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Abstract

Aims The prognosis of heart failure (HF) depends on genetic predisposition, and recent studies have shown that impaired
autophagy is involved in HF. This study was aimed to construct a prognostic model combining polygenetic background based
on the autophagy pathway and other traditional risk factors (TRF) of HF prognosis.
Methods and results Via re-analysing the transcriptomic data of 50 failing and 14 non-failing donors, differentially expressed
autophagy-related genes (ARGs) were chosen for further comparison and analysis with whole exome sequencing and
follow-up data of 1000 HF patients. By searching from reported articles, prognosis-related polymorphisms were identified.
ARGs and prognosis-related polymorphisms were used to develop genetic risk score (GRS) and genetic risk factor (GRF),
respectively. We compared the predictive power of five models [Model 1, GRS; Model 2, composite of TRF and N-terminal
B-type natriuretic peptide (NT-proBNP); Model 3, composite of TRF, NT-proBNP, and GRS; Model 4, composite of TRF,
NT-proBNP, and GRF; and Model 5, composite of TRF, NT-proBNP, GRF, and GRS] by applying receiver operating characteristic
curves. Twenty-four prognosis-related polymorphisms were used to construct GRF and 11 variants among 48 differentially
expressed ARGs associated with clinical outcomes of HF patients were applied for GRS. GRS was strongly associated with car-
diac mortality of HF patients, independent of TRF and GRF (95% confidence interval 1.273–1.739, P = 5.78 × 10�7). Comparing
with patients with lowest GRS tertile, those with highest tertile had higher risks of developing worse clinical outcomes (hazard
ratio = 1.866; 95% confidence interval 1.352–2.575, P = 1.47 × 10�4). The discrimination power of the model including GRS,
TRF, GRF, and NT-proBNP is most considerable (area under curve = 0.777), especially in men, patients over 60, patients with
hypertension, patients without diabetes or hyperlipidaemia.
Conclusions The model combining autophagy-related GRS, TRF, GRF, and NT-proBNP performs well in distinguishing be-
tween worse-prognosis and better-prognosis HF patients, leading a promising strategy for HF treatment and HF prevention.
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Introduction

Heart failure (HF) is the common terminal stage of many car-
diovascular disease pathogenically characterized by structural
or functional impairment of ventricular filling or ejection of
blood.1 Given its high morbidity and mortality, HF is the lead-
ing cause of death in industrialized nations.2 Over the past
several decades, tremendous efforts had been paid on the
treatment of HF, yet only a third of patients are reported to
benefit from existing treatments. The remaining two-thirds

are therefore our target population in need of earlier inter-
vention and intensive treatment.3 At present, the manage-
ment of HF patients focus heavily on symptomatic treatment
rather than aetiological treatment. The patients, however,
are already in a state of serious illness that is difficult to re-
verse. Therefore, discrimination of the population with
higher risk of HF and earlier prevention are extremely essen-
tial to achieve a favourable prognosis.

Autophagy, a highly conserved cellular mechanism, plays
the role of ‘housekeeping’ in physiological processes,
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including degradation of long-lived, aggregated, and
misfolded proteins and clearance of damaged organelles.4

However, it is a double-edged sword for HF patients5 as re-
cent studies have shown that impaired autophagy is involved
in the development of HF. Currently, several studies have re-
ported that autophagosomes accumulated in cardiomyocytes
in animal models of HF.5 In a study conducted by Nakai et al.,
the adult mice developed into left ventricular dilation and HF
under pressure-overload conditions with cardiac-specific defi-
ciency of Atg5, a protein involved in autophagy.6 Ghosh and
Pattison have summarized the autophagy-related genes
(ARGs) from the key studies of autophagy in cardiac
pathology.7 However, in contrast to the numerous studies in
cells and mouse, little is known about their roles in patients
with cardiac dysfunction.

