126636?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 6636 2 of 17

of the p38 MAP kinase [11]. Many natural products have been commercialized for cancer
treatment. One of the most effective natural anticancer agents for the treatment of various
cancers is paclitaxel (Taxol®), which was discovered in the bark of Pacific yew, Taxus brev-
ifolia. Paclitaxel is a potent inhibitor of mitosis by binding to tubulin and preventing its
depolymerization during cell division [12].

At present, interest in the use of traditional medicine is increasing, and some important
anticancer drugs have an herbal origin. Gymnosperms consist of an estimated 12 families,
83 genera, and more than 1000 living species, including those utilized in the production
of commercially available drugs and dietary supplements, such as paclitaxel, pycnogenol,
enzogenol, pinostrobin, and pinocembrin. Gymnosperms can be a source of effective
cancer drugs. Various natural compounds derived from gymnosperms are considered as
potential candidates for cancer therapy. Leelamine, α-pinene, and β-pinene have been
studied for their ability to inhibit the growth of cancer cell lines [13–15]. Other terpenoids
in gymnosperms, such as limonene, α-phellandrene, β-caryophyllene oxide, γ-terpinene,
longifolene, D-germacrene, verbenol, and β-ocimene, have anticancer effects [16–20]. Due
to the anticancer potential of gymnosperms and the relatively few studies that have been
conducted in this field, we provide here a comprehensive summary of natural phytochemi-
cals derived from gymnosperms in the prevention and treatment of cancers.

2. Gymnosperms in Cancer Therapy

Gymnosperms are defined as a group of plants that produce seeds that are not en-
closed within an ovary or fruit. Gymnosperms include Cycadophyta (cycads), Ginkgo-
phyta (ginkgo), Gnetophyta, and Coniferophyta (conifers). The main group of living
gymnosperms is conifers, such as pines, yews, cedars, and redwoods, which are cone-
bearing trees and shrubs. More than 600 species have been reported and are dispersed
worldwide [21]. Conifers are one of the oldest groups of plants that are ecologically and
economically the most important plant group. The leaves of many conifers, such as pines,
are needle-like, but yews, cedars, and redwoods have flat, scale-like, and triangular leaves.
Cycads are the next most abundant group of gymnosperms. Cycads are palm-like woody
plants that make up approximately 338 species, most of which are native to tropical cli-
mates. Gnetales is the other living group of gymnosperms, consisting of 95–100 species
comprising Gnetum, Ephedra, and Welwitschia. The smallest genus of gymnosperms is
Ginkgo, which comprises one extant species [22].

Gymnosperms are reservoirs of terpenoids, phenolic components, alkanes, and alkenes.
In Asia, gymnosperms are traditionally used as medicinal plants for various disease treat-
ments. Most are used to treat stomach disorders, arthritis, fever, diabetes, cold, ulcers,
and even cancer. Paclitaxel is an anticancer drug obtained from the bark of yew trees.
Paclitaxel is used to treat ovarian, breast, lung, and prostate cancers. The structures of
the selected commercially available compounds discussed in this review are shown in
Figure 1. Leelamine from pine bark shuts off phosphoinositide 3-kinase (PI3K), mitogen-
activated protein kinase (MAPK), and signal transducer and activator of transcription 3
(STAT3) pathways in cancer cells [13]. α-Pinene from pine needle oil causes a reduction
in the levels of cyclin B protein in hepatoma cell lines in vitro [14]. β-Pinene is a major
component of various pine essential oils and inhibits the growth of cancer cell lines [15].
Some commercially available drugs and dietary supplements [12,23–33] are derived from
gymnosperms and their physicochemical properties (Table 1). The anticancer effects of
stilbenoids in Welwitschia and five species of Gnetaceae were studied. The results showed
that these stilbenoids had cytotoxic activity against HL60 cells [34]. Limonene prevents the
assembly of microtubules in dividing cells [35]. β-caryophyllene oxide is a sesquiterpene
isolated from the essential oils of various species of pine. It has an anticancer effect through
the inhibition of c-Src kinase and Janus kinase 2 (JAK2) [36].
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Table 1. Gymnosperm-derived commercially available products with therapeutic effects. 

