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Abstract 

Background:  Pyrethroid-treated mosquito nets are currently the mainstay of vector control in Côte d’Ivoire. How-
ever, resistance to pyrethroids has been reported across the country, limiting options for insecticide resistance 
management due to the paucity of alternative insecticides. Two types of insecticide-treated nets (ITNs), ITNs with 
pyrethroids and the synergist piperonyl butoxide (PBO), and Interceptor®G2 nets, a net treated with a combination of 
chlorfenapyr and alpha-cypermethrin, are believed to help in the control of pyrethroid-resistant mosquitoes.

Methods:  The susceptibility of Anopheles gambiae sensu lato (s.l.) to pyrethroid insecticides with and without pre-
exposure to PBO as well as to chlorfenapyr was investigated in fifteen sites across the country. Susceptibility tests 
were conducted on 2- to 4-day old adult female An. gambiae s.l. reared from larval collections. The resistance status, 
intensity, and effects of PBO on mortality after exposure to different concentrations of deltamethrin, permethrin and 
alpha-cypermethrin were determined using WHO susceptibility test kits. In the absence of a WHO-recommended 
standard protocol for chlorfenapyr, two interim doses (100 and 200 µg/bottle) were used to test the susceptibility of 
mosquitoes using the CDC bottle assay method.

Results:  Pre-exposure to PBO did not result in full restoration of susceptibility to any of the three pyrethroids for the 
An. gambiae s.l. populations from any of the sites surveyed. However, PBO pre-exposure did increase mortality for all 
three pyrethroids, particularly deltamethrin (from 4.4 to 48.9%). Anopheles gambiae s.l. from only one site (Bettie) were 
susceptible to chlorfenapyr at the dose of 100 µg active ingredient (a.i.)/bottle. At the dose of 200 µg (a.i.)/bottle, 
susceptibility was only recorded in 10 of the 15 sites.

Conclusion:  Low mosquito mortality was found for pyrethroids alone, and while PBO increased mortality, it did not 
restore full susceptibility. The vector was not fully susceptible to chlorfenapyr in one third of the sites tested. However, 
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Background
The recent malaria control success recorded in several 
malaria endemic countries is largely attributed to the 
scale up of vector control tools, particularly the imple-
mentation and high coverage of insecticide-treated nets 
(ITNs) and indoor residual spraying (IRS) [1]. Pyre-
throid insecticides have been used for several years 
both for ITNs and IRS because of their effectiveness in 
killing mosquitoes and also for their repellent proper-
ties, providing users additional personal protection and 
safety during sleeping hours [2, 3]. Due to their low cost, 
long residual activity and safety, pyrethroids remain 
the recommended insecticides for treating ITNs [4]. 
Unfortunately, the spread of target-site insensitivity and 
metabolic resistance mechanisms against pyrethroid 
insecticides occurring in malaria vectors are a threat to 
vector control and could lead to resurgence of malaria in 
endemic countries [5–7].

Resistance to all the insecticides previously used in 
public health for adult malaria vector control has been 
reported across Côte d’Ivoire [8], limiting the country’s 
malaria vector control toolkit. Côte d’Ivoire was the first 
West African country to report the knockdown resist-
ance (kdr) mutation in the 1990s, before it was detected 
all over the continent [9, 10]. Moreover, due to the 
intense exposure of Anopheles mosquitoes to insecticides 
used in both agriculture and public health, An. gam-
biae s.l. have developed resistance in several parts of the 
country [8, 11, 12].

A first attempt to manage insecticide resistance using 
ITNs was the development of ITNs that incorporate a 
pyrethroid and a synergist, piperonyl butoxide (PBO), 
which has been shown to increase the mortality of 
malaria vectors with metabolic resistance involving 
mono-oxygenases. Currently, five ITNs types with PBO 
have been developed, all of which received WHO pre-
qualification and are available on the market. Three of 
these are treated with a combination of PBO and del-
tamethrin (PermaNet 3.0, Tsara Plus, Tsara Boost), 
one with PBO and permethrin (Olyset Plus), and one 
with PBO and alpha-cypermethrin (Veeralin) [13–15]. 
The effectiveness of these ITNs in a given area depends 
on the extent of the involvement of metabolic resist-
ance mediated by mono-oxygenase enzymes in vector 

populations. A countrywide distribution of such nets 
therefore requires baseline entomological studies to 
show the involvement of enzyme activities in pyre-
throid resistance of An. gambiae s.l. and the effect of 
the synergist in restoring susceptibility of the targeted 
vector population to pyrethroids [16].