A large number of prognostic markers including several ge-
netic polymorphisms of death and/or HF hospitalization have
been identified in patients with HF. However, the clinical ap-
plicability of conventional predictive model consisting of sev-
eral indicators is limited and precise risk stratification in HF
remains challenging.8 In addition, any related single polymor-
phism cannot determine the survival of HF. Genetic risk score
(GRS), a model that can summarize the accumulation of
trait-associated single nucleotide polymorphisms (SNPs) from
high-throughput sequencing data into a single variable for an
individual,9 is an alternative strategy to predict the prognosis
of HF, a genetic predisposition disease identified by
Framingham Heart Study and Swedish Nationwide Adoption
Study.10,11 Unlike traditional predictive model for HF, there
are few papers describing about genetic predictive model,
and this is why research focused on this kind of model to pre-
dict the prognosis of HF is urgently needed.

Considering that autophagy is correlated with HF, an
HF-related GRS consisted of 11 loci located in ARGs
associated with the prognosis of HF patients for assessment
of clinical outcome was constructed, as well as a 24
disease-causing-SNPs genetic risk factor (GRF) by searching
from articles for reported polymorphisms. GRS, GRF, and
other traditional biomarkers were made up as a multivariable
prognostic model for HF.

Materials and methods

Study population

We have recruited 1000 chronic heart failure (CHF) patients
from Tongji Hospital between March 2008 and November
2017 based on the inclusion and exclusion criteria mentioned
before.12 According to the follow-up protocol, demographic
variables, medical history, family history, anthropometric
measurements, clinical characteristics, and endpoint events
were obtained from structured questionnaires, medical re-

cords, face-to-face interviews, and/or phone-call interviews.
By the end of the study, only two (0.2%) patients were lost
to follow-up, yielding a high follow-up rate of 99.8% (998/
1000). We defined the primary endpoints as composite of
heart transplantation or cardiovascular death that was con-
firmed by hospital death certificates or medical records.13

The traditional risk factors (TRF) were included as follows:
sex, age, left ventricular ejection fraction (LVEF), systolic
blood pressure, diastolic blood pressure, and history of hy-
pertension, diabetes mellitus, hyperlipaemia, and smoking.
The condition of beta-blocker taking as an adjusted factor
was collected meanwhile. Written informed consent was ob-
tained from all participants. The study was approved by the
ethics committee of Tongji Hospital affiliated with Tongji
Medical School and Huazhong University of Science and Tech-
nology and was conducted in accordance with the Declara-
tion of Helsinki and the International Conference on Harmo-
nization Guidelines for Good Clinical Practice.

Whole exome sequencing

Genomic DNA was extracted from the peripheral blood leu-
kocytes using FastPure DNA Isolation Mini Kit (Vazyme) and
Tiangen commercially available kit (Tiangen). Experimental
workflow, sample preparation, and sequencing were per-
formed as protocol. All gDNA were of high quality and were
determined through spectrophotometric and electrophoretic
analyses. First, genomic DNA was disrupted into 300 bp
fragments by an ultrasonicator (Covaris). Next, we used
SureSelectXT exon V6 kit (Agilent) to prepare library, capture
target regions, repair and purify fragments ends, and ligate
with the adapters. Then these fragments were amplified
using Herculase II Fusion DNA Polymerase (Agilent). Follow-
ing standard Illumina protocol, paired end, 300 bp
read-length sequencing was performed to the amplicons by
an Illumina HiSeq X Ten sequencer (Illumina).