Commercially 
Available 
Product a 

Parental Plants 
Common 

Name 
Biological Activity  Mechanism of Anticancer Activity References 

Paclitaxel Taxus brevifolia Pacific yew Anticancer effects 
Microtubule inhibitor, induces apopto-

sis, Bcl-2 inhibitor 
[12,23] 

Pinostrobin Pinus strobus 
Eastern white 

pine 
Anti-oxidative, anticancer, anti-inflammatory, 

and antimicrobial effects 
Induces apoptosis, ROS generation in 

cancer cells, DNA fragmentation 
[24–27] 

Pinocembrin Pinus pinaster French mari-
time pine 

Anticancer, antimicrobial, anti-inflammatory, 
and antioxidant effects 

Increases the activity of heme oxygen-
ase, caspase-3 and 9, and Bax 

[28] 

Pycnogenol Pinus pinaster 
French mari-

time pine 

Anticancer, anti-inflammatory, antioxidant, 
blood clotting reduction, and LDL choles-

terol-lowering effects 

Increases nitric oxide levels in serum, 
inhibits NF-kB activity 

[29–32] 

Enzogenol Pinus radiata 
Monterey 

pine 
Anticancer, anti-inflammatory, antioxidant, 

cardioprotective, and neuroprotective effects 
Induces apoptosis, increases the activity 

of caspase-3, Bcl-2 inhibitor 
[33] 

a Chemical structures of the commercially available products are shown in Figure 1. 

Figure 1. Chemical structures of the commercially available products displayed in Table 
1. 

3. Clinically Available Natural Products 
3.1. Paclitaxel 

Paclitaxel (Taxol®) is a well-known chemotherapeutic agent with a taxane structure. 
It is extracted from the bark of the North American Pacific yew tree, T. brevifolia, with wide 
anticancer uses, including for small-cell lung cancer, refractory ovarian cancer, Kaposi 
sarcoma, metastatic breast cancer, and melanoma [37]. Paclitaxel comprises a taxane ring 
(Figure 1) in the C4 and C5 positions and has a four-membered oxetane side ring in C13, 
which is an ester side chain that plays a key role in the formation of the paclitaxel-tubulin 
complex, blocks the progression of the cell cycle in mitosis, and stabilizes microtubules. 

Figure 1. Chemical structures of the commercially available products displayed in Table 1.

Table 1. Gymnosperm-derived commercially available products with therapeutic effects.

Commercially
Available Product a

Parental
Plants Common Name Biological Activity Mechanism of Anticancer

Activity References

Paclitaxel Taxus
brevifolia Pacific yew Anticancer effects

Microtubule inhibitor,
induces apoptosis, Bcl-2

inhibitor
[12,23]

Pinostrobin Pinus strobus Eastern white pine
Anti-oxidative, anticancer,

anti-inflammatory, and
antimicrobial effects

Induces apoptosis, ROS
generation in cancer cells,

DNA fragmentation
[24–27]

Pinocembrin Pinus pinaster French maritime pine
Anticancer, antimicrobial,

anti-inflammatory, and
antioxidant effects

Increases the activity of heme
oxygenase, caspase-3 and 9,

and Bax
[28]

Pycnogenol Pinus pinaster French maritime pine

Anticancer,
anti-inflammatory,

antioxidant, blood clotting
reduction, and LDL

cholesterol-lowering effects

Increases nitric oxide levels in
serum, inhibits NF-kB activity [29–32]

Enzogenol Pinus radiata Monterey pine

Anticancer,
anti-inflammatory,

antioxidant, cardioprotective,
and neuroprotective effects

Induces apoptosis, increases
the activity of caspase-3, Bcl-2

inhibitor
[33]

a Chemical structures of the commercially available products are shown in Figure 1.