Recent research exploring other classes of insecti-
cides identified chlorfenapyr-based tools as a promising 
option for vector control. Furthermore, WHO Pre-
Qualification (WHO PQ) has approved chlorfenapyr-
based nets and additional studies are ongoing under the 
UNITAID-funded New Nets Project to demonstrate 
the public health impact of those nets for wide use. The 
different mode of action of chlorfenapyr is expected 
to be effective in the presence of pyrethroid resistance 
developed by mosquitoes through several mutations 
[17, 18]. The oxidative removal of the N-ethoxymethyl 
group of the pro-insecticide chlorfenapyr leads to a 
toxic form of the molecule identified as CL 303268 
which functions to uncouple oxidative phosphorylation 
and disrupt metabolic pathways of ATP production in 
mitochondria [19]. This molecule has low mammalian 
toxicity and is classified as a slightly hazardous insec-
ticide by the WHO. Due to its novel mode of action, 
chlorfenapyr is unlikely to show any cross-resistance 
with standard neurotoxic insecticides as observed in 
Anopheles mosquitoes [20, 21]. Chlorfenapyr has been 
evaluated in laboratory bioassays and in experimental 
hut studies for ITNs in several countries including Côte 
d’Ivoire, Burkina Faso, Tanzania, and for both ITNs and 
IRS in Benin [22–26]. Results from those studies sug-
gest that chlorfenapyr is promising as a new molecule 
for ITNs and IRS to control populations of pyrethroid-
resistant malaria vectors [27, 28].

With regards to widespread resistance to the insecti-
cides previously used and the aim of introducing new 
generation vector control tools in Côte d’Ivoire, ITNs 
with chlorfenapyr and PBO represent options to over-
come and manage widespread resistance. The current 
study was undertaken within a countrywide insecticide 
resistance monitoring effort to support the National 
Malaria Control Programme (NMCP) in making vector 
control decisions in Côte d’Ivoire and also to contribute 
to the knowledge base for chlorfenapyr more broadly.

vector susceptibility to chlorfenapyr seems to be considerably higher than for pyrethroids alone or with PBO. These 
data should be used cautiously when making ITN procurement decisions, noting that bioassays are conducted in 
controlled conditions and may not fully represent field efficacy where the host-seeking behaviours, which include 
free-flying activity are known to enhance pro-insecticide chlorfenapyr intoxication to mosquitoes.

Keywords:  Insecticide resistance, Pyrethroids, Piperonyl butoxide, Chlorfenapyr, Anopheles gambiae, Vector control, 
ITNs, Côte d’Ivoire
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Methods
Study sites
Côte d’Ivoire is divided into four ecological zones includ-
ing the forest zone in the South and West, the transitional 
zone in the Centre, the savanna zone and the Sudan 
savanna zone in the North. The climate in the southern 
forest zone is equatorial, with annual rainfall between 
2100  mm and 2500  mm and subequatorial in the west-
ern forest with a range of average rainfall between 1600 
and 2300  mm per year. In the central transitional zone 
of the country, the climate is tropical, with an average 
of 1200 mm rainfall per year. The climate is also tropical 
in the northern savanna and Sudan Savanah zone, with 
an annual average rainfall of 900 mm. Insecticide resist-
ance surveys were carried out in fifteen sites distributed 
across the country, including Aboisso, Adzopé, and San 
Pedro in the South, Bouaké, Béoumi, Dabakala, Sakassou 
and Yamoussoukro in the Centre, Odienné in the North-
West, Bouna and Nassian in the North-East, Daloa and 
Gagnoa in the west and Abengourou and Bettié in the 
East (Fig. 1). Of Those sites, ten represented the NMCP 
sentinel sites were all malaria control activities and 
impact were monitored all year round. The additional 
sites (Bettie, Gagnoa, Sakassou, Dabakala and Béoumi) 
were surveyed based on their malaria endemicity and tar-
geted for indoor residual spraying site selection. Further-
more, the country has a history of two mass campaigns 
of pyrethroid-only long lasting insecticide treated net 
(LLIN) distributions conducted in 2014 and 2017.