Data processing and quality control

The whole exome sequencing (WES) data were processed ac-
cording to GATK Best Practices recommendations.14 The se-
quence reads for the exome sequence of each individual
were aligned to hg19 human reference genome (GRCh37 Ge-
nome Browser) using Burrows-Wheeler Alignment Tool
(BWA) 0.7.17.15 The picard (http://picard.sourceforge.net)
was used in sorting output bamfiles and removing duplicated
reads. GATK Version 3.4 was applied for INDEL realignment,
base quality recalibration, variant discovery, and variant qual-
ity score recalibration (VQSR). The WES data were stored
with Variant Call Format (VCF). The VCFtools16 (https://
github.com/vcftools/vcftools) was used to perform data anal-
ysis, and invalid data were eliminated before establishing

Multivariable prognostic model for heart failure in Chinese Han population-based setting 2389

ESC Heart Failure 2022; 9: 2388–2398
DOI: 10.1002/ehf2.13932

http://picard.sourceforge.net
https://github.com/vcftools/vcftools
https://github.com/vcftools/vcftools


available data pools. The variants exclusion criteria were low
coverage (<20×), low quality score (<20), and low average
quality (<3). Qualified samples were defined as variants of
over 80% of the individuals that reached the read coverage
of 20×. Considering the repeatability of data processing, we
employed appropriate quality control procedures to suit the
WES summary statistics adapted for minor allele frequency
(MAF). PLINK17 was used to control imputation quality and
Hardy–Weinberg equilibrium. The multidimensional scaling
(MDS) and genetic principal components analysis (PCA) was
used for cohort structure quality control. We used
ANNOVAR18 to annotate the qualified variants.

Integrating autophagy-related genes and
transcriptome analysis

The flow chart of this study is provided in Supporting Informa-
tion, Figure S1. We searched ARGs from Human Autophagy
Database (HAdb; http://www.autophagy.lu/index.html) and
GeneCards database with relevance score > 7. The two gene
sets were combined and integrated into an ARG set. We ob-
tained CHF RNA-sequencing results of 64 samples from human
left ventricular tissue in GEO database19 (Accession Number
GSE116250) (http://www.ncbi.nlm.nih.gov/geo/), which were
composed of 14 non-failing donors, 37 dilated cardiomyopa-
thy (DCM), and 13 ischaemic cardiomyopathy (ICM) samples.
After taking the intersection between ARG set and expressed
genes in RNA-seq data, we identified differentially expressed
genes (DEGs) via comparing the gene expression of CHF and
control groups. We used a false discovery rate (FDR) < 0.05
and a |log2fold change| (|log2FC|)> 0.5 as screening criteria
to obtain the differentially expressed ARGs, which were se-
lected as candidate genes for further analysis.

Genetic risk factor

All available articles about HF prognosis and gene polymor-
phisms published from July 1998 to September 2020 were
searched for from electronic databases, PubMed and the Chi-
nese National Knowledge Infrastructure (CNKI), by combining
the following search terms: ‘heart failure’, ‘HF’, ‘polymor-
phism’, ‘variant’, ‘genetic’, ‘prognosis’, ‘outcome’, ‘survival’,
and ‘mortality’. Accessible variants were filtered via aligning
to the local WES data. After obtaining hazard ratios (HRs)
for three genotypes of each variant through Cox proportional
hazard regression analysis, all the HRs then be pooled into
GRF, by following formula:

GRFm ¼ ∑
n

1
HRmn

where GRFm denotes the summed weight of HR of each
polymorphism for subject m (m = 1, …, 1000). HRmn is

the HR of variant n for subject m (m = 1, …, 1000). GRF
is a self-defined term, presenting the collective effects of
all available reported polymorphisms that have different re-
lated effect sizes to the survival of HF that is used to be
the addition to the subsequent comparison of predictive
power.

Construction of genetic risk score

The following analyses were based on both dominant model
and recessive model.20 From our whole exome sequence
data, we selected common SNPs with MAF > 0.05 among
the ARGs. SNPs that significantly associated with the progno-
sis of CHF were selected through univariate Cox regression
analysis, with a threshold of P < 0.05. After calculating the
linkage disequilibrium (LD), only one SNP was selected as a
target SNP if the variants were in strong LD (r2 > 0.9) with
each other. Through Cox proportional hazard, we can get
HRs for SNPs. Next, we calculated the weight for each of
the 11 SNPs included into the model, according to the follow-
ing formulas:

ωij ¼ 1

HRj
; HRj < 1 and Xij ¼ 1

ωij ¼ HRj; HRj > 1 and Xij ¼ 1

ωij ¼ 1; Xij ¼ 0

where ωij denotes the weight of SNP j (j = 1, …, 11) for subject
i (i = 1, …, 1000). The HR for SNP j is HRj, and let Xij be the sta-
tus of genotype for SNP j in subject i (1 represents those ge-
notypes with higher mortality risk for HF, and 0 represents
other genotypes). The multilocus GRS for each subject was
constructed by taking sum across the 11 SNPs, through the
formula below:

GRSi ¼ ∑
11

j¼1
ωij

where GRSi is the GRS for subject i, which can be used for
predicting the prognosis of HF.

Statistical analysis

Data were expressed as mean ± standard deviati
on (SD) for continuous variable, while percentage or me-
dian value for binary or categorical variables. DEGs and vol-
cano plots were performed via the R packages ‘limma’ and
‘ggplot2’, respectively. LD analysis was performed via
Haploview 4.1. Student’s t-test was used to compare the
correlation between the GRS, TRF, and GRF. The cohort
was divided into higher-risk, middler-risk, and lower-risk
groups according to the tertiles of GRS and was analysed
by the Kaplan–Meier method. Receiver operating character-
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istic curve analysis with MedCalc 11.5 was performed to
compare the prediction ability of TRF, GRF, N-terminal B-
type natriuretic peptide (NT-proBNP), GRS, and models that
composed of the above variables. P < 0.05 was considered
to be statistically significant, and all comparisons were two-
sided. Data analysis was performed with SPSS 23.0 (SPSS,
Inc) and R software (Version 4.0.2).

Results

Characteristics of study population

In total, 1000 patients with CHF were enrolled in the pres-
ent study, with 787 caused by primary DCM and 213
caused by ICM (Table 1), noting that ICM was developed
from myocardial infarction (MI) or arrhythmia mostly. There
were 743 male patients (74.3%), and all patients of the co-
hort were Chinese Han. The mean age at diagnosis was
57.00 ± 14.19 years old. Upon enrolment, the mean LVEF
was 34.55 ± 12.40%. Fifty-six (5.60%) patients have been
suffered from stroke and 271 (27.10%) had a history of ar-
rhythmia. Three hundred ninety-two (39.20%) patients are
complicated with hypertension, 175 (17.50%) with diabetes,
and 50 (5.00%) with hyperlipidaemia. More detailed clinical
information is shown in Table 1. During the follow-up with
a median time of 28.5 months, 258 (25.8%) primary end-
point events occurred.

Differentially expressed autophagy-related genes
between patients with heart failure and healthy
controls

Firstly, to get more comprehensive ARGs, HAdb database and
GeneCards database were adopted simultaneously, and then
334 ARGs were filtered, as shown in Supporting Information,
Figure S1. Secondly, transcriptomic dataset (GSE116250) of
left ventricular tissue with HF in the GEO database was
analysed for DEGs using GEO2R. Sixty-eight common genes
between ARGs and HF-related genes were visualized in a
venn diagram (Supporting Information, Figure S2A). With
the following cut-off criteria of FDR < 0.05 and |
log2FC| > 0.5, 48 DEGs were ultimately identified between
CHF tissues and non-failing tissues (Supporting Information,
Table S1), including 19 DEGs down-regulated and 29 DEGs
up-regulated (Supporting Information, Figure S2B). The fol-
lowing ARGs were down-regulated: ATG2B, ATG3, BECN1,
C9orf72, CALCOCO2, CYCS, DNM1L, EIF4EBP1, GSK3B, ITGB1,
KIF5B, MAP 3K5, MAPK9, NAMPT, OPTN, PIK3CB, RHEB,
VDAC1, and WDFY3. The following ARGs were up-regulated:
CXCR4, CX3CL1, ARSA, BAG3, DAPK3, EDEM1, GAA, GNAI3,
HGS, HSP90AB1, HSPB8, ITGB4, ITPR1, JUN, LAMP1, MAP

2K7, MCL1, PELP1, PPP1R15A, PRKAB1, RAB33B, RAC1,
RPTOR, SIRT1, SPNS1, TM9SF1, TMEM208, TP53INP2, and
ULK1.