3. Clinically Available Natural Products
3.1. Paclitaxel

Paclitaxel (Taxol®) is a well-known chemotherapeutic agent with a taxane structure. It
is extracted from the bark of the North American Pacific yew tree, T. brevifolia, with wide
anticancer uses, including for small-cell lung cancer, refractory ovarian cancer, Kaposi
sarcoma, metastatic breast cancer, and melanoma [37]. Paclitaxel comprises a taxane ring
(Figure 1) in the C4 and C5 positions and has a four-membered oxetane side ring in C13,
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which is an ester side chain that plays a key role in the formation of the paclitaxel-tubulin
complex, blocks the progression of the cell cycle in mitosis, and stabilizes microtubules.
Paclitaxel binds to the β-subunit of tubulin on the inner surface of microtubules and pre-
vents the dissociation rate of tubulin dimers in a guanosine triphosphate-independent
manner. As a result, this complex cannot be disassembled and affects the cell dynamics
that are necessary for intra-cell transportation and chromosome movement during mitosis.
During the metaphase of mitosis, incomplete formation of the metaphase plate leads to cell
cycle arrest. Paclitaxel blocks cells in the G2/M phase of the cell cycle without disrupting
the synthesis phase [38,39]. Therefore, paclitaxel is a potent cell replication inhibitor in
eukaryotic cells, which ultimately causes apoptosis [40,41]. Paclitaxel induces apoptosis
in prostate and breast cancer cell lines by anti-apoptotic B cell lymphoma 2 (Bcl-2) phos-
phorylation, consequently arresting its function [23]. Recently, paclitaxel was reported
to upregulate mitogen-activated protein kinase (MAPK) in ovarian cancer [42]. Among
cancer cells, p53 has a pro-apoptotic role in HCT116 colon cancer cells. However, in the
presence of paclitaxel, acetylation of p53 was observed, which is more susceptible to cell
death [43]. In the human breast adenocarcinoma cell line, paclitaxel induced apoptosis
via higher G2/M cell-cycle arrest, reactive oxygen species (ROS) production, and mito-
chondrial membrane potential disruption. ROS generation and increased hydroperoxide
production by nicotinamide adenine dinucleotide phosphate oxidase is considered to play
a key role in the anticancer activity of paclitaxel. Upregulation of p21, Bcl-2 associated X
protein (Bax), caspase-3, and caspase-9 suggests that apoptosis occurs through intrinsic
pathways [23]. Sun et al. reported that paclitaxel induces apoptosis through the activation
of Toll-like receptor 4 (TLR4) via the MyD88-independent or -dependent pathway and
the NFκB pathway in ovarian carcinoma cells [44]. Phosphorylation of interleukin (IL)-1
receptor-associated kinases by MyD88 initiates a signaling pathway that results in the
activation of MAPKs. Furthermore, TLR4, through the TIR-domain-containing adapter-
inducing interferon-β adaptors, activates receptor-interacting protein, resulting in NF-κB
activation. Paclitaxel treatment induces cytotoxicity, apoptosis, and growth inhibition
in the cells, which was confirmed by decreased cell viability. Low doses of paclitaxel
induce the enhanced expression of p53 protein without disturbing the cell cycle and its
nuclear translocation with well-performed apoptotic events in breast cancer cells [45]. The
mechanisms underlying the anticancer activity of paclitaxel are summarized in Figure 2.
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Figure 2. Possible mechanism of paclitaxel action. Paclitaxel targets microtubules and inhibits the depolymerization of
microtubules by binding to β-tubulin and leading to cell death. Solute carrier organic anion transporter family member 1B3,
which is expressed in various tumors, is the most effective influx transporter for paclitaxel. Paclitaxel induces apoptosis via
reactive oxygen species production as well as p21, B-cell lymphoma-2 associated X protein, and caspase overexpression and
also activates the Toll-like receptor 4/nuclear factor kappa B pathway. (adopted with modification from [12]).
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3.2. Pinostrobin

