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Abstract: Although the fruit of Ficus tikoua Bur. has been consumed by montanic people in China
for centuries, its chemical and biological composition was still unclear. A series of comprehensive
investigations on its chemical constituents and bioactivities were carried out for the first time. As
a result, six compounds were isolated and identified as the main components in this fruit. GC–MS
analysis of the lipid components demonstrated that Ficus tikoua Bur. fruit contains some wholesome
constituents such as fatty acids, vitamins, triterpenoids, and phytosterols. The fatty acids are mainly
composed of linolenic acid (61.27%) and linoleic acid (22.79%). Furthermore, this fruit contains a
relative high content of crude protein (9.41 ± 0.03%), total amino acids (9.28%), and total polyphenols
(0.86 ± 0.01 g/100 g). The analysis of monosaccharide composition showed that the total polysaccha-
ride mainly consists of glucose, glucuronic acid, xylose, arabinose, mannose, galactose, galacturonic
acid, and rhamnose. The polysaccharide, polyphenol, water, ethanol, and flavonoid extracts exhib-
ited prominent antioxidant activity determined by ABTS, DPPH, and FRAPS methods. Meanwhile,
the total polysaccharide exhibited significant immunomodulatory effect by enhancing the release
of cytokines and expression of iNOS and COX-2 in RAW264.7 cells, significantly decreasing the
expression of c-Jun and p65 proteins in the cytoplasm; increasing the translocation of c-Jun and p65
to the nucleus; and regulating the phosphorylation level of Akt, PI3K, and PDK1 in the PI3K/AKT
signaling pathway. This study proved that the fruit of F. tikoua is a reliable source of functional food.

Keywords: Ficus tikoua Bur.; nutrient; polysaccharide; antioxidant; immunomodulation

1. Introduction

Ficus tikoua Bur. is a kind of prostrate vine growing on wastelands, grassy banks,
sandy hillsides, and open woodland, within an altitude of 500–2000 m. It belongs to the
genus Ficus of the Moraceae family and is widely distributed throughout south China,
northeastern India, Laos, and Vietnam [1]. As a traditional folk medicine, the stems
and leaves have been used to treat rheumatic pain, acute gastroenteritis, dysentery, and
other diseases [2]. Chemical constituent and bioactivity investigation showed that the
stems and leaves mainly contain antifungal isoflavonoids [3], antioxidant lignans and
phenolic compounds [4,5], flavanones as α-glucosidase inhibitors [6], and coumarins [5].
Furthermore, isoflavonoids with antioxidant and alpha-glucosidase inhibitory activities
were found from the rhizomes of F. tikoua [7]. Isoflavanones were obtained from the whole
plant of F. tikoua, and some of them exhibited cytotoxicity [8]. The ripe fruit of F. tikoua
turns dark red and has a diameter of 1–2 cm, spherical or oval, with multiple round tumor
spot structures on surface (Figure S1 Supplementary Material). It is also called ‘wild melon’
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in China because its ripe fruit looks like ruby and smells pleasant, which is so highly
appreciated by rural kids and residents as alternative sources of fruit that some local people
have begun to culture it. Many studies showed that wild fruits usually foster complex
phytochemical compositions and accumulate active compounds like polyphenols. Some
wild berries are rich in nutrients and exhibit diverse bioactivities such as antidiabetic,
antioxidant, and anti-proliferative activities [9,10]. Nowadays, wild fruits are attracting
more attention because of their rich nutrients and active ingredients, such as protein,
vitamins, amino acids, polyphenols, and flavonoids, which are beneficial to human beings,
showing a tremendous potency in the functional food market [11].

Although F. tikoua fruit has been consumed as a wild fruit in mountain areas for
centuries and its volatile components were preliminarily analyzed by GC–MS [12], its
other phytochemical composition and nutrient contents, as well as biological capacity, were
poorly understood. In this study, its chemical constituents and contents of phytochemicals,
together with bioactivities including antioxidant capacity by FRAP, ABTS, and DPPH
assays and in vitro immunological activity, were systematically investigated, aiming to
provide a comprehensive understanding of this fruit for consumers and lay a scientific
foundation for the development and exploitation of F. tikoua fruit.

