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Abstract: Paprika is a widely consumed spice in the world and its authentication has gained interest
considering the increase in adulteration cases in recent years. In this study, second-order fingerprints
acquired by liquid chromatography with fluorescence detection (HPLC-FLD) were first used to
detect and quantify adulteration levels of Chinese paprika samples. Six different adulteration cases,
involving paprika production region, cultivar, or both, were investigated by pairs. Two strategies
were employed to reduce the data matrices: (1) chromatographic fingerprints collected at specific
wavelengths and (2) fusion of the mean data profiles in both spectral and time dimensions. Afterward,
the fingerprint data with different data orders were analyzed using partial least squares (PLS) and
n-way partial least squares (N-PLS) regression models, respectively. For most adulteration cases,
N-PLS based on second-order fingerprints provided the overall best quantitation results with cross-
validation and prediction errors lower than 2.27% and 20.28%, respectively, for external validation
sets with 15–85% adulteration levels. To conclude, second-order HPLC-FLD fingerprints coupled
with chemometrics can be a promising screening technique to assess paprika quality and authenticity
in the control and prevention of food frauds.

Keywords: paprika; HPLC-FLD; chemometrics; second-order fingerprint; food authentication

1. Introduction

Paprika, the dehydrated and milled fruit of certain varieties of red pepper (Capsicum annuum L.),
is one of the most widely consumed spices in many areas of the food industry [1,2]. Owing
to its particular taste (sweet and spicy), flavor, and high coloring capacity, paprika can
be used as a food additive, acting as both a natural colorant and a flavoring agent [3]. In
China, paprika is widely used in a wide variety of cooking methods for both flavor and
color [4]. Moreover, it is also well-known to be a good source of micronutrients (minerals
and vitamins) and bioactive compounds such as capsaicinoids, carotenoids, and phenolic
and polyphenolic compounds [5]. These compounds exert multiple pharmacological and
physiological effects including analgesic, anti-obesity, antioxidant, cardioprotective, and
anticancer activities [6–8].

The characteristics of paprika can be affected by cultivar, geographical region, agro-
nomic conditions, and product process. Hence, paprika from different regions and cultivars
may differ in quality and composition. This also indicates that the quality of paprika,
which is mainly reflected by its prices and commercial values, may also differ within the
same cultivar. With the increasing consumption of paprika worldwide, it has become an
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attractive target for adulteration and mislabeling. Generally, high-quality paprika, such as
protected geographical indication (PGI) paprika products, can be subjected to adulteration
more easily due to its high reputation and commercial values. Paprika adulteration can be
performed in various forms and may occur at each stage of production in different ways:
addition of foreign matter, addition of inferior products or cheaper materials, and adulter-
ation by masking poor quality with colorants [9]. Adulterants are usually incorporated at
low levels and are difficult to detect by a simple sensory evaluation due to their similar
color, appearance, and texture to the real paprika samples [10,11]. Therefore, accurate and
reliable analytical strategies to detect and prevent paprika frauds are demanded.

Due to the complexity of compound distribution in foods and the lack of specific com-
pounds directly related to their origin or quality, classic targeted analysis may not be compe-
tent for food authentication issues. Hence, the use of nontargeted approaches, by recording
instrumental signals associated with large numbers of known and unknown compounds
present in the samples (fingerprinting approaches), has been increasing in recent years [12].
Regarding paprika, the application of chemometrics to the nontargeted instrumental data
acquired using several spectroscopic techniques, such as UV-Vis [13,14], fluorescence [15],
Raman [16], visible-Near-infrared (VIS-NIRS) [17], and infrared spectroscopies [3], for the
authentication of adulterated paprika has been attempted. Moreover, nontargeted fin-
gerprints obtained by liquid chromatography techniques have also played an important
role in the authentication or discrimination of paprika. To date, liquid chromatogra-
phy coupled with different detection systems, such as ultraviolet (LC-UV) [7], fluores-
cence (LC-FLD) [18], electrochemical detection (LC-ECD) [19], and mass spectrometry
(LC-MS) [20], has been evaluated.