The study was conducted between June and Septem-
ber 2019. Anopheles gambiae s.l. larvae and pupae were 
collected from several urban and rural larval habitats in 
each site using the dipping method, pooled and reared 
to adulthood in a field laboratory at each site.

Insecticides and synergist
Papers impregnated with deltamethrin (0.05%, 0.25% 
and 0.5%), permethrin (0.75%, 3.75% and 7.5%), alpha-
cypermethrin (0.05%, 0.25% and 0.5%) and PBO (4%) 
were obtained from University Sains Malaysia (USM).

Pre-weighed preparations of technical-grade active 
ingredient of chlorfenapyr (BASF Corporation USA, 
Batch N 2130H070HV) provided by the Centers for 
Disease Control and Prevention (CDC), Atlanta, were 
used to prepare 50 mL of two doses (100 µg (a.i)/bottle 
and 200  µg (a.i)/bottle) by adding the prescribed vol-
ume of acetone solvent. The solution obtained was vor-
texed to ensure that the solution was uniformly mixed. 
All insecticide solutions and papers were kept at 4  °C 
before and after each test.

Prior to the field susceptibility testing, two impreg-
nated papers received were randomly selected from 
each box and tested against a laboratory-maintained 
susceptible strain of An. gambiae Kisumu to verify the 
effectiveness of the paper. Both chlorfenapyr solutions 
(100  µg (a.i.)/bottle and 200  µg (a.i.)/bottle) were also 
tested using the CDC bottle assay against An. gambiae 
Kisumu to check the efficacy on a susceptible popula-
tion of mosquitoes.

WHO susceptibility test, intensity and synergist assays
Insecticide susceptibility tests were conducted using 
WHO tube tests on 2–4  day old adult female An. gam-
biae s.l. [29, 30]. The diagnostic concentrations of 
deltamethrin (0.05%), permethrin (0.75%), alpha-cyper-
methrin (0.05%) were tested alone and in combination 
with PBO concurrently in all sites. For the synergist 
assays, mosquitoes were pre-exposed to PBO for one 
hour before being exposed to the pyrethroid insecticides 
for one hour. Resistance intensity at five and ten times 
the diagnostic concentration of deltamethrin, permethrin 
and alpha-cypermethrin was also tested in each site using 
WHO susceptibility kits. Two tubes lined with silicone 
oil treated papers were set in parallel during each test and 
served as controls. The start and end temperatures dur-
ing all tests were recorded at 9 sites, and Hobo data log-
gers (HOBO UX100-003, Onset Computer Co., Bourne, 
MA, USA) were used to track temperatures every 10 min 
in the laboratory in two sites (Beoumi and Sakassou) 
(Additional file 1).Fig. 1  Map of the study sites
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CDC bottle assay with chlorfenapyr
Due to non-availability of a WHO recommended pro-
tocol for testing chlorfenapyr, two doses (100 µg (a.i.)/
bottle and 200  µg (a.i.)/bottle) were selected based on 
a literature review [21, 27, 28, 31] and used to coat the 
CDC bottles. The bottles were coated following the 
protocol described by Brogdon et al. [32], with 1 mL of 
chlorfenapyr diluted in acetone at the concentration of 
100 µg (a.i.)/bottle and 200 µg (a.i.)/bottle. The coated 
bottles were wrapped in aluminum foil and dried over-
night at room temperature. A modified protocol was 
designed following the procedures described by Brog-
don et al. [32]. Fifteen to 20 adult mosquitoes (2–4 days 
old) that emerged from field collected larvae were aspi-
rated into 250  mL chlorfenapyr-coated Wheaton bot-
tles for 1  h, after which the mosquitoes were released 
into a clean cage, aspirated back to paper cups and 
fed with 10% sugar solution. Mortality was recorded 
at 24, 48, and 72  h after exposure. Two bottles coated 
with acetone only were prepared similarly to serve as 
controls.