2. Results and Discussion
2.1. Chemical Constituents

Six known compounds were isolated from the fruit of F. tikoua, and they were identified
as β-sitosterol (1) [13], stigmasterol (2) [14], psoralen (3) [15], 5-methoxypsoralen (4) [16],
protocatechuic acid methyl ester (5) [17], and daucosterin (6) [13]. What is more, it is pretty
noteworthy that there was always a pleasant scent during extraction and isolation, and
psoralen and its analogues were eventually found to contribute to its aroma. Psoralen
has been a well-known medicine in photochemotherapy for skin diseases such as vitiligo
since 1947 [18]. On the other hand, previous studies showed that the combination of
furocoumarins and UV irradiation is carcinogenic, and the intake of food rich in psoralen
and furocoumarins may be related to a higher incidence of melanoma [19]. As shown
in Figure 1A,B, the fruit contains a relatively high content of psoralen (876.9 mg/kg),
which is comparable with those plants rich in coumarins, e.g., Citrus aurantifolia Swingle
(334 mg/kg) and C. latifolia Tanaka (502 mg/kg) [20]. In view of the high level psoralen, it
has potential to be a dietary supplement for the treatment of skin diseases. However, in case
of skin cancer, people should be wary of long-time sunshine when eating a large amount
of this fruit. Protocatechuic acid methyl ester is a natural antioxidant, widely present in
fruits. As a main constituent of this fruit, the content of protocatechuic acid methyl ester
was quantitatively determined to be 460.0 mg/kg by HPLC.

In order to fully understand the chemical constituents in this fruit, the total methanol
extract was first analyzed by LC–MS (Figures S2 and S3), which is an efficient way to
identify known compounds in a complex system by measuring accurate m/z signals and
fragments of each peak. In total, 28 compounds were identified (Table S1), including
6 amino acids (asparagine, D-(+)-proline, pipecolic acid, DL-norleucine, L-phenylalanine,
and betaine), 4 alkaloids (choline, 8-hydroxyquinoline, 4-indolecarbaldehyde, and indole-3-
acrylic acid), 6 organic acids (D-(−)-quinic acid, DL-malic acid, citric acid, methylmalonic
acid, neochlorogenic acid, and chlorogenic acid), 2 disaccharides (D-(+)-maltose and su-
crose), a flavone (8-prenylnaringenin), a coumarin (psoralen), and 8 fatty acid derivatives
(9S,13R-12-oxophytodienoic acid, 9-oxo-10(E), 12(E)-octadecadienoic acid, α-eleostearic
acid, 12-HpETE, eicosapentaenoic acid methyl ester, 1-linoleoyl glycerol, erucamide, and
docosanamide). Betaine, maltose, and sucrose are a group of natural sweeteners, which are
widely present in fruits and vegetables and may play important roles in counteracting the
sourness of organic acids. The result also showed that the fruit contains a variety of fatty
acids, especially polyunsaturated fatty acids.
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Figure 1. (A) HPLC chromatogram of psoralen standard. (B) HPLC chromatogram of psoralen in F. 
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Figure 1. (A) HPLC chromatogram of psoralen standard. (B) HPLC chromatogram of psoralen in F.
tikoua fruit.

Considering the disadvantages of LC–MS in identifying highly lipophilic constituents,
the hexane extract of F. tikoua fruit was analyzed by GC–MS (Figure S4). The result also
showed that F. tikoua fruit contains high content of different fatty acids. Several other classes
of compounds were identified in this fruit (Table S2), including phytosterols (campesterol,
stigmasterol, 28-isofucosterol, and sitosterol), triterpenoids (squalene, α-amyrin, olean-
12-en-3α-yl acetate, and urs-12-en-24-oic acid, 3-oxo-, methyl ester), and vitamin E (δ-
tocopherol and γ-tocopherol).