However, fingerprinting approaches based on less expensive chromatographic instru-
mentals (e.g., LC-UV and LC-FLD) usually only record signals at predefined UV absorption
or excitation/emission wavelengths [7,18]. Despite the potentiality of first-order chromato-
graphic data as chemical descriptors to address the paprika origin and cultivar having been
demonstrated, chemical information provided by HPLC can be partially lost or corrupted
and may be unsuitable for paprika authentication issues sometimes. HPLC coupled with
diode array detection (DAD) or fluorescence detection (FLD) allows the acquisition of
information (second-order data) on the retention behavior and structure-related spectral
patterns of the solutes [21], providing more chemical information on the paprika finger-
prints as compared to that obtained by a univariate chromatogram. Therefore, it is expected
to further improve the performance of paprika authentication by applying the chromato-
graphic fingerprinting approach that combines second-order data with chemometrics. As
far as we know, no studies have been reported for the detection or authentication of paprika
using comprehensive information carried by HPLC-DAD or FLD spectrochromatogram
and chemometrics.

Driven by the above-mentioned problems and inspired by the abundant information
of second-order data, nontargeted second-order HPLC-FLD fingerprints combined with
chemometrics were first used to detect and quantify adulteration levels in fraudulent
paprika samples, involving production region, cultivar adulteration, and both. On the
one hand, the second-order fingerprint data, strongly related to phenolic acid and polyphe-
nolic compounds, were used directly to develop regression models using the n-way partial
least squares (N-PLS) algorithm. On the other hand, two variable reduction strategies
were applied to reduce the data matrices for each sample, and then the reduced data
(first-order fingerprints) were analyzed by partial least squares (PLS). To fully demonstrate
the superiority of second-order fingerprint data in the detection of adulterated paprika,
quantitation results obtained from N-PLS and PLS were investigated and compared metic-
ulously. The flow chart of the whole experimental steps is shown in Figure S1 in the
Supplementary Materials.

The objective of this work is not only to detect and quantify adulteration levels
in fraudulent paprika samples, but also to explore the data pretreatments, data orders,
and chemometric methods of nontargeted fingerprints based on HPLC-FLD to improve
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quantification performance. To achieve this goal, different methods (PLS and N-PLS)
for the detection and quantification of adulterated paprika samples using first-order and
second-order HPLC-FLD fingerprints are discussed and compared.

2. Materials and Methods
2.1. Reagents and Materials

HPLC-grade methanol and acetonitrile were purchased from Merck (Darmstadt, Ger-
many). Formic acid (≥99%) was obtained from Macklin (Shanghai, China). HPLC-grade
water was supplied by Wahaha (Hangzhou, China).

2.2. Samples

A total of 80 paprika samples from different regions and cultivars were collected in
May 2021. Among the samples of each region, there were different cultivars of paprika:
Erjingtiao (EJT), Lantern (LT), Bullet (BL), Xiaomi (XM), Wanzi (WZ), and Pod (PD) in
the samples from Guizhou; Bullet and Neihuang New Generation (NH) in the samples
from Henan; Erjingtiao in the samples from Sichuan. The characteristics of these paprika
samples, including pungency degree, flavor, and main origin, are collected in Table S1.
For example, NH pepper is a variant of Pod pepper and is mainly produced in Henan,
which has a high flavor and pungency degree. This also suggests that NH paprika may
contain more capsaicinoids and characteristic flavor compounds than others. Moreover,
the number of samples for each type of paprika is summarized in Table S2. All the samples
were obtained directly from paprika producers or local markets.

Six paprika adulteration cases involving different production regions and cultivars
were studied: Sichuan EJT adulterated with Guizhou EJT (case 1), Guizhou LT adulterated
with Henan LT (case 2), Guizhou LT adulterated with Guizhou EJT (case 3), Guizhou XM
adulterated with Henan NH (case 4), Guizhou BL adulterated with Henan BL (case 5), and
Guizhou WZ adulterated with Guizhou PD (case 6). Binary paprika samples were prepared
by mixing different types of paprika (region and cultivar) with different proportions. The
selection of real samples and adulterated samples was mainly based on the prices and
commercial values of different paprika samples. For example, the price of Sichuan EJT is
higher than that of Guizhou EJT, which makes the former more likely to be adulterated. To
achieve the detection of adulterated samples and quantitation of their adulterant levels by
chemometrics, calibration and external validation blends were prepared for each case as
shown in Table 1. The 100% pure and adulterated paprika samples in the calibration set
were 10 and 6 replicates, while others were 4 replicates. Moreover, two extra quality control
(QC) samples with 50% adulteration levels were prepared to evaluate the repeatability and
robustness of the chemometric results as well as to detect systematic errors. Hence, a total
of 54 samples can be obtained in each adulteration case studied.