Dietary flavonoids are a large group of polyphenolic molecules with low molecular
weights obtained from plant sources. Several phenolic compounds have numerous health
benefits, including anti-carcinogenic, antioxidant, anti-inflammatory, and antimicrobial
activities. Pinostrobin, 5-hydroxy-7-methoxy flavanone (Figure 1), is a natural flavonoid
that exists in Pinus strobus, Alpinia zerumbet, Salvia texana, and other plants [46]. Pinostrobin
exhibits many therapeutic activities, such as anti-Helicobacter pylori and anti-herpes simplex
virus-1 activity, demonstrating its antibacterial and anti-viral activity [47]. Furthermore,
the ability of pinostrobin to prevent the cyclooxygenase enzyme pathway indicates anti-
inflammatory potential [27]. In addition, pinostrobin has significant effects on cell cycle
arrest, growth inhibition, and apoptosis in many cancers [48]. Jaudan et al. demonstrated
that HeLa cells are more sensitive to pinostrobin than other cancer cell lines in vitro [27].
They also found that pinostrobin induced ROS generation and apoptosis in HeLa cells via
extrinsic and intrinsic pathways. In HepG2 liver cancer cell lines, pinostrobin demonstrated
moderate cytotoxicity [49]. Among the various active components isolated from Cajanus
cajan, pinostrobin showed maximum toxicity on the T lymphoblastoid cell line derived from
patients with acute leukemia, whereas in other cell lines, such as lung cancer, melanoma,
and breast cancer cell lines, toxicity was lower [50]. Based on the results of these studies,
pinostrobin appears to have anticancer potential.

3.3. Pycnogenol

Pycnogenol® is a formulation of Pinus pinaster (French maritime pine) bark aqueous
extract with a composition of a mixture of flavonoids, mainly procyanidin compounds.
Procyanidins are chain-like structures comprising catechin, epicatechin, phenolic acids,
taxifolin, and cinnamic acids [51]. Pycnogenol is similar to cinnamon, grape seed extract,
green tea, and cocoa bean polyphenols, which are the four most common sources of pro-
cyanidins. Procyanidins may play an important role in preventing and treating cancer [52].
Procyanidins exhibit inhibitory effects on the proliferation of certain tumor cells in vitro
and in vivo. The yields of catechin from P. pinaster bark extract increase as the ethanol
concentration of the extract increases. Catechins, major components of pycnogenol, have
anti-proliferative and cytotoxic effects on pancreatic, breast, and colorectal cancer cell
lines [53]. Furthermore, catechins inhibit protein kinase C and telomerase. In colon ade-
nocarcinoma and monoblastoid leukemia cells, the presence of catechins causes telomere
shortening, and chromosomal abnormalities result in life-span reduction [54]. The expres-
sion of telomerase in most tumors is a key parameter for explaining the proliferative ability
of cancer cells enabled by the preservation of the tips of the chromosomes [55]. Thus, telom-
erase inhibition could be one of the major mechanisms underlying the anticancer effects of
catechins present in pycnogenol [56]. The molecular basis of pycnogenol activity depends
on the scavenging of reactive oxygen and reactive nitrogen species and it participates in the
cellular antioxidant system [57,58]. Pycnogenol has cardioprotective effects by increasing
blood flow through a mechanism associated with increased nitric oxide levels; it also aids
in improving blood glucose control, thereby exhibiting anti-diabetic properties [59,60].
Pycnogenol can arrest hydroxyl, superoxide, and free oxygen radicals and reduce lipid
peroxidation in red blood cells [61]. The role of pycnogenol in inhibiting NFκB activation,
and vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1
(ICAM-1) expression suggests that this antioxidant compound may play a role in cancer
prevention and atherogenic processes [62,63]. Abnormal activation of NF-κB has been
observed in many cancers. Furthermore, the suppression of NF-κB decreases the prolifera-
tion of cancer cells. NF-κB also plays a major role in inflammatory diseases. David et al.
demonstrated that pycnogenol reduced lipid peroxidation and carbonyl proteins in ascitic
fluid [56]. This action may be related to pycnogenol-mediated effects that cause NF-κB
inhibition, reduce IL-1β production, and decrease protein kinase B (Akt) phosphorylation
(Figure 3). This study suggests that P. pinaster procyanidins could be a candidate for future
studies on multifunctional diet-based cancer prevention approaches.
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in cancer cells for life-span reduction. Furthermore, by reducing NFκB activation, VCAM-1 and ICAM-1 can prevent
cancer. Pycnogenol has anti-diabetic and cardioprotective effects through increasing nitric oxide levels and reducing
lipid peroxidation.