In the GC–MS spectrum of the total lipid fraction, the fatty acids were not well sepa-
rated due to their complexity. Therefore, in order to quantatively analyze the compositions
of the fatty acids, which were transformed into fatty acid methyl esters by base-catalyzed
methanolysis (KOH in methanol) for further analysis [21], GC–MS analysis showed that
the fatty acids in the fruit of F. tikoua mainly consisted of hexadecanoic acid (10.56%),
9,12-octadecadienoic acid (22.79%), 9,12,15-octadecatrienoic acid (61.27%), and stearic acid
(5.38%) (Figure 2A) and that unsaturated fatty acids accounted for 84.06% of the total
fatty acids.
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From the above results, it can be concluded that the consumption of a proper amount of
F. tikoua fruit could provide human some salubrious phytochemicals, such as phytosterols,
unsaturated fatty acids, vitamine E, and squalene, which possess beneficial effects on
human health [22].

2.2. Analysis of Nutritional Phytochemicals

The contents of the crude protein, vitamins, amino acids, total polysaccharides,
polyphenols, and flavonoids of F. tikoua fruit are reported in Table S3. The F. tikoua fruit
showed a higher crude protein content (9.41 ± 0.03 g/100 g) compared with other fruits,
kiwifruit (0.9 g/100 g) [23], mulberry fruit (1.4 g/100 g) [24], pear (2.6 g/100 g), and prickly
pear fruit (0.7 g/100 g) [25], for instance. Figure S5 shows the vitamin composition. It can be
seen that F. tikoua fruit contains pridoxine, thiamine, niacin, nicotinamide, and ascorbic acid
but without riboflavin, cyanocobalamin, or folic acid. Furthermore, it contains a substantial
amount of thiamine (205.4 ± 5.4 mg/100 g) and pridoxine (66.6 ± 2.3 mg/100 g). It also
showed a high content of total amino acids (9.28%), and aspartic acid (1.48%) and glutamate
(1.4%) were at the forefront of all the detected amino acids. In addition, there were also
several essential amino acids in this fruit, such as threonine, proline, isoleucine, leucine,
phenylalanine, and lysine.

F. tikoua fruit possessed a lower total polysaccharide content, with a mean value of
1.25 ± 0.04 g/100 g, than grape, apricot, strawberry, and blueberry (4.89–17 g/100 g) [26].
Thus, it may be used as a potential functional food in the diet of diabetic and obese patients.
The analysis of the monosaccharide composition of polysaccharides is of great significance
for the study of polysaccharide structure and properties. The monosaccharide composition
was shown in Figure S6 and Figure 2B. The monosaccharide composition of this fruit
includes glucose (Glc, 34.29%), galacturonic acid (GalA, 22.15%), galactose (Gal, 15.69%),
arabinose (Ara, 13.72%), xylose (Xyl, 4.46%), mannose (Man, 4.45%), glucuronic acid (GlcA,
4.17%), and rhamnose (Rha, 2.08%) at an approximate molar ratio of 15:9:7:7:2:2:2:1, among
which Glc and GalA are the major monosaccharides.

Moreover, the TFC and TPC were found to be 8.00± 0.11 mg/100 g and 0.86± 0.01 g/100 g,
respectively. In comparison with berries, a reasonably good level of TPC was observed in
F. tikoua fruit [27]. Phenolic compounds have been shown to reduce oxidative damage in
living cells and tissues, suggesting that F. tikoua fruit could be good for health [28].