Table 1. Concentration levels designed for paprika adulteration cases in calibration and validation
sets, where X is the pure paprika samples and Y is the adulterated ones.

Calibration Set Validation Set

C01 C02 C03 C04 C05 C06 V01 V02 V03 V04 V05

X (%) 100 80 60 40 20 0 15 25 50 75 85
Y (%) 0 20 40 60 80 100 85 75 50 25 15

replicates 10 4 4 4 4 6 4 4 4 4 4

A sample pretreatment procedure based on solid-liquid extraction (SLE) using water:
acetonitrile (20:80 v/v) was performed [22]. Briefly, 0.3 g of paprika was weighed and
mixed with a 3 mL solution and then vortexed for 1 min. Subsequently, samples were
sonicated for 20 min and centrifuged at 3000 rpm for 15 min. The supernatant was diluted
10-fold with the same solution and filtered through a 0.45 µm nylon filter before being
stored at 4 ◦C before use.
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2.3. Instrumentation

The HPLC analyses were performed using a Dionex Ultimate 3000 HPLC system
(Thermo Scientific, Germering, Germany) equipped with an Ultimate 3000 pump, an
Ultimate autosampler, an Ultimate column compartment, and a fluorescence detector
(FLD). The Chromeleon software 7.2.10 (Thermo Scientific) was used to control the HPLC
system and data acquisition.

The chromatographic separations were achieved using a Dikma C18 reverse-phase
column (100 mm × 4.6 mm i.d., 5 µm particle size), with a guard column packed with the
same material. The column was maintained at 35 ◦C throughout the analysis. The mobile
phase was 0.1% formic acid aqueous solution (A) and acetonitrile (B), delivered at a flow
rate of 1.0 mL/min. The gradient elution procedure was set as follows: 2.0 min, 20% B;
4.0 min, 90% B; 10.0 min, 90% B; 11.0 min, 20% B; 16.5 min, 20% B. The injection volume was
10 µL. Moreover, the HPLC-FLD fingerprints (data matrices for samples) were acquired at
310 nm for excitation wavelengths and 350 nm to 450 nm for emission wavelengths. The
temperature of the flow cell was 45 ◦C, while the sensitivity of the FLD detector was set
to 5.

2.4. Chemometrics

The raw HPLC-FLD fingerprints were processed in the MATLAB environment (version
R2010b) after converting them to text files. A data matrix of size 2250 × 101 (elution time
points × spectroscopic data points) was obtained for each analytical sample. As the
fingerprint data were reproducible between successive runs, there was no need to perform
any chromatographic alignment procedure before chemometric analysis. All the HPLC-FLD
fingerprints were autoscaled before modeling to provide the same weight to each variable.

Herein, PLS was performed using regression toolbox 1.3 [23], while PLS-DA was
used by classification toolbox 5.4 [24]. N-PLS analyses were applied using the N-way
toolbox, which is freely available at http://www.models.kvl.dk/algorithms (accessed on
10 August 2021) [25]. All the interface graphics and toolboxes were designed for MAT-
LAB software. Briefly, the X block in N-PLS is a three-way data array X (second-order
fingerprints) with the size of I (samples) × J (retention time points) × K (emission wave-
lengths), while those in PLS and PLS-DA are matrixes (first-order fingerprints) with the
size of I (samples) × J (variables). In contrast, the Y block is a data matrix that defines each
adulterant percentage in PLS and N-PLS, while defining each sample class in PLS-DA.
More detailed information and theoretical descriptions of these chemometric algorithms
can be found in the relevant literature [24,26].