3.4. Enzogenol

Enzogenol® is a water-soluble proanthocyanidin-rich bioflavonoid extract derived
from the bark of Pinus radiata that contains different flavonoids and phenolic acids. En-
zogenol is rich in proanthocyanidins, 80% of which include catechin, epicatechin, taxifolin,
quercetin, dihydroquercetin, procyanidin dimers, trimers, oligomers, and polymers, and
other phenolic acids [64,65]. In vitro and in vivo research has shown that enzogenol has
high potential as an antioxidant and anti-inflammatory agent; studies have shown it to
effect a decrease in the levels of cardiovascular disease markers and to protect experimental
mice against tumor growth [66–69]. One study demonstrated that enzogenol is much
more effective in antioxidant activity than catechin and ascorbic acid under the same
conditions [70]. O’Callaghan et al. found that enzogenol elevated caspase-3 activity in a
dose-dependent manner [71]. In addition, in the presence of enzogenol, the expression of
the anti-apoptotic protein Bcl-2 decreased, leading to apoptosis [33]. Enzogenol has anti-
inflammatory and anti-atherosclerotic effects. The anti-inflammatory effects of enzogenol
are related to the downregulation of inflammatory cytokines and the inhibition of TNF-
α-induced VCAM-1 and ICAM expression [68]. Enzogenol also has cholesterol-lowering
properties that can prevent atherosclerosis [72].

3.5. Pinocembrin

Pinocembrin (5,7-dihydroxyflavanone) is a flavonoid that has been isolated from sev-
eral plants (Figure 1), and Pinus pinastar heartwood is the main source of this compound.
Other sources of pinocembrin extraction are Eucalyptus, Euphorbia, Populus, chilca, and
honey [73,74]. Pinocembrin is the most significant phytochemical among flavonoids. Its
pharmacological activities include anticancer, anti-inflammatory, antioxidant, and antimi-
crobial properties [75]. Pinocembrin can prevent cancer or reverse disease onset by delaying
or stopping the growth of cancer cells. Pinocembrin has cytotoxic effects against breast,
colon, cervical, and prostate cancer cell lines [76,77]. In human colorectal adenocarcinoma
(HT29) and colon cancer cell lines (HCT116), pinocembrin increases the expression of Bax
protein, caspase-3 and -9, and heme oxygenase activity, as well as decreasing the super-
oxide anion radical and nitric oxide levels [78–80]. In prostate cancer cell lines (LNCaP),
pinocembrin causes cell cycle arrest at the G2/M phase and is involved in the depletion
of mitochondrial membrane potential before apoptosis. Subsequently, cytochrome c is
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released from the mitochondria and binds to apoptotic protease-activating factor 1 to
activate caspase-9, which consequently activates caspase-3 [81,82]. Pinocembrin can ac-
tivate the PI3K/Akt/mTOR pathway in melanoma cell lines (B16F10 and A375), which
may suggest a link between pinocembrin’s pro-apoptotic effect and autophagy [83]. Phos-
phorylation of phosphatidylinositol-4, 5-bisphosphate by PI3K catalyzes the production
of phosphatidylinositol-3, 4, 5-triphosphate (PIP3). PIP3 localized in the inner layer of
the plasma membrane promotes the activation of AKT activation, followed by that of
the mammalian target of rapamycin (mTOR). Subsequently, mTOR directly phosphory-
lates unc-51-like kinase 1 during autophagy initiation and autophagosome formation [84].
Zheng et al. demonstrated that pinocembrin can induce apoptosis in melanoma cell
lines in a mitochondria-independent manner in vitro and in vivo, as well as create severe
endoplasmic reticulum (ER) stress conditions in vitro. The inositol-requiring enzyme 1
(IRE1)/X-box binding protein 1 (Xbp1)/C/EBP-homologous protein (CHOP) pathway
activates ER stress after pinocembrin treatment. First, IRE1 expression increases, followed
by an increase in the expression of Xbp1, activating transcription factor 6, and CHOP,
which are key factors in ER stress-mediated apoptosis [83]. On the other hand, IRE1 binds
with TNF receptor-associated factor 2, which activates caspase-12 and -3, which leads
to apoptosis. Phosphorylation of apoptosis signal-regulating kinase 1 after IRE1 activa-
tion causes c-Jun-N terminal kinase initiation of Bax, Bcl-2 homologous antagonist/killer
and Bcl-2-like protein 11 activation, and B-cell lymphoma-extra-large (Bcl-xL) and Bcl-2
inhibition (Figure 4) [85]. Eventually, the Fas-associated protein death domain, as an ex-
trinsic pathway for apoptosis, activates downstream processes, including the activation of
caspases-8,-7,-6, and -3 [86]. These studies showed that pinocembrin is a strong candidate
as an anticancer agent with pharmacological potential.
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Figure 4. Mechanism of pinocembrin induction of apoptosis in cancer cells. In the intrinsic pathway, the expression of the
pro-apoptotic proteins B-cell lymphoma-2 (Bcl-2) associated X protein, Bcl-2 homologous antagonist/killer, and Bcl-2-like
protein 11 increases and that of the anti-apoptotic proteins Bcl-2 and Bcl-extra-large decreases. Cytochrome c translocates
from the mitochondria to the cytosol, leading to apoptosis. In the extrinsic pathway, pinocembrin leads to apoptosis via the
Fas-associated protein death domain/caspase-8/caspase-3 signaling pathway.
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4. The Future Role of Gymnosperms in Cancer Therapy