Screening single nucleotide polymorphisms in
whole exome sequencing data associated with
prognosis of heart failure

We obtained 149 common variants located within the above
48 ARGs (Supporting Information, Table S2). Subsequent uni-
variate Cox regression analysis identified 10 and 5 common
SNPs that were significantly correlated with the prognosis
of HF patients in dominant and recessive model (Figure 1), re-
spectively. Although two loci, rs11258194 and rs10412007,
reached significance in both dominant and recessive models,
we adopted recessive model for the loci because of the more
significant association with HF in recessive model. To elimi-
nate LD among the 13 SNPs, we conducted a
population-based linkage analysis using Plink and found a
high LD score (r2 > 0.99) between rs2289622 and
rs9323945 and between rs3759601 and rs3759602
(Supporting Information, Figure S3). Therefore, rs2289622
and rs3759601 were taken into the further analysis. To sum
up, seven SNPs in dominant model and four SNPs in recessive
model (Supporting Information, Table S3) were included into
the following construction of GRS. In summary, four variants
(rs2289622, rs1822372, rs12434329, and rs3759601) were lo-
cated in ATG2B, and two variants (rs11258210 and
rs11258194) were located in OPTN among the 11 SNPs. There
were seven SNPs in exon regions, with four (rs10122902,
rs1822372, rs12434329, and rs1567962) synonymous variants
and three (rs2289622, rs3759601, and rs11258194) missense
variants. The MAF in the East Asian population ranged from
0.09 to 0.76 according to the 1000 Genomes Project
Database.

Genetic risk factor

After searching from articles for reported polymorphisms,
24 available variants (Supporting Information, Table S4)
were then selected when compared with the WES
data.13,21–40 It is known from Supporting Information, Table
S3 that activation of the renin-angiotensin-aldosterone sys-
tem (RAAS) and the adrenergic system is closely related to
HF. It is now well acknowledged that common variants in
genes that encode neurohormonal, adrenergic, and intracel-
lular proteins can modulate clinical consequences of HF pa-
tients. According to the formula mentioned previously,
GRFs for every patient were summed up ranging from
20.639 to 29.154.
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Genetic risk score for heart failure

The distribution of GRS calculated using the above 11 SNPs
was shown in Supporting Information, Figure S4, ranging
from 11.000 to 18.005, with a mean value of 13.913. When
divided into tertiles based on GRS, baseline characteristics
by genetic risk category based on the GRS are presented in
Table 1. Patients with high-risk category were less likely to
take beta-blocker. After adjusting for TRF and beta-blocker

taking, GRF and GRS were significantly and independently as-
sociated with the prognosis of HF [GRS: 95% confidence inter-
val (CI) 1.273–1.739, P = 5.78 × 10�7; GRF: 95% CI
1.249–1.713, P = 2 × 10�6], respectively (Table 2).
Kaplan–Meier curves showed a clear pattern towards greater
risk of developing worse clinical outcomes for
intermediate-risk and high-risk GRS patients (Figure 2). As
shown in Table 3, individuals with a high genetic risk had a
2.225-fold increased hazard for the primary endpoints

Figure 1 Univariate Cox regression analysis of differentially expressed autophagy-related genes. The forest plots by univariate Cox regression analysis
show statistically significant single nucleotide polymorphisms (SNPs) of autophagy-related genes in dominant model (A) and recessive model (B) for
heart failure prognosis, which were generated by GraphPad Prism 8.0.2. Red vertical lines indicate the hazard ratios (HRs), and red horizontal lines
their 95% confidence intervals (CIs).