To evaluate the analytical performances of different chemometric methods/fingerprints,
a series of model parameters including linearity (R2), root-mean-square error of calibration
(RMSEC), root-mean-square error of cross-validation (RMSECV), and root-mean-square
error of validation (RMSEV) were calculated and compared. Moreover, the optimum num-
ber of latent variables (LVs) of PLS, N-PLS, and PLS-DA was chosen at the first significant
minimum point of the cross-validation (CV) error by a 10-fold Venetian blind approach.

3. Results and Discussion
3.1. General Concerns

In recent years, FLD has become a feasible alternative and also a complement to UV
and MS detection due to its high selectivity and sensitivity. Generally, FLD can provide bet-
ter detection capabilities for fluorescent compounds than UV detection, even comparable
to that of MS detection [27]. As some food extracts contain a lot of fluorescent compo-
nents related to their origin, HPLC-FLD fingerprinting has gained wide concern in food
authentication. Thus far, HPLC-FLD fingerprints combined with chemometrics have been
successfully used for addressing the classification and authentication of food samples, such
as paprika, coffee, tea, extra-virgin olive oil, and nuts [12,18,28–32]. Moreover, in the cases
of nuts classification and coffee classification, HPLC-FLD provided better discrimination
performances than HPLC-UV [29,30].

http://www.models.kvl.dk/algorithms
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In a recent study [18], the applicability of nontargeted HPLC-FLD fingerprints (first-
order data) related to phenolic and polyphenolic compounds has been demonstrated for the
authentication of paprika samples according to their production regions and types. Inspired
by this, we aimed to further explore the potential of second-order HPLC-FLD fingerprint
data in the detection and quantitation of adulterated paprika samples from different
provinces of China. Herein, nontargeted second-order fingerprints were obtained using
HPLC-FLD by setting the excitation wavelength at 310 nm and the emission wavelengths
from 350 to 450 nm. The selection of excitation and emission wavelengths was based on
the published literature [18] and our preliminary experiments. The results showed that
second-order fingerprints recorded at the excitation wavelength of 310 nm and emission
wavelengths of 350 nm to 450 nm had better overall intensities. These fingerprints are
based on the instrumental response (data matrix) recorded as a function of elution time
and emission wavelength, roughly related to bioactive compounds (e.g., phenolic and
polyphenolic compounds) in paprika samples [18].

Given the characteristics of nontargeted analysis, the optimization of chromatographic
condition was based on obtaining enough discriminative information in a suitable time,
rather than seeking baseline-resolved peaks. Accordingly, a rapid gradient elution pro-
cedure, using a short C18 column and 0.1% formic acid and acetonitrile, was used for
HPLC-FLD data acquisition. Figure 1 depicts the counter maps of fingerprints of four rep-
resentative paprika samples after a simple blank subtraction procedure. As shown, similar
fingerprints were obtained for different kinds of paprika samples, roughly reflected in the
number of detectable peaks and the overall chromatographic-spectral profiles. The main
differences in these fingerprints, derived from their fluorescence intensities, provided the
possibility to quantify the paprika adulterant levels by chemometric methods. Moreover,
only the fingerprint data recorded at 0 to 8.7 min were considered, avoiding the column
re-equilibration step.

Figure 1. Counter maps of second-order HPLC-FLD fingerprints of (a) Sichuan EJT, (b) Guizhou EJT,
(c) Guizhou BL, and (d) Henan BL after subtracting the solvent blank.



Foods 2022, 11, 2376 6 of 12

3.2. Variable Reduction

As there were fewer chemometric algorithms directly using second-order data for
modeling, two variable reduction strategies were employed to obtain first-order fingerprint
data suitable for conventional chemometric methods such as PLS and PLS-DA. The first one
selected HPLC-FLD fingerprints collected at specific detection emission wavelengths (380
and 440 nm), which were picked through the literature reported [18] and through visual
inspection of Figure 1. Two data matrices with the size of 54 × 1200 (samples × variables)
were obtained for each adulteration case by this way. The second used decomposition and
vector fusion (DVF), a new variable reduction strategy developed by Jiménez-Carvelo [33],
to generate “chromatographic + spectral” fusion fingerprint data. Briefly, a first-order vec-
tor consisting of 1301 variables could be obtained by fusing the retention time mean vector
(1200 × 1) and emission spectral vector (101 × 1) of each sample. Then, the fused vectors of
all samples were grouped in a single matrix of size 54 × 1301 (samples × variables). Com-
pared with first-order fingerprints obtained at specific detection wavelengths, fingerprints
generated by DVF retained more sample information, which might be more beneficial for
the detection and quantification of adulterated paprika samples. Figure 2a,b display the
signals of samples from one adulteration case (Guizhou WZ adulterated with PD) collected
at 380 nm and 440 nm, respectively. Figure 2c presents the fused mean vectors of samples
from another adulteration case (Guizhou XM adulterated with Henan NH).