In recent years, many studies have focused on the anticancer effects of plant deriva-
tives. Gymnosperms have a wide variety of chemical compounds that could play a vital
role in cancer treatment in the future. Some of these compounds have strong anticancer
properties (Table 2).

Table 2. Gymnosperm-derived chemical compounds with therapeutic effects.

Chemical
Compound * Parental Plants Biological Activity Mechanism of Anticancer Activity References

Leelamine Pinus species Anticancer Disruption of cholesterol homeostasis
and autophagic flux inhibitor [13,87]

Stilbenoids Welwitschia mirabilis
Anticancer, antibacterial,
anti-inflammatory, and

antioxidant
Apoptosis and growth inhibition [34]

Pinenes Pinus species Anticancer, antibacterial,
and anti-fungal

Cell-cycle arrest in the G2/M phase and
induction of apoptosis [14,88,89]

Caryophyllenes Pinus species Anticancer, antibacterial,
and anti-inflammatory

Suppression of STAT3 activation and
suppression of the PI3K/AKT signaling

pathway
[36,90]

* All of chemicals are terpenoids and phenolic compounds.

4.1. Leelamine

Leelamine (dehydroabietylamine) is a natural diterpene molecule found in the bark of
Pinus species. Leelamine targets several signaling pathways involved in cancer because
of the disruption of intracellular cholesterol homeostasis [91]. Cholesterol is abundant in
the membrane of the mitochondria, ER, and Golgi, and plays a critical role in transport
and intracellular signaling systems [92]. When leelamine accumulates in the lysosomes
due to its lysosomotropic properties, translocation of cholesterol from the lysosomes to
the cytoplasm is blocked. Thus, cholesterol is not available for cancer cell activities and
subsequently, receptor-mediated endocytosis and autophagic flux are inhibited. This
inhibition is related to receptor tyrosine kinase (RTK) signaling pathways, which can
affect the PI3K/AKT, STAT3, ERK, and MAPK signaling cascades [13,93,94]. Kuzu et al.
recently reported that leelamine can interrupt important signaling pathways through the
phosphorylation of several cell signaling proteins in melanoma cells [13]. There was an
alteration in the RTK/AKT signaling pathway and the most important pathways, the
PI3K/AKT and AKT/mTOR pathways, were modified after leelamine treatment (Figure 5).
Indeed, the hypoactivation of RTKs followed by the effect of extracellular factors inactivates
the PI3K/AKT, STAT, and MAPK signaling cascades. Additionally, the reduction of mutant
V600E BRAF protein can inactivate the MAPK cascade without RTK effects [95,96]. Mutant
Ras and BRAF genes have been found in some cancers, such as melanomas, and play a key
role in the growth and spread of cancer cells [97]. STAT3 activity is significantly reduced
by leelamine and subsequently, Bcl-2 and Bcl-xL expression levels decrease [13]. Leelamine
is a lysosomotropic diterpene that causes autophagic flux disruption and the inhibition of
signaling pathways in malignant cancers.
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Figure 5. Mechanism of action of leelamine. Leelamine disrupts receptor tyrosine kinase signaling pathways, leading to a
decrease in the phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinase, and signal transducer and
activator of transcription 3 signaling cascades, resulting in the reduction of B cell lymphoma (Bcl) 2 and Bcl-extra-large
expression levels.