Species identification of the An. gambiae s.l. population
A subsample of about fifty An. gambiae s.l. mosquitoes 
was randomly selected among the population tested per 
site and processed for molecular identification of the spe-
cies of the An. gambiae complex following the SINE PCR 
protocol described by Santolamazza et al. [33]. Addition-
ally, the presence of knocked-down resistance (kdr)-West 
and East resistance mechanisms was characterized within 
each An. gambiae s.l. population using the Taqman pro-
tocol described by Bass et  al. [34] and the presence of 
acetylcholinesterase (ace-1) gene was determined follow-
ing the protocol described by Weill et al. [35].

Statistical analysis
Insecticide resistance status was defined following WHO 
criteria [27] with corrected mortality after 24 h for pyre-
throids and 72  h for chlorfenapyr < 90% as confirmed 
resistance, between 90 and < 98% as possible resistance, 
and ≥ 98% as susceptible. Mortality was corrected using 
Abbott’s formula when the mortality of the control tubes 
was above 5% and less than 20%.

Corrected mortality of:

•	 98–100% at 5× the diagnostic dose indicates low 
resistance intensity

•	 Less than 98% at 5× diagnostic dose implies testing 
the 10× diagnostic dose

•	 98–100% at 10× the diagnostic dose confirms a mod-
erate resistance intensity.

•	 Less than 98% at 10× the diagnostic doses indicates 
high resistance intensity.

For the synergist assays, an increase in the mortality 
after pre-exposure to PBO compared to the diagnostic 
dose of the insecticide alone indicates the involvement 
of enzymes such as P450s in the population tested. The 
mortality of mosquitoes exposed to PBO + pyrethroid 
was also compared with that of the insecticides alone 
and plotted using Graph Pad Prism 5 software. The total 
percentage mortality of all sites against each insecticide 
alone and those of the PBO + insecticides were analyzed 
and compared using a Chi-squared test with Stata 14 
(Stata Corporation, College Station, Texas, USA).

Results
WHO susceptibility test, intensity and synergist assays
The An. gambiae s.l. population tested was primarily 
composed of Anopheles coluzzii (> 95%) in Abengourou, 
Adzopé, Béoumi, Bettié, Dabakala, Daloa, Gagnoa, 
Sakassou and San Pedro, while An. gambiae sensu stricto 
(s.s.) was the only member of the complex found in the 
country northern sites: Bouna, Nassian and Odienné. 
However, both species were in sympatry (≈ 50% each) in 
Aboisso, Bouaké and Yamoussoukro. Furthermore, high 
kdr-West resistance allele frequency was recorded in all 
the 15 sites ranging between 34% in Gagnoa and 97% 
in Odienné. The kdr-East was also observed in few sites 
but at a lower frequency compared to the kdr-West. The 
highest frequency was observed in Sakassou with 10% 
kdr-East resistance allele frequency. The ace-1 frequency 
was relatively high in eight of the fifteen sites (between 
28% in Odienné to 65% in Gagnoa) (Fig. 2).

Full susceptibility (100% mortality) was recorded for all 
insecticides tested against An. gambiae Kisumu and no 
sign of compromised quality and/or efficacy of the insec-
ticide impregnated papers and the chlorfenapyr-coated 
bottles were observed.