3.3. Detection and Quantitation of Adulteration by PLS

The feasibility of conventional first-order HPLC-FLD fingerprints as chemical descrip-
tors to detect and quantify paprika adulterations by PLS regression was investigated in
the six adulteration cases. First, three kinds of first-order fingerprints acquired by variable
reduction strategies were analyzed by PLS-DA to observe the distribution of samples
from a two-dimensional space for both calibration and validation sets. The score plots of
PLS-DA for three of the studied adulteration cases, Sichuan EJT adulterated with Guizhou
EJT, Guizhou LT adulterated with Henan LT, and Guizhou WZ adulterated with Guizhou
PD, are illustrated in Figure 3. As can be seen, although different first-order fingerprints
may reveal different feature information, samples tend to be distributed along the first
score (LV1) according to their adulteration levels. For example, the real paprika samples
(0% adulterant) are located at the left of the score plot, while the 100% pure adulterant
samples are at the right. The distribution of samples in the score plots reveals differences in
their production region and cultivar. Moreover, two QC samples are usually clustered in
the center of the score plots, which demonstrated the robustness of the PLS-DA analysis
and the feasibility of conventional first-order HPLC-FLD fingerprints.

Then, PLS regression models were established using first-order fingerprint data from
the calibration sets, and their quantitation performances were evaluated by analyzing
binary mixed samples with different adulteration levels (validation sets) not involved
in modeling. Figures S2 and S3 present the plots of predicted adulteration levels versus
real levels obtained by PLS regression in six cases. As can be seen, although it seemed
to build good calibration models for three types of first-order fingerprints by PLS, with
all RMSEC values below 4.97% and R2 ≥ 0.983, poor predicted results were obtained for
validation sets in some cases. For example, scatter points of the validation set significantly
deviated from the established PLS regression curves in case 3, resulting in all RMSEV values
exceeding 20% (Figure S2). Relatively poor predicted results were also obtained in cases
2 and 4. For these cases, one could find that errors were mainly from validation samples
with low adulteration levels—all PLS regression models significantly overestimated them.
Moreover, no considerable improvement was observed in the predicted results by PLS
using first-order fusion data (c in Figures S2 and S3), as compared to data collected at
specific wavelengths (a,b in Figures S2 and S3). Hence, PLS regression models constructed
using first-order data were insufficient to achieve satisfactory quantitation results in all
adulteration cases studied. This might be because such data contained less comprehensive
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information or experimental variance that was relevant to the quantitation, thus demoting
the model prediction performance in some cases to a large extent.

Figure 2. First-order fingerprint signals of selected samples from case 6 (Guizhou WZ adulterated with
Guizhou PD) collected at 380 nm (a) and 440 nm (b), respectively; first-order fusion fingerprint signals
of selected samples from case 4 (Guizhou XM adulterated with Henan NH) generated by DVF (c).
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Figure 3. PLS-DA score plots of LV1 versus LV2, using first-order fingerprint data collected at 380 nm
(a1–a3), first-order fingerprint data collected at 440 nm (b1–b3), and first-order fusion fingerprint data
generated by DVF (c1–c3) in Sichuan EJT adulterated with Guizhou EJT (case 1), Guizhou LT adulter-
ated with Henan LT (case 2), and Guizhou WZ adulterated with Guizhou PD (case 6), respectively.