2.3. Antioxidant Activity

Fruit is one of the main sources of antioxidants in the daily diet, so it is important to
estimate its antioxidants and antioxidant capacity. The fruit polyphenols and flavonoids are
the major group of natural antioxidants because of their extensive distribution and diversity.
Furthermore, a comprehensive analysis with precise information on the antioxidant prop-
erties of different extracts including water extracts, alcohol extracts, and polysaccharides is
provided, considering the complexity of the phytochemicals. As described in Figure 3A–D,
the DPPH and ABTS radical scavenging activities of the five extracts ranged between
0.45–1.74 mg/mL and 0.19–0.58 mg/mL (IC50), respectively. In addition, the results of the
scavenging ability of five extracts on DPPH and ABTS free radicals were consistent with
that of the FRAP method. In DPPH free radical scavenging activity, the extracts of polysac-
charide, polyphenols, and flavonoids showed relative higher capability, with IC50 values of
0.48 mg/mL, 0.45 mg/mL, and 0.52 mg/mL, respectively. Meanwhile, the polysaccharide
extract showed the highest antioxidant activity (0.32 mmol Fe2+/g) when measured by
FRAP assay. This fruit showed much higher antioxidant activity than that of many daily
common fruits such as mango 14.23 (µmol FeSO4/g), banana (17.36 µmol FeSO4/g), and
grapes (0.69 µmol FeSO4/g), as reported by Silva [29]. Therefore, the polyphenol, polysac-
charide, and flavonoid extracts of this fruit have remarkable antioxidant activity, and it can
be inferred that polyphenol and polysaccharide may play key roles in antioxidant ingredi-
ents. It is obvious that polyphenols, polysaccharides, and flavonoids are mainly responsible
for the antioxidant capacity of this fruit. The water extract may contain highly hydrophilic
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components such as salts, amino acids, and oligosaccharides. Contrarily, ethanol extract
may contain a high content of lipophilic compounds such as fatty acids, sterols, coumarins,
and flavones. Neither extracting methods extracted the antioxidant ingredients efficiently,
which resulted in their lower antioxidant activity.
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Figure 3. (A) ABTS radical scavenging curve of five extracts. (B) DPPH radical scavenging curve
of five extracts. (C) IC50 (mg/mL) for ABTS and DPPH free radical scavenging of five extracts.
(D) FRAP value (mmol/g Fe2+) of various extracts of F. tikoua fruit. Each bar was replicated three
times, with statistical significance defined as p < 0.05 (*** p < 0.001) vs. control. a = polysaccharide
extract; b = polyphenol extract; c = water extract; d = ethanol extract; e = flavonoid extract.

2.4. Immunomodulatory Activity

As the first line of defense of the body’s immunity, macrophages are considered
to be important target cells for polysaccharides, which in turn promote the secretion of
downstream effector molecules, such as NO, PGE2, IL-6, IL-1β, and TNF-α [30]. The release
of these cytokines also reflects the effects of polysaccharides on the immune response to
exogenous substances. As shown in Figure 4A, compared with the control group, F. tikoua
polysaccharides had no obvious effect on the growth of RAW 264.7 cells (p > 0.05), with
the maximum relative viability being 102.53% of control at 25 µg/mL. Furthermore, the
result of NO production showed that, as the concentration of polysaccharide increased, the
production of NO also increased. In addition, when the concentration of the polysaccharide
was increased to 5.0 µg/mL, the production of NO was significantly higher than that of the
LPS group (Figure 4B). The promotion of NO production indicates that the polysaccharides
of F. tikoua could activate the bactericidal and tumoricidal activity of macrophages and also
may be a potential immunostimulant.

As a kind of protein secreted by immune cells, IL-6 is associated with phagocyto-
sis, antigen presentation, and inflammatory regulation. The effect of polysaccharides on
IL-6 secretion in RAW 264.7 cells was evaluated by ELISA, and the results are shown in
Figure 4C,D, in which the level of stimulated IL-6 gradually increased as the concentration
of polysaccharide increased. Although the level of IL-6 secreted by polysaccharide-treated
RAW 264.7 cells was lower than that of LPS-treated cells, the results indicate that polysac-
charides activate the immune system by stimulating macrophages to secrete IL-6.
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Figure 4. Effect of polysaccharide on the production of inflammatory mediators. (A) RAW 264.7 cells
treated with different concentrations of polysaccharide, and cell viability was evaluated by MTT
assay. (B–D) The NO content was detected by Griss reagent assay, and IL-6 and PGE2 was evaluated
by commercial kit. * p < 0.05 vs. control group.