Table 2 Results of univariable and multivariable Cox proportional hazard analysis for cardiac events

Variables

Univariable analysisa Multivariable analysisb

P value HR 95% CI P value HR 95% CI

Gender 0.033 1.338 1.024–1.747 0.366 1.137 0.861–1.503
Age <0.001 1.029 1.019–1.039 <0.001 1.018 1.008–1.028
Hypertension 0.468 0.911 0.708–1.172 0.382 0.877 0.655–1.176
Diabetes mellitus 0.036 1.371 1.021–1.840 0.073 0.752 0.551–1.027
Hyperlipidaemia 0.511 0.816 0.446–1.494 0.630 0.934 0.709–1.232
Smoking 0.809 1.031 0.804–1.323 0.129 1.073 0.980–1.175
SBP <0.001 0.987 0.981–0.993 0.028 0.991 0.983–0.999
DBP <0.001 0.980 0.972–0.988 0.158 0.992 0.981–1.003
LVEF <0.001 0.974 0.963–0.986 <0.001 0.978 0.967–0.990
Beta-blocker use <0.001 5.657 3.960–8.080 <0.001 5.119 3.531–7.421
Genetic risk factor 1.46 × 10�13 1.804 1.543–2.109 2 × 10�6 1.463 1.249–1.713
Genetic risk score 6.31 × 10�6 1.696 1.459–1.972 5.78 × 10�7 1.488 1.273–1.739

DBP, diastolic blood pressure; LVEF, left ventricular ejection fraction; SBP, systolic blood pressure.
aHR and 95% CI, hazard ratios and 95% confidence interval that were calculated with univariate Cox proportional hazard model.
bHR and 95% CI, hazard ratios and 95% confidence interval that were calculated with multivariable Cox proportional hazard model.
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(HR = 2.225, 95% CI 1.617–3.062, P = 9.03 × 10�7), whereas
individuals with intermediate genetic risk had a 1.693-fold in-
creased hazard compared with those with low genetic risk
(HR = 1.693, 95% CI 1.214–3.263, P = 1.93 × 10�3). After
adjusting for TRF and beta-blocker taking, the results were
not significantly changed (HR = 2.549, 95% CI 1.790–3.630,
P = 2.10 × 10�7; HR = 1.957, 95% CI 1.356–2.823,
P = 3.29 × 10�4).

The power of five models in predicting the
prognosis of heart failure

We next examined the predictive ability and discriminative
power of the following models. Considering that NT-proBNP
is a classical prognosis predictor of HF, we constructed five
risk prediction models: Model 1, GRS; Model 2, composite
of TRF and NT-proBNP; Model 3, composite of TRF, NT-
proBNP, and GRS; Model 4, composite of TRF, NT-proBNP,
and GRF; and Model 5, composite of TRF, NT-proBNP, GRF,
and GRS. The average area under curves of these five models
were 0.618 (95% CI 0.587–0.648), 0.723 (95% CI
0.694–0.751), 0.751 (95% CI 0.723–0.778), 0.755 (95% CI
0.727–0.782), and 0.777 (95% CI 0.750–0.803), respectively
(Figure 3 and Supporting Information, Table S5). The Model
3 and Model 4 could effectively predict the clinical outcome
of HF with similar power, better than the GRS-based model
and Model 5 by integrating the TRF information, GRF, and
NT-proBNP with the GRS generated a significant increase in
the power of predicting outcomes than Model 3 and Model
4 (P = 0.0032 for Model 3 vs. Model 5, P = 0.0029 for Model
4 vs. Model 5) (Supporting Information, Tables S5 and S7), in-
dicating the improvement of the accuracy and precision in
identifying CHF patients with worse prognosis. Further