The start temperatures in the 9 sites where start and 
end temperatures were recorded had a mean of 25.4  °C 
(minimum 23.0  °C, maximum 28.2  °C) at the start of 
tests and 25.2  °C at the end of tests (minimum 23.8  °C, 
maximum 26.8  °C). During the tests with chlorfenapyr, 
the range was smaller, with mean start temperatures of 
25.6  °C (minimum 24.0  °C, maximum 26.7  °C) and end 
temperatures of 25.2  °C (minimum 24.0  °C, maximum 
26.0  °C). As would be expected since the loggers meas-
ured the temperature every 10  min, the Hobo loggers 
picked up a larger variation in temperature, with labora-
tories ranging from 22.9 to 28.3 °C (Beoumi) and 24.1 °C 
to 28.4 °C (Sakassou).

Resistance of An. gambiae s.l. mosquitoes to pyre-
throids at diagnostic doses was observed in all fifteen 
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sites surveyed. The mean mortality rate (all sites) was 
below 10% for all three pyrethroids: 4.4% (± 0.8 standard 
error (SE) for deltamethrin, 3.1% (± 0.6 SE) for perme-
thrin and 3.4% (± 0.9 SE) for alpha-cypermethrin (Figs. 3, 

4, 5). Additionally, high pyrethroid resistance intensity 
was observed in all sites with survival recorded at 10× 
the diagnostic doses (DD) of deltamethrin (between 
27.8% mortality at Dabakala and 79.5% at Beoumi), 

Fig. 2  Distribution and frequency of the knocked-down resistance (kdr) West, kdr-East and acetylcholinesterase (ace-1) within the An. gambiae s.l. 
population of each site

Fig. 3  WHO susceptibility and intensity assays of deltamethrin against An. gambiae s.l. of the different sites surveyed. Error bars represent the 
standard errors at the Y axis and the red line represents the susceptibility treshold
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permethrin (between 40.7% mortality at Daloa and 95.9% 
at Beoumi) and alpha-cypermethrin (between 13.5% 
mortality at Yamoussoukro and 80.2% at Odienné). Only 
An. gambiae s.l. collected from Odienné (100% mortality 

at 10× DD) and Nassian (98.9% mortality at 10× DD) 
showed moderate resistance intensity to permethrin.

When all sites were considered together, synergist 
assays using PBO pre-exposure yielded statistically 

Fig. 4  WHO susceptibility and intensity assays of permethrin against An. gambiae s.l. of the different sites surveyed. Error bars represent the 
standard errors at the Y axis and the red line represents the susceptibility treshold

Fig. 5  WHO susceptibility and intensity assays of alpha-cypermethrin against An. gambiae s.l. of the different sites surveyed. Error bars represent the 
standard errors at the Y axis and the red line represents the susceptibility treshold
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significant increases in the mean mortality for all three 
pyrethroids (p < 0.0001) (Fig. 6; Additional file 2). Average 
permethrin mortality increased from 2.9% when tested 

alone to 26% mortality with PBO pre-exposure. Del-
tamethrin mortality was 4.3% mortality without PBO and 
47.7% mortality with PBO pre-exposure. Alpha-cyper-
methrin mortality was 3.3% without PBO and 33.7% with 
PBO pre-exposure (Additional file 3).

Chlorfenapyr CDC bottle assay
Susceptibility (98–100%) was recorded for chlorfenapyr 
after 24  h and 48  h delayed mortality for the dose of 
200 µg/bottle and 100 µg/bottle, respectively, when tested 
against the An. gambiae Kisumu strain.

Anopheles gambiae s.l. from only one out of 15 sites 
(Bettie) recorded susceptibility (98.8% mortality) when 
exposed to the 100 µg/bottle dose of chlorfenapyr (Fig. 7). 
The 200 µg/bottle dose yielded more than 98% mortality 
in ten out of 15 sites. Mortality ranging between 87.3% in 
Sakassou to 94.8% in Nassian was observed at the dose of 
200 µg/bottle in Bouake, Gagnoa, Nassian, Sakassou, and 
San Pedro (Fig. 8) (Additional file 4). 