3.4. Detection and Quantitation of Adulteration by N-PLS

Considering the more abundant and comprehensive information provided by second-
order fingerprints, an attempt was made to detect and quantify adulteration levels of
paprika by N-PLS. The quantitation results obtained by N-PLS for six adulteration cases
are shown in Figure 4 and Table 2. As can be seen, overall good results were obtained in
almost all cases studied (except case 2), with a linearity (R2) higher than 0.999 and RMSEC
and RMSEV values below 1.13% and 11.28%, respectively. Moreover, the regression curves
established by N-PLS provided overall good predictions for samples with low adulteration
levels. In addition, although the prediction error (RMSEV = 20.28%) in case 2 was still
large, significant improvements in prediction results could be observed in other cases when
comparing the results of N-PLS with those obtained by PLS. For instance, the RMSEV in
case 3 decreased from approximately 20% to 10% when using PLS and N-PLS, respectively.
Given the fact that more accurate results can be obtained, second-order fingerprint data
in combination with the N-PLS algorithm are more suitable for quantifying adulteration
levels in paprika samples.
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Figure 4. The plots of predicted adulteration levels versus real values obtained by N-PLS regression
for six adulteration cases (a–f).

Table 2. Results for the quantitation of adulteration levels in six cases using second-order HPLC-FLD
fingerprints and N-PLS.

Original
Paprika

Paprika Used
as Adulterant LV Linearity

(R2)
RMSEC

(%)
RMSECV

(%)
RMSEV

(%)

Sichuan EJT Guizhou EJT 5 0.9991 1.13 2.19 5.12
Guizhou LT Henan LT 5 0.9995 0.89 2.27 20.28
Guizhou LT Guizhou EJT 15 0.9999 0.01 0.91 11.28
Guizhou XM Henan NH 9 0.9999 0.30 0.69 10.90
Guizhou BT Henan BT 5 0.9997 0.68 0.87 5.07
Guizhou WZ Guizhou PD 5 0.9997 0.70 1.03 1.52

In addition, when comparing the results with those previously reported by first-order
HPLC-FLD fingerprints [18], a certain improvement was observed. While similar prediction
errors were obtained with both first-order and second-order fingerprints, calibration errors
obtained by the latter were generally lower, with most RMSEC (cases 3, 4, 5, and 6) and
RMSECV (cases 3, 4, 5, and 6) values below 0.70% and 1.03%, respectively. Although the
experiment procedures and samples employed were different between these two methods,
analytical results also indicated that the second-order fingerprints, which contained more
information, might have advantages in the detection and quantification of adulterated
paprika samples to some extent.

4. Conclusions

In this work, nontargeted second-order HPLC-FLD fingerprints coupled with chemo-
metrics were successfully used for the detection and quantitation of adulteration levels in
fraudulent paprika samples. Six different adulteration cases, involving paprika production
region, cultivar, or both, were investigated by pairs. Two variable reduction strategies were
employed to reduce the data matrices and generate first-order data for samples. To better
detect adulterated paprika samples and evaluate the potential of fingerprints with different
data orders in chemometric analysis, PLS and N-PLS were used to establish regression mod-
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els using first-order and second-order fingerprint data, respectively. No obvious differences
in the quantitation performances were found by PLS models when using first-order fusion
data and first-order data collected at specific wavelengths. However, although N-PLS
and PLS shared similar calibration errors (RMSEC) for almost all cases, more satisfactory
predicted results with lower RMSEV were obtained for the former one, especially in cases 2
and 4. Moreover, when compared with the results previously published using first-order
HPLC-FLD fingerprints, a certain improvement of results with generally lower calibration
errors was obtained based on second-order HPLC-FLD fingerprints.

To conclude, the superiority of second-order HPLC-FLD fingerprint data to detect
and quantify adulterated paprika has been proved in this work. The quantitation results
obtained from N-PLS using second-order data were more satisfactory than those obtained
from PLS using first-order data. This improvement is probably due to second-order data
capturing more abundant chemical information (features or descriptors) that facilitates
quantification. Therefore, nontargeted second-order HPLC-FLD fingerprints in combination
with chemometrics can be a useful screening technique to assess paprika integrity and
authenticity in the control and prevention of food frauds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods11152376/s1, Figure S1: The flow chart of the whole experi-
mental steps; Figure S2. The plots of predicted adulteration levels versus real values obtained by PLS
regression using first-order data collected at 380 nm (a1–a3), 440 nm (b1–b3) and first-order fusion
data (c1–c3) in case1 (a1–c1), case 2 (a2–c2) and case 3 (a3–c3), respectively; Figure S3. The plots of
predicted adulteration levels versus real values obtained by PLS regression using first-order data
collected at 380 nm (a1–a3), 440 nm (b1–b3) and first-order fusion data (c1–c3) in case4 (a1–c1), case 5
(a2–c2) and case 6 (a3–c3), respectively; Table S1. The pungency degree, flavor and main origin of
paprika samples studied; Table S2. Detailed sample information of the paprika samples analyzed in
the study.
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16. Kolašinac, S.; Pećinar, I.; Danojević, D.; Stevanović, Z.D. Raman Spectroscopy Coupled with Chemometric Modeling Approaches
for Authentication of Different Paprika Varieties at Physiological Maturity. LWT 2022, 162, 113402. [CrossRef]