As shown in Figure 5A, the absence of a TNF-α band indicates that the polysaccharide
has no significant effect on the expression of the gene. However, the expression of iNOS
and COX-2 continued to increase with the prolongation of the stimulation time of the
polysaccharide. The result indicated that polysaccharide can promote the expression of
iNOS and COX-2, thereby enhancing the immune function of macrophages.
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2.5. Effect of Polysaccharide on NF-κB Translocation in RAW 264.7 Cells

NF-κB is a ubiquitous transcription factor, and the transcription subunit p65 is a
key factor involved in the activation of pro-inflammatory cytokines (e.g., iNOS, IL-6, and
TNF-α) [31]. Once activated, NF-κB is translocated to the nucleus and modulates the
expression of target genes [30]. As shown in Figure 5B, polysaccharide stimulation rapidly
enhanced the levels of c-Jun and p65 within 10 min and reached its maximum level at
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30 min, 1 h, and 3 h, respectively. Therefore, polysaccharide significantly decreased the
expression of c-Jun and p65 proteins in the cytoplasm and increased the translocation of
c-Jun and p65 to the nucleus.

2.6. Effects of Polysaccharide on PI3K/AKT Signaling Pathway in RAW 264.7 Cells

PI3K/Akt are members of the signaling pathway that plays an important role in mod-
ulating the immune response and NF-κB signal transduction [32]. The results suggested
that significant phosphorylation of Akt, PI3K, and PDK1 occurred from 10 to 180 min after
polysaccharide treatment (Figure 5C), which suggested that the ploysaccharide of F. tikoua
fruit exerted immuno-modulation via the PI3K/AKT signaling pathway.

3. Experimental
3.1. Materials and Chemicals

3,4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) was purchased
from Biofroxx (Einhausen, Hessen, Germany). Bovine serum albumin (BSA) was bought
from VWR Life Science (Amresco, Solon, OH, USA). RPMI medium 1640 and a penicillin–
streptomycin solution were purchased from Gibco BRL (Thermo Fisher Scientific, Shanghai,
China). Lipopolysaccharide (LPS), sulfanilamide, and N-1-napthylethylenediamine dihy-
drochloride were bought from Sigma-Aldrich (St. Louis, MO, USA). Fetal bovine serum
(FBS) was obtained from Corning (Medford, MA, USA). Primary antibodies including iNOS
and COX-2 were acquired from Cell Signaling Technology (Beverly, MA, USA). Secondary
antibodies including goat anti-rabbit IgG H&L (ab6721) were purchased from Abcam (Cam-
bridge, MA, USA). The enhanced chemiluminescence (ECL) Western blot kit, RIPA lysis
buffer, and BCA protein assay kit were obtained from CWBIO (Taizhou, China). The NMR
spectra were acquired on a Bruker Avance III 400 MHz NMR spectrometer. Open column
chromatography was performed on silica gel (200–300 mesh, Qingdao Marine Chemistry
Co., Ltd., Qingdao, China) and Sephadex LH-20 (40–70 µm, Amersham Pharmacia Biotech
AB, Uppsala, Sweden). Other solvents are all chromatographic or analytical grades and
purchased from Kelon Reagent Co., Ltd. (Chengdu, China).

The ripe fruit of F. tikoua was collected from Beichuan County, Sichuan Province,
China, and authenticated by associate professor Yan Ren, Southwest Minzu Univisity. A
voucher specimen (LMFT2002) has been deposited in the College of Pharmacy, Southwest
Minzu University.

3.2. Isolation and Quantification of Main Constituents

The air-dried powdered fruit of F. tikoua (200.9 g, 50 mesh) were extracted with
methanol (1.5 L) at 60 ◦C three times (each 1 h). The extract (45.0 g, 22.4%) was obtained
after concentration under vacuum. Then the extract was subjected to silica gel elution
successively with a petroleum ether/ethyl acetate gradient (100:1→1:1) and a chloro-
form/methanol gradient (5:1→1:1) to give eight fractions (A–H). Fraction B (371.9 mg)
was subjected to a silica gel column eluted by petroleum ether/ethyl acetate gradient
(10:1→1:1) to afford a mixture of 1 (β-sitosterol) and 2 (stigmasterol) (60.2 mg), 3 (psoralen,
104.9 mg), and 4 (5-methoxypsoralen). Fraction E was purified by Sephadex LH-20 (chloro-
form/methanol, 1:1) to yield 5 fractions (EA1–5). Fraction EA2 was subjected to silica gel
elution (chloroform/methanol, 8:1) to yield 5 (protocatechuic acid methyl ester, 55.7 mg).
Fraction F (507.9 mg) was purified by a silica gel column (chloroform/methanol, 10:1) to
afford 6 (daucosterin, 85.0 mg).