4.2. Stilbenoids

Stilbenoids are formed by the heterogeneous oligomerization of stilbene monomers,
such as resveratrol, oxyresveratrol, and isorhapontigenin, and sometimes their glucosides
with a molecular backbone, consisting of 1,2-diphenylethylene units [98,99]. Stilbenoids
are extracted from various plants, such as those of the families of Welwitschiaceae and
Gnetaceae. The compounds have unique structures, and stilbene glucosides and stilbene
oligomers are found in Gnetum latifolium and Welwitschia mirabilis. Stilbenoids have sev-
eral biological activities, such as anticancer, antibacterial, anti-inflammatory, antioxidant,
and antiviral activities [100,101]. Previous studies have reported the growth inhibition
activity of stilbenoids against human cancer cell lines. In human leukemia HL60 cells,
DNA fragmentation and nuclear condensation have been observed. Among the 56 stil-
benoids, gnemonol G and gnetin I demonstrated high anticancer activity that was approx-
imately two-fold higher than that of resveratrol [34]. Among stilbenoids, resveratrol is
the most well-known and commercially available product. It has demonstrated potent
antioxidant, anticancer, anti-inflammatory, and atherosclerosis prevention properties [102].
However, other stilbenoids, such as viniferin, have stronger anticancer activity than resver-
atrol [103,104]. Figure 6 shows the mechanism of action of stilbenoids; the NF-κB signaling
pathway plays a vital role in inflammation; resveratrol has been studied inhibiting this sig-
naling pathway in the treatment of several diseases [105]. Resveratrol also has antioxidant
properties through activation of the PI3K/Akt/Nrf2 intracellular signaling pathway and
restored SOD and GSH levels [106]. Apoptosis induction by resveratrol has been associated
with caspase induction and downregulation of Bcl-2. Recent studies have shown that
stilbenoids induced tumor autophagy is an hsp70-dependent mechanism by lysosomal
membrane permeabilization [107].
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Figure 6. Mechanism of action of stilbenoids. Stilbenoids induces apoptosis through the caspase activation pathway;
they also suppress Bcl-2 expression and apoptosome production. Stilbenoids induce autophagy in cancer cells in an
hsp-70 dependent mechanism. These compounds suppress the NF-κB signaling pathway that plays an important role in
inflammation. They also activate the Nrf2 antioxidant defense system (adopted with modification from [107]).

4.3. Pinenes

Pinenes (α- and β-enantiomers) are organic compounds derived from monoterpenes
with the molecular formula C10H16. They are the most abundant terpenoids in nature and
are mainly found in the essential oils of Pinus species, as well as in various other plants.
α- and β-pinenes are extracted from different parts of pines, such as from the needles,
nuts, pollen, and bark oils [20,108]. Pinenes have anti-inflammatory and antibacterial
activities [109,110]. Both α- and β-pinenes have anticancer activity, and can inhibit the
proliferation of human cancer cell lines, including breast, prostate, liver, and colon cancer
cell lines [14,111]. Pinenes have good anticancer activity, arrest the cell cycle in the G2/M
phase, and inhibit hepatoma cell proliferation [14]. Pinus koraiensis essential oils, mainly
consisting of α-pinene, stop the proliferation and migration of human gastric carcinoma
cells (MGC-803) and induce apoptosis [89]. This is due to its effect on the Hippo signaling
pathway, known as the tumor suppressor, which has been extensively studied [112]. In this
pathway, the phosphorylation of YAP occurs and inhibits the migration and proliferation
of tumor cells [113]. α-Pinene can decrease the expression of YAP, leading to the inhibition
of cancer cells and the induction of apoptosis [89].