17. Monago-Maraña, O.; Eskildsen, C.E.; Galeano-Díaz, T.; Muñoz de la Peña, A.; Wold, J.P. Untargeted Classification for Paprika
Powder Authentication Using Visible—Near Infrared Spectroscopy (VIS-NIRS). Food Control 2021, 121, 107564. [CrossRef]

18. Campmajó, G.; Rodríguez-Javier, L.R.; Saurina, J.; Núñez, O. Assessment of Paprika Geographical Origin Fraud by
High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FLD) Fingerprinting. Food Chem. 2021,
352, 129397. [CrossRef]

19. Serrano, N.; Cetó, X.; Núñez, O.; Aragó, M.; Gámez, A.; Ariño, C.; Díaz-Cruz, J.M. Characterization and Classification of
Spanish Paprika (Capsicum annuum L.) by Liquid Chromatography Coupled to Electrochemical Detection with Screen-Printed
Carbon-Based Nanomaterials Electrodes. Talanta 2018, 189, 296–301. [CrossRef]

20. Barbosa, S.; Saurina, J.; Puignou, L.; Núñez, O. Classification and Authentication of Paprika by UHPLC-HRMS Fingerprinting
and Multivariate Calibration Methods (PCA and PLS-DA). Foods 2020, 9, 486. [CrossRef]

21. Biancolillo, A.; Maggi, M.A.; De Martino, A.; Marini, F.; Ruggieri, F.; D’Archivio, A.A. Authentication of PDO Saffron of L’Aquila
(Crocus sativus L.) by HPLC-DAD Coupled with a Discriminant Multi-Way Approach. Food Control 2020, 110, 107022. [CrossRef]

22. Cetó, X.; Serrano, N.; Aragó, M.; Gámez, A.; Esteban, M.; Díaz-Cruz, J.M.; Núñez, O. Determination of HPLC-UV Finger-
prints of Spanish Paprika (Capsicum annuum L.) for Its Classification by Linear Discriminant Analysis. Sensors 2018, 18, 4479.
[CrossRef] [PubMed]

23. Consonni, V.; Baccolo, G.; Gosetti, F.; Todeschini, R.; Ballabio, D. A MATLAB Toolbox for Multivariate Regression Coupled with
Variable Selection. Chemom. Intell. Lab. Syst. 2021, 213, 104313. [CrossRef]

24. Ballabio, D.; Consonni, V. Classification Tools in Chemistry. Part 1: Linear Models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [CrossRef]
25. Andersson, C.A.; Bro, R. The N-Way Toolbox for MATLAB. Chemom. Intell. Lab. Syst. 2000, 52, 1–4. [CrossRef]
26. Bro, R. Multiway Calibration. Multilinear PLS. J. Chemom. 1996, 10, 47–61. [CrossRef]
27. Seo, S.-W.; Kim, J.-M.; Han, D.-G.; Geum, D.; Yun, H.; Yoon, I.-S. A Sensitive HPLC-FLD Method for the Quantification of

Alpelisib, a Novel Phosphatidylinositol 3-Kinase Inhibitor, in Rat Plasma: Drug Metabolism and Pharmacokinetic Evaluation in
Vitro and in Vivo. J. Chromatogr. B 2021, 1163, 122508. [CrossRef]

28. Pons, J.; Bedmar, À.; Núñez, N.; Saurina, J.; Núñez, O. Tea and Chicory Extract Characterization, Classification and Authentication
by Non-Targeted HPLC-UV-FLD Fingerprinting and Chemometrics. Foods 2021, 10, 2935. [CrossRef]