Discussion
Resistance of An. gambiae s.l. mosquitoes to pyrethroids 
observed in this study is consistent with the previously 
described trends in Côte d’Ivoire involving various and 
high insecticide resistance mechanisms such as the kdr-
West and East and the ace-1 mutations [8, 11, 12, 36, 
37]. Testing the intensity of the resistance from 15 sites 
showed that resistance intensity to all three pyrethroid 

Fig. 6  Comparative percentage increment in susceptibility 
of An. gambiae s.l. using the synergist piperonyl butoxide 
(PBO) + pyrethroids in relation to pyrethroids alone across all sites 
surveyed. Significant increment in susceptibility was observed with 
the addition of PBO (p < 0.001) for all three pyrethroids

Fig. 7  CDC bottle assay using chlorfenapyr 100 µg/bottle against An. gambiae s.l. of the different sites surveyed. Error bars represent the standard 
errors at the Y axis and the red line represents the susceptibility treshold
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insecticides is high. This presents a challenge for malaria 
control as it limits the country’s options for insecticide-
based vector control interventions. The level of resistance 
observed could be attributed to the different applica-
tions of insecticide in the country, either for agriculture 
or public health. Agriculture accounts for 24% of GDP in 
Côte d’Ivoire, one of the largest producers and export-
ers of coffee, cocoa, cashew, and palm oil worldwide. A 
recent survey by the ministry of agriculture revealed that 
more than 20,000 tons of chemicals including pesticides 
and insecticides were applied in the country in 2018 
for agricultural purposes including 40% of this amount 
entering illegally [38]. This likely contributed to the 
increasing resistance of malaria vectors to insecticides 
commonly used for insect control in general and malaria 
vector control specifically [36, 37, 39]. In Côte d’Ivoire, 
the two major malaria vectors include An. gambiae and 
An. coluzzii [40]. Both species generally breed in fresh 
water pools resulting from human activities such as irri-
gated rice fields and vegetable gardens, which are often 
treated with insecticides [36, 37, 39, 41]. As described 
by Chouaibou et  al. [42], agricultural pesticides contain 
several insecticide molecules and particularly pyrethroids 
and carbamates, which contribute to the increased and 
widespread resistance of the vectors [39]. Furthermore, 
studies conducted in Western and Eastern Africa have 
shown a significant increase in the frequency of genes 
associated with pyrethroid resistance immediately fol-
lowing the implementation of an ITN campaign [7]. 

Moreover, the National Strategic Plan (NSP) developed 
in 2018 by the Côte d’Ivoire National Malaria Control 
Programme (NMCP) prioritized universal ITN coverage 
in households across the country through mass distribu-
tion campaign of pyrethroid-only ITNs.

In this study, pre-exposure to PBO before the differ-
ent pyrethroids tested showed statistically significant 
but still insufficient increases in the mortality of the An. 
gambiae s.l. populations. These results would support the 
use of PBO-treated vector control tools in select areas 
where significant reversal of resistance was observed 
after pre-exposure to PBO. In some locations, PBO has 
resulted in increased mortality of even highly resistant 
mosquito populations [43]. Out of several combinations 
of PBO ITNs, combinations with the type II pyrethroids 
(deltamethrin and alpha-cypermethrin) showed higher 
performance than those with the type I pyrethroid (per-
methrin), consistent with several other studies compar-
ing the different types of PBO ITNs [44, 45]. These data 
could inform the selection and stratification of the PBO 
ITNs for resistance management in Côte d’Ivoire.

Higher mortality of mosquitoes was observed against 
chlorfenapyr particularly in areas of probable metabolic 
resistance where higher mortality was noted after pre-
exposure of the mosquitoes to PBO before the different 
pyrethroids. It is known that significant increase in mor-
tality after exposure to PBO indicates the involvement 
of P450 enzymes in the insecticide resistance of the vec-
tors. The trends observed were consistent with previous 

Fig. 8  CDC bottle assay using chlorfenapyr 200 µg/bottle against An. gambiae s.l. of the different sites surveyed. Error bars represent the standard 
errors at the Y axis and the red line represents the susceptibility treshold
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observations, when assessing the lethality of chlorfenapyr 
in areas of high metabolic resistance in Aedes aegypti 
after mosquitoes are exposed or not to PBO [17].