4.4. Caryophyllenes

Sesquiterpenes have multiple biological activities, including anticancer, antibacterial,
anti-inflammatory, and antiviral activities [20,114]. α-Caryophyllene, β-caryophyllene,
and β-caryophyllene oxide are sesquiterpenes from terpenoids naturally isolated from
the essential oils of pine species and many other aromatic plants. Caryophyllenes inhibit
the proliferation of different types of cancer cells, such as those of liver, breast, lung, and
prostate adenocarcinoma [90,115,116]. β-Caryophyllene suppresses STAT3 activation in
human breast and prostate carcinoma and in multiple myeloma cell lines via the inactiva-
tion of IL-6 [36]. Src, JAK1, and JAK2 may be involved in β-caryophyllene-induced STAT3
inactivation. β-caryophyllene suppresses the PI3K/AKT signaling pathway, and therefore
acts as a strong anticancer agent [90].
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5. Conclusions and Future Development

For centuries, plants have been used as medicines for the treatment of human diseases
in most regions worldwide. Recently, partly due to renewed public interest, scientific
research efforts and medical communities around the world have produced considerable
information regarding the pharmacological use, effects, and future of herbal medicine de-
velopment and therapeutic phytochemicals for cancer treatment [117]. While considerable
efforts have been made to promote and confirm the efficacy of many traditional therapies
or various herbal formulations, well-defined clinical trials and systematic standardized
research are still quite limited and should be carried out more extensively to accelerate
the development of new phytomedicines [118]. In recent years, the FDA has approved
botanical drugs, such as Veregen® (a fraction of the green tea leaf water extract), for the treat-
ment of patients with external genital warts and Crofelemer® (a proanthocyanidin from
the Croton lechleri tree latex) for diarrhea treatment in patients with HIV/AIDS [119,120].
This review summarizes the potential role of gymnosperms in the development of anti-
cancer compounds (Table 2). Some potentially pharmacological compounds derived from
gymnosperms could serve as new botanical drugs for cancer treatment.
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Abbreviations
Akt protein kinase B
ASK1 apoptosis signal-regulating kinase 1
ATF6 activating transcription factor 6
Bak B-cell lymphoma-2 homologous antagonist/killer
Bax Bcl-2 associated X protein
Bcl-2 B cell lymphoma 2
Bcl-xL B-cell lymphoma-extra-large
BIM B-cell lymphoma-2-like protein 11
Cas cellular apoptosis susceptibility protein
caspase cysteine-aspartic proteases
CDKs Cyclin-dependent kinases
CHOP C/EBP-homologous protein
Cyt c cytochrome c
ER endoplasmic reticulum
ERK extracellular signal-regulated kinase
FADD Fas-associated protein death domain
G1 Gap 1 phase for cell enlargement
G2 Gap 2 phase
Hsp 70 heat shock protein 70
ICAM-1 intercellular adhesion molecule 1
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IKK NF-κB kinase
IRAK interleukin-1 receptor associated kinase
IRE1 inositol-requiring enzyme 1
JNK c-Jun-N terminal kinase
KSR kinase suppressor of Ras
MAPK mitogen-activated protein kinase
MEK mitogen-activated protein kinase kinase
M phase mitosis phase
mTOR mammalian target of rapamycin
MYD88 myeloid differentiation primary response 88
NFκB Nuclear factor-κB pathway
Nrf2 Nuclear factor erythroid 2-related factor 2
PI3K phosphoinositide 3-kinase
PIP2 phosphatidylinositol-4, 5-bisphosphate
PIP3 phosphatidylinositol-3, 4, 5-triphosphate
Raf-1 Raf kinase family
ROS reactive oxygen species
RTK receptor tyrosine kinase
S phase synthesis phase
STAT3 signal transducer and activator of transcription 3
TAT3 tyrosine aminotransferase 3
tBid truncated Bid
TLR4 Toll-like receptor 4
TRAF TNF receptor associated factor
TRIF TIR-domain-containing adapter-inducing interferon-β
TRAM TRIF-related adapter molecule
ULK1 unc-51-like kinase 1
VCAM-1 vascular cell adhesion molecule 1
Xbp1 X-box binding protein 1
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