Then the content of psoralen (3) was analyzed by the HPLC method [33]. The HPLC
conditions were as follows: column, Waters (250 × 4.6 mm, 5 µm); mobile phase, ace-
tonitrile/water (40:60, v/v); flow rate, 1.0 mL/min; column temperature, 35 ◦C; detector,
247 nm. The content of protocatechuic acid methyl ester (5) was also determined by HPLC
with the mobile condition of acetonitrile/water (15:85, v/v).
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3.3. LC–MS and GC–MS Analyses of the Chemical Components in F. tikoua Fruit

LC–MS analyses were performed on a Thermo Scientific Q Exactive equipped with
an Accucore 2.6 µm C18 column (100 × 2.1 mm). Analysis conditions were as follows:
flow rate 0.3 mL/min, injection volume 0.5 µL, and column oven temperature 35 ◦C, and
the mobile phase consisted of methanol (A) and water (B). The applied gradients, with
a flow rate of 0.3 mL/min, were as follows: 5–95% A for 0–25.0 min and 95% of mobile
phase A for 25.0–30.0 min. GC–MS analyses were carried out on a 7890A/5975C instrument
equipped with a HP-5MS column (30 m × 0.25 mm, 0.25 µm, Agilent, Santa Clara, CA,
USA) in full-scan mode (m/z 40–700). GC conditions were (a) inlet temperature, 210 ◦C;
(b) injection volume, 5 µL; (c) inlet mode, split (4:1); (d) column flow rates, 1.0 mL/min;
(e) transfer line, 250 ◦C; (f) oven program, 90 ◦C for 3.0 min; and then 10 ◦C/min to 160 ◦C,
held for 5.0 min; then 3 ◦C/min to 280 ◦C, held for 40 min; and then 280 ◦C, held for 17 min,
for a 65.0 min total run time.

3.4. Chemical Analysis
3.4.1. Proximate Analysis

The crude protein of F. tikoua fruit was determined by the Kjeldahl method, and
the content was calculated by multiplying the percentage of nitrogen in the digestion by
6.25. Data were expressed as mass percent in 100 g of dried sample (%). The ash content
was measured by a Muffle furnace at 550 ◦C for 4 h and calculated as g/100 g of the dried
sample [34].

3.4.2. Vitamin Analysis

The content of water-soluble vitamins including pyridoxine, thiamine, riboflavin,
ascorbic acid, cyanocobalamin, niacin, folic acid, and nicotinamide was determined by
HPLC with a UV detector at wavelengths of 210 nm and 254 nm and a C18 column (Waters,
250 × 4.6 mm, 5 µm) [35]. The conditions were as follows: injection volume 10 µL and
column oven temperature 30 ◦C; the mobile phase consisted of methanol (A) and a KH2PO4
solution, pH = 4.0 (B). The flow rate was held constant at 1.0 mL/min, with a stepwise
gradient of 5%, 5%, 10%, and 40% of solvent A at 0, 5, 15, and 35 min, respectively. The
result was expressed as a standard equivalent of the dried sample (mg/100 g).

3.4.3. Amino Acid Composition

Amino acid determination was performed according to the GB method [36]. Results
were expressed as the mass percentage of the dried sample (%).

3.4.4. Total Polysaccharide Content and Its Monosaccharide Composition

The polysaccharide was isolated from the fruit of F. tikoua by hot water extraction and
ethanol precipitation [37]. In brief, the sample (1.0 g) was extracted with hot water (49.0 mL)
at 90 ◦C for twice (each 21 min). Then the filtrate was concentrated with a rotary evaporator
and precipitated with ethanol. The precipitate was successively washed with ethanol,
acetone, and petroleum ether and dried to give a crude polysaccharide after centrifugation.
The polysaccharide content was determined using the sulfuric-acid–phenol method. Result
was expressed as glucose equivalent per gram of dry sample (g GE/100 g) [38].