Chlorfenapyr is a protoxin requiring activation, via 
cytochrome P450 monooxygenases, to exert its toxic 
effects, via uncoupling of oxidative phosphorylation 
[17, 19]. The expression in An. gambiae s.l. of some 
cytochrome P450s involved in oxidative metabolism are 
under circadian control and more strongly expressed 
at night when Anopheles flight and host-seeking activ-
ity are higher [46, 47]. Such a model could suggest that 
exposure at night could likely produce higher mortality 
results compared to what was observed using traditional 
testing methods. The supposition that laboratory-based 
exposures to technical grade active ingredient or any 
other formulation where behaviours are excluded, likely 
negates attributes of oxidative uncoupling by chlor-
fenapyr when compared to host-seeking behaviours 
which include free-flying physiologically heightened 
states known to enhance pro-insecticide chlorfenapyr 
intoxication to mosquitoes as demonstrated by Oxbor-
ough et al. [31].

Furthermore, previous work showed that testing com-
pleted during the night induces significantly greater mor-
tality than daytime bioassays, indicating the possibility of 
higher effectiveness of chlorfenapyr-based ITNs such as 
Interceptor® G2 since the peak biting hours of the vec-
tors are typically late in the night [31]. Moreover, several 
studies are still ongoing to understand and delineate the 
appropriate diagnostic doses and times for testing chlo-
rfenapyr susceptibility [31, 48, 49]. This study will there-
fore contribute to the evidence base for supporting the 
determination of an appropriate diagnostic dose. With 
regards to the data generated, in ten out of 15 sites where 
the tests were conducted, 98% or greater mortality was 
recorded at the dose of 200 µg/bottle against An. gambiae 
s.l., indicating that chlorfenapyr could be considered as 
an option to manage the resistant population of malaria 
vectors in Côte d’Ivoire, where resistance has continu-
ously increased over the past several decades.

Several trials and studies have been conducted on the 
Interceptor® G2 net. As described by Bayili et al., Camara 
et al. [22, 23] and Ngufor et al. [26] chlorfenapyr-treated 
nets evaluated in several areas with documented pyre-
throid resistance have been proven effective for con-
trolling pyrethroid-resistant malaria vectors and could 
contribute to malaria control decision-making and insec-
ticide resistance management in Côte d’Ivoire.

Though it yielded important findings, this study had 
limitations. There is no standardized and WHO approved 
test protocol available for chlorfenapyr. The best avail-
able information was used to determine the concentra-
tion of insecticide tested, exposure and holding period, 

and test conditions and interpretation of the result. The 
protocol might be optimized by conducting susceptibil-
ity tests at different temperatures, comparing tests results 
conducted during day light versus night, or putting the 
mosquitoes in dark room during exposure period. Until 
such standardized protocol is developed for guidance, the 
data showing reduced susceptibility of An. gambiae s.l. to 
chlorfenapyr shall be interpreted with caution applying it 
only to specific study conditions. Despite this limitation, 
the information gathered could contribute to informing 
vector control programming in Côte d’Ivoire.

Conclusion
As resistance to all pyrethroid insecticides is very high 
across the country, new tools such as chlorfenapyr- and 
PBO-combination ITNs may be appropriate for Côte 
d’Ivoire. This study demonstrated the relative increase 
in effectiveness observed when exposing the pyrethroid-
resistant mosquitoes to either PBO in combination with 
pyrethroids or to chlorfenapyr. Both options represent 
avenues for many African country NMCPs to develop 
insecticide resistance management strategies. In Côte 
d’Ivoire, Interceptor® G2, a chlorfenapyr- and alpha-
cypermethrin-based ITN could therefore be considered 
for a stratified distribution campaign in addition to PBO 
ITNs. The data gathered across the country within this 
study could also support the determination of the diag-
nostic concentration for testing the susceptibility status 
of An. gambiae s.l. against chlorfenapyr while the mol-
ecule is still being tested for appropriate concentrations 
in ITNs and IRS.
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