29. Núñez, N.; Martínez, C.; Saurina, J.; Núñez, O. High-Performance Liquid Chromatography with Fluorescence Detection
Fingerprints as Chemical Descriptors to Authenticate the Origin, Variety and Roasting Degree of Coffee by Multivariate
Chemometric Methods. J. Sci. Food Agric. 2021, 101, 65–73. [CrossRef]

30. Campmajó, G.; Saez-Vigo, R.; Saurina, J.; Núñez, O. High-Performance Liquid Chromatography with Fluorescence Detection
Fingerprinting Combined with Chemometrics for Nut Classification and the Detection and Quantitation of Almond-Based
Product Adulterations. Food Control 2020, 114, 107265. [CrossRef]

31. Bajoub, A.; Medina-Rodríguez, S.; Gómez-Romero, M.; Ajal, E.A.; Bagur-González, M.G.; Fernández-Gutiérrez, A.;
Carrasco-Pancorbo, A. Assessing the Varietal Origin of Extra-Virgin Olive Oil Using Liquid Chromatography Fingerprints of
Phenolic Compound, Data Fusion and Chemometrics. Food Chem. 2017, 215, 245–255. [CrossRef]

http://doi.org/10.1007/s12161-018-1250-x
http://doi.org/10.1016/j.lwt.2020.109153
http://doi.org/10.1016/j.tifs.2020.02.032
http://doi.org/10.1111/1541-4337.12436
http://doi.org/10.1016/j.microc.2019.104278
http://doi.org/10.1016/j.foodres.2005.02.008
http://doi.org/10.1016/j.foodcont.2021.107912
http://doi.org/10.1007/s12161-013-9717-2
http://doi.org/10.1016/j.microc.2018.11.034
http://doi.org/10.1080/00032719.2015.1089257
http://doi.org/10.1016/j.lwt.2022.113402
http://doi.org/10.1016/j.foodcont.2020.107564
http://doi.org/10.1016/j.foodchem.2021.129397
http://doi.org/10.1016/j.talanta.2018.06.085
http://doi.org/10.3390/foods9040486
http://doi.org/10.1016/j.foodcont.2019.107022
http://doi.org/10.3390/s18124479
http://www.ncbi.nlm.nih.gov/pubmed/30567367
http://doi.org/10.1016/j.chemolab.2021.104313
http://doi.org/10.1039/c3ay40582f
http://doi.org/10.1016/S0169-7439(00)00071-X
http://doi.org/10.1002/(SICI)1099-128X(199601)10:1&lt;47::AID-CEM400&gt;3.0.CO;2-C
http://doi.org/10.1016/j.jchromb.2020.122508
http://doi.org/10.3390/foods10122935
http://doi.org/10.1002/jsfa.10615
http://doi.org/10.1016/j.foodcont.2020.107265
http://doi.org/10.1016/j.foodchem.2016.07.140


Foods 2022, 11, 2376 12 of 12

32. Núñez, N.; Pons, J.; Saurina, J.; Núñez, O. Non-Targeted High-Performance Liquid Chromatography with Ultraviolet and
Fluorescence Detection Fingerprinting for the Classification, Authentication, and Fraud Quantitation of Instant Coffee and
Chicory by Multivariate Chemometric Methods. LWT 2021, 147, 111646. [CrossRef]

33. Jiménez-Carvelo, A.M.; Cruz, C.M.; Olivieri, A.C.; González-Casado, A.; Cuadros-Rodríguez, L. Classification of Olive Oils
According to Their Cultivars Based on Second-Order Data Using LC-DAD. Talanta 2019, 195, 69–76. [CrossRef]

http://doi.org/10.1016/j.lwt.2021.111646
http://doi.org/10.1016/j.talanta.2018.11.033

	Introduction 
	Materials and Methods 
	Reagents and Materials 
	Samples 
	Instrumentation 
	Chemometrics 

	Results and Discussion 
	General Concerns 
	Variable Reduction 
	Detection and Quantitation of Adulteration by PLS 
	Detection and Quantitation of Adulteration by N-PLS 

	Conclusions 
	References