subgroup analysis stratified by age, gender, or comorbidities
was shown in Supporting Information, Tables S6 and S7.
Among men, patients over 60, patients with hypertension,
patients without diabetes or hyperlipidaemia, the discrimina-
tory power of Model 5 is superior to other models (for men:
P = 0.0196 for Model 3 vs. Model 5, P = 0.0478 for Model 4
vs. Model 5; for patients over 60: P = 0.0126 for Model 3
vs. Model 5, P = 0.0026 for Model 4 vs. Model 5; for patients
with hypertension: P = 0.0171 for Model 3 vs. Model 5,
P = 0.0318 for Model 4 vs. Model 5; for patients without dia-
betes: P = 0.0153 for Model 3 vs. Model 5, P = 0.0070 for
Model 4 vs. Model 5; and for patients without hyperlipidae-
mia: P = 0.0059 for Model 3 vs. Model 5, P = 0.0023 for
Model 4 vs. Model 5).

Discussion

In this study, three principal observations were highlighted
when implementing GRS and GRF into clinical practice. Firstly,
we identified 11 common SNPs that were significantly associ-
ated with clinical outcome of patients with CHF by
multi-omics analysis combining local data of WES and dataset
from GEO database, and 24 known disease-causing SNPs
from reported articles. Secondly, GRS composed of the 11
SNPs and GRF composed of the 24 SNPs are independent of
TRF to assess long-term cardiovascular risk, respectively.
Thirdly, integrating GRS and TRF, GRF, and NT-proBNP in-
creased the effectiveness of predicting in clinical outcomes
of patients with HF. In the present study, through integrating
an ARG set from 2 databases and analysis of the case–control
transcriptome sequencing dataset of 64 human left ventricu-
lar tissues, 48 ARGs were successfully identified that were

Figure 2 Survival curves comparing mortality risks from the primary endpoint in heart failure patients stratified by genetic risk score. The
Kaplan–Meier curve was generated by an R package named survminer (https://www.r-project.org/). The P value was calculated using the
log-rank test. The survival duration was defined as the date of being diagnosed with heart failure to the date of the first occurrence of the pri-
mary endpoint.
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differentially expressed between failing and normal heart tis-
sue, including 19 down-regulated genes and 29 up-regulated
genes. With screening out of loci that both existed in domi-
nant and recessive models as well as with high LD, 11 SNPs
were finally confirmed to be significantly associated with
the mortality risk of HF. The 11 SNPs were located in the fol-
lowing 7 genes: inositol 1,4,5-trisphosphate receptor type 1
(ITPR1), C9orf72-SMCR8 complex subunit (C9orf72),
optineurin (OPTN), autophagy-related 2B (ATG2B),
regulatory-associated protein of MTOR complex 1 (RPTOR),
heat shock protein 90 alpha family class B member 1
(HSP90AB1), and mitogen-activated protein kinase 7 (MAP
2K7). ITPR1 encodes IP3 receptor type 1 (IP3R1) functioning
on the endoplasmic reticulum (ER) membrane in a tetrameric
form and modulating intracellular calcium homeostasis and
signalling.41 C9orf72 regulates endosomal trafficking, which
is associated with 9p-linked ALS (amyotrophic lateral sclero-
sis) and FTD (frontotemporal dementia).42 Optineurin is a
binding partner for adenoviral protein E3-14.7K43 utilizing tu-
mour necrosis factor-alpha or Fas-ligand pathways to mediate
apoptosis, inflammation, or vasoconstriction. ATG2B is the
main regulator in the process of autophagy and is required
for elongation and development of the isolation
membrane.44 RPTOR is regulatory-associated protein of
mTOR,45 which can develop cardiac dysfunction and HF.46

HSP90AB1 encodes a member of the heat shock protein 90
family and is part of the complex in long-term cardiac remod-
elling fibroblasts.47 MAP 2K7 is found to be an essential role
in cardiomyocytes for protecting the heart from hypertrophic
insults, thereby preventing the transition to HF.48 Meanwhile,
after searching for reported pathogenic polymorphisms and
compared with the WES data, 24 SNPs were finally involved
into the construction of GRF. Most of them were related to
RAAS or adrenergic system.