The analysis was determined by the PMP pre-column derivative method [39]. Briefly,
a polysaccharide aqueous solution (10 mg/mL) was first hydrolyzed by 2 M TFA at 105 ◦C
for 4 h, followed by neutralization with a 2 M NaOH aqueous solution. Then the standard
monosaccharide and the hydrolysate were respectively mixed with a ribose internal stan-
dard solution and successively converted into its PMP derivatives. The aqueous layer was
filtered through a 0.22 µm membrane for HPLC analysis. The HPLC was equipped with a
PDA detector and a YMC-Pack ODS-AQ column (4.6 × 250 mm, 5 µm). The mobile phase
was a binary gradient elution of a triethylamine–ammonium acetate aqueous solution (A)
and acetonitrile (B) with 1.0 mL/min. The results were expressed as the molar ratio of each
monosaccharide.
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3.4.5. Total Flavonoid Content (TFC)

Total flavonoid content was determined according to the following method with some
modification [40]. Briefly, the dried sample (5.0 g) was ultrasonically extracted with 50 mL
80% ethanol at 45 ◦C for 30 min and filtered. This procedure was repeated three times.
The filtrate was combined to obtain the ethanol extract. A total of 1 mL of the ethanol
extract was placed in a 10 mL volumetric flask, in which distilled water was added to
5 mL, and then 0.3 mL of NaNO2 was added. After 5.0 min, a total of 0.3 mL of AlCl3 was
added and kept for another 6 min. Then 2 mL of 1 M NaOH was added, and the total
volume was made up to 10 mL with distilled water. The solution was kept for 30 min.
Absorbance was measured against a blank at 510 nm (Perkin elmer lambda 35 UV/Vis
spectrum, Waltham, MA, USA), and the flavonoid content was determined as the rutin
equivalent from a calibration curve of rutin standard solutions and expressed as milligrams
of rutin/100 g of dried sample. All measurements were performed in triplicate.

3.4.6. Total Polyphenols Content (TPC)

According to the method of Cai [40], the dried sample (1.0 g) was extracted with 20 mL
45% MeOH containing 0.1% HCl in a water bath at 60 ◦C to obtain the extract of TPC. A
total of 1 mL of the sample solution was mixed with 1 mL of Folin–Ciocalteu reagent. After
1 min of incubation at room temperature, 1.5 mL of a 20% Na2CO3 aqueous solution was
added to the mixture, followed by the addition of 7.5 mL of distilled water; the solution
was then kept in a constant-temperature water bath at 70 ◦C for 10 min. After cooling
to room temperature, absorbance was measured at 765 nm. The TPC was expressed as a
gallic acid equivalent (GAE) from the calibration curve of gallic acid standard solutions
and expressed as milligrams of GAE/100 g. All samples were performed in triplicate.

3.5. Antioxidant Activity Analysis
3.5.1. DPPH Assay

The polysaccharide, polyphenol, water, ethanol, and flavonoid extracts were obtained
from the fruit of F. tikoua. More precisely, the extract of polysaccharide was obtained by
the method for total polysaccharide content (Section 3.4.4). Polyphenol and flavonoid
extracts were prepared as described above for the preparation of TPC (Section 3.4.6) and
TFC (Section 3.4.5). While water and ethanol extracts were extracted with water (60 ◦C,
3 × 1 h) and ethanol (45 ◦C, 3 × 1 h), respectively. The DPPH radical scavenging activity of
these extracts was determined based on the method of Li [41]. Each extract (2.0 mL) was
mixed with a DPPH solution (2.0 mL, 2.0 × 10−4 M) and kept at room temperature for
30 min in the dark. Absorbance was measured at 515 nm, and ascorbic acid was used as a
standard control. Then the IC50 values were calculated to represent the results (mg/mL).

3.5.2. FRAP Assay

The FRAP assay was determined referring to the method of Sánchez-González [37].
Fresh FRAP reagent (TPTZ, FeCl3, and potassium acetate buffer were mixed at a ratio of
1:1:10 and then incubated at 37 ◦C for 15 min, 3.0 mL) was mixed with 1.0 mL of diluted
samples, and absorbance was recorded at 595 nm after reacting at 37 ◦C for 30 min. The
total antioxidant capacity (FRAP) was estimated from a standard curve of ferrous sulfate
standard solutions. Results were expressed as the amount of substance equivalent to Fe2+

per gram of extract (mmol Fe2+/g).

3.5.3. ABTS Assay

ABTS radical scavenging activity was determined according to the method described
by Apea-Bah with slight modifications [42]. The ABTS stock solution was diluted with
ethanol to obtain an absorbance of about 0.70 at 734 nm. The appropriately diluted extracts
(2.0 mL) were added to fresh ABTS radical solution (2.0 mL). The absorbance at 734 nm
was read after 10 min of reaction. With ascorbic acid as a positive control, the free rad-
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ical scavenging rate and IC50 values (mg/mL) were calculated in the same way as the
FRAP assay.

3.6. Immunomodulatory Activity Analysis
3.6.1. Cell Line and Cell Culture

RAW 264.7 cells were obtained from the American Type Culture Collection (Rockville,
MD, USA) and maintained in RPMI 1640 medium with 10% FBS, 100 µg/mL streptomycin,
and penicillin (100 U/mL) at 37 ◦C with 5% CO2.

3.6.2. Cell Viability Assay

Briefly, RAW 264.7 cells were suspended at a density of 1 × 105 cells/well. After
24 h incubation, a series of concentrations of the polysaccharide solution were added and
incubated at 37 ◦C for an additional 24 h. The cytotoxicity of polysaccharide on RAW
264.7 cells was assessed by the MTT method [43].

3.6.3. NO, PGE2, and IL-6 Production

RAW 264.7 cells (1 × 105 cells/well) were cultured for 18 h in a 96-well plate. Cells
were then stimulated with various concentrations of polysaccharide for 24 h. The nitric
oxide level was determined through the Griess reagent as described previously [44]. The
levels of PGE2 and IL-6 in the culture supernatants were determined using an ELISA
kit (Abcam).

3.6.4. Western Blot Analysis

RAW 264.7 cells were seeded at 5× 106 cells/well onto 60 mm plates for 18 h. After be-
ing treated with a polysaccharide solution for different time points, the cells were collected,
and protein concentrations were determined by a BCA protein assay kit (Absin, Shanghai,
China). The protein samples were boiled at 95 ◦C for 5 min and separated using a 10% SDS-
polyacrylamide gel for 2 h, then transferred onto PVDF membranes. After being blocked
with 5% BSA for 2 h at room temperature, the membrane was incubated overnight with
primary antibodies at 4 ◦C and for 2 h with secondary antibodies conjugated horseradish
peroxidase (HRP) at room temperature used as 1:2000 dilutions. The protein bands were
visualized with an eECL Western Blot kit (CWBio, Beijing, China) and photographed using
the Tanon-5200 system (Tanon 5200 Multi, Beijing, China).

3.7. Statistical Analysis

The analysis was performed in triplicate, and results were expressed as the mean of
three independent experiments (n = 3). Statistical analysis of the data was performed using
GraphPad Prism 5 and IBM SPSS statistics software(19.0), and multigroup results were
compared using one-way ANOVA (and norparametic). p values of less than 0.05 were
considered significant.

4. Conclusions

This study aimed to provide some nutraceutical features of F. tikoua fruit, which
could help to enhance its utilization as a source of functional food material. The fruit
has a considerable protein and amino acid content and contains essential amino acids
such as threonine, valine, isoleucine, leucine, and so on. To some extent, it can be proved
that the fruit of F. tikoua has certain nutritional value. As shown here, this underutilized
fruit has a high polyphenol content and ideal FRAP and DPPH values, which could be
an excellent source of antioxidants. Moreover, the polysaccharide has the function of
improving immunity, which indicates that it may be beneficial for treating diseases, and
can be used as a potential natural immunomodulator in the field of functional food.
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