Heart failure is an evolving disease that shows different
clinical symptoms and prognosis at different stages.
Obtaining genetic predictive models to predict the prognosis
of HF remains challenging so far. Researches have recently
found that autophagy is a key process in the pathogenesis
of HF,5 while little is known about its role in the prognosis
of HF. GRS construction using the total 11 SNPs is a new strat-
egy to predict prognosis of HF through autophagy pathway.
Our study demonstrated that GRS with HF in individuals is
free of TRF and GRF, suggesting a great diagnostic value of
clinical application using such a genetic score to identify peo-
ple who are at risk, which was validated in our current cohort
of Chinese Han patients with HF. GRF was built as a prognos-
tic factor, just the same as TRF, which was a part of the mul-
tivariable prognostic model.

Furthermore, we evaluated the discrimination and predic-
tive power of five models in our own HF population. Several
classical models have been widely used in clinical practice.
For example, Seattle HF model that easily captures clinical
characteristics can accurately predict the survival of HFTa
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patients without NT-proBNP and GRFs.49 MAGGIC risk score
was calculated by 13 highly significant independent predic-
tors of mortality including clinical characteristics, laboratory
examinations, and medicine taking.50 The predictive power
of the model consists of autophagy-related GRS, TRS, GRF,
and NT-proBNP, which had a highest discriminating ability
among the five models and can distinguish patients with bet-
ter or worse prognosis more accurately was comparable with
the previous models, suggesting a promising way for HF treat-
ment and prevention. Especially via subgroup analysis, men,
patients over 60, and patients with hypertension, patients
without diabetes or hyperlipidaemia were further proven
can benefit from applying this model. Noting the power of
Model 3 and Model 4, we presumed that GRS and GRF might
play the roles to a similar extent in the prognosis prediction,
which means GRS likely to be clinically applicable due to
these reported variants that have been demonstrated to be
correlated to the clinical outcomes of HF. Besides, it could
be inferred that more risk variants are to be discovered
through GWAS or multi-omics analysis; meanwhile, larger
sample size or functional experiments are also required for
further validation.

However, several limitations of this study need to
be considered. Firstly, the inclusion of reported
autophagy-related suspicious HF SNPs might be incomplete;
more potential loci need to be identified via some ways
like expanding the sample of RNA-seq to get more
DEGs. Secondly, the time of searching for reported
prognosis-related polymorphisms was also limited; wider
range of time is needed to obtain more variants. Thirdly,

it was a single-centre study; larger studies need to be per-
formed to validate the results. Fourthly, there were racial
heterogeneity between RNA-seq samples and WES subjects,
thus in need of additional population and can generalize
the results to the other population. In addition, a prospec-
tive cohort study is warranted in the future to validate our
findings of the present study.

In conclusion, we constructed an autophagy-related GRS
based on 11 SNPs associated with prognosis of HF patients
and a GRF based on 24 SNPs that enable to discriminate
the mortality risk of HF. The model composed of GRS, GRF,
TRF, and NT-proBNP allowed clinicians to stratify HF individ-
uals into different risks of HF and to provide intensive treat-
ment and early prevention accordingly, leading to a new in-
sight for them into the treatment strategies for different
conditions of HF patients in the future.
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Figure 3 Predictive outcomes of heart failure using the GRS, TRF, GRF, and NT-proBNP. (A) Receiver operating characteristic analyses were performed
to individuals of GRS, TRF, GRF, and NT-proBNP. (B) C-index for Cox regression showed that the model, TRF, GRF combining NT-proBNP, and GRS, has
better predictive ability compared with others. CI, confidence interval; GRF, genetic risk factor; GRS, genetic risk score; NT-proBNP, N-terminal B-type
natriuretic peptide; TRF, traditional risk factors.
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