
Ecology and Evolution. 2017;7:8507–8514.	 		 	 | 	8507www.ecolevol.org

 

Received:	3	November	2016  |  Revised:	2	July	2017  |  Accepted:	20	July	2017
DOI: 10.1002/ece3.3321

O R I G I N A L  R E S E A R C H

Inferring detailed space use from movement paths: A unifying, 
residence time- based framework

Dror Kapota1  | Amit Dolev2 | David Saltz1

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2017	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

1Mitrani	Department	of	Desert	Ecology,	Jacob	
Blaustein	Institutes	for	Desert	Research,	Ben-
Gurion	University	of	the	Negev,	Midreshet	
Ben-Gurion,	Israel
2Science	Division,	Nature	and	Parks	Authority,	
Jerusalem,	Israel

Correspondence
Dror	Kapota,	Mitrani	Department	of	Desert	
Ecology,	Jacob	Blaustein	Institutes	for	Desert	
Research,	Ben-Gurion	University	of	the	Negev,	
Midreshet	Ben-Gurion,	Israel.
Email:	kapota@post.bgu.ac.il

Funding information
Israel	Nature	and	National	Parks	Protection	
Authority;	Israel	Ministry	of	Agriculture,	
Grant/Award	Number:	596-0353-07

Abstract
The	residence	time	is	the	amount	of	time	spent	within	a	predefined	circle	surrounding	
each	point	along	the	movement	path	of	an	animal,	reflecting	its	response	to	resource	
availability/quality.	Two	main	residence	time-	based	methods	exist	in	the	literature:	(1)	
The	variance	of	residence	times	along	the	path	plotted	against	the	radius	of	the	circle	
was	suggested	to	indicate	the	scale	at	which	the	animal	perceives	its	resources;	and	(2)	
segments	of	the	path	with	homogeneous	residence	times	were	suggested	to	indicate	
distinct	behavioral	modes,	at	a	certain	scale.	Here,	we	modify	and	integrate	these	two	
methods	to	one	framework	with	two	steps	of	analysis:	(1)	identifying	several	distinct,	
nested	scales	of	area-	restricted	search	(ARS),	providing	an	indication	of	how	animals	
view	 complex	 resource	 landscapes,	 and	 also	 the	 resolutions	 at	 which	 the	 analysis	
should	proceed;	and	(2)	identifying	places	which	the	animal	revisits	multiple	times	and	
performs	ARS;	 for	 these,	we	extract	 two	 scale-	dependent	 statistical	measures—the	
mean	visit	duration	and	the	number	of	revisits	in	each	place.	The	association	between	
these	measures	is	suggested	as	a	signature	of	how	animals	utilize	different	habitats	or	
resource	types.	The	framework	is	validated	through	computer	simulations	combining	
different	movement	strategies	and	resource	maps.	We	suggest	 that	 the	 framework	
provides	information	that	is	especially	relevant	when	interpreting	movement	data	in	
light	of	optimal	behavior	models,	and	which	would	have	remained	uncovered	by	either	
coarser	or	finer	analyses.

K E Y W O R D S

animal	movement,	movement	path	analysis,	first	passage	time,	foraging	behavior.

1  | INTRODUCTION

Animals	 move	 to	 accommodate	 changes	 in	 the	 availability	 of	 their	
resources	 over	 time	 and	 space	 (Sims,	Witt,	 Richardson,	 Southall,	 &	
Metcalfe,	 2006;	 Weimerskirch,	 Pinaud,	 Pawlowski,	 &	 Bost,	 2007).	
Studying	this	process	requires	the	estimation	of	statistical	measures	
from	 empirical	 movement	 paths,	 for	 identifying	 patterns	 or	 fitting	
mechanistic	 movement	 models	 (Buderman,	 Hooten,	 Ivan,	 &	 Shenk,	
2015;	 Dalziel,	 Morales,	 &	 Fryxell,	 2008;	 Morales,	 Haydon,	 Frair,	

Holsiner,	&	Fryxell,	2004;	Patterson,	Thomas,	Wilcox,	Ovaskainen,	&	
Matthiopoulos,	2008).	These	patterns	may	be	complex,	depending	on	
the	cognitive	abilities	of	the	animal	and	the	structure	of	the	habitat.	
One	 such	a	 statistical	measure	 is	 the	 residence	 time	 (Barraquand	&	
Benhamou,	2008;	Knell	&	Codling,	 2012;	 Sur	 et	al.,	 2014),	which	 is	
time	spent	within	confined	areas	along	the	path.	Other	common	mea-
sures	are	the	mean-	squared	displacement	(Johnson,	Milne,	&	Wiens,	
1992),	overall	tortuosity	of	the	path	(Benhamou,	2004),	distributions	
of	step	lengths,	turning	angles,	and	movement	speeds	(Turchin,	1998).	
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While	the	mean-	squared	displacement	provides	holistic	characteriza-
tion	 of	 the	movement	 (directional	 or	 bounded	movement,	 autocor-
related	movement	 etc.),	 the	 other	measures	 describe	more	 detailed	
behaviors	such	as	changes	in	the	shape	or	speed	of	movement	in	re-
sponse	to	the	availability	of	resources	(Fryxell	et	al.,	2008).

The	 residence	 time	captures	changes	 in	both	 the	shape	and	 the	
speed	of	movement.	For	example,	 regardless	of	whether	 the	animal	
moves	more	tortuously	 in	areas	with	high	food	availability	or	simply	
slows	down,	 it	would	spend	more	time	 in	a	predefined	unit	of	area.	
Moreover,	the	allocation	of	time	for	different	activities	is	an	important	
element	in	optimal	behavior	theory,	so	using	time	as	the	main	variable	
may	also	facilitate	the	interpretation	of	movement	in	this	context.

The	key	task	in	movement	analysis	is	using	the	statistical	measures	
in	order	to	characterize	distinct	behavioral	modes	in	the	path	(head-
ing	toward	a	patch,	searching	food	within	the	patch,	resting	etc.)	and	
assign	these	modes	and	their	switching	probabilities	to	various	envi-
ronmental	elements	(Dalziel	et	al.,	2008;	Getz	&	Saltz,	2008;	Jonsen,	
Flemming,	&	Myers,	2005;	Morales	et	al.,	2004;	Pinto	&	Spezia,	2015;	
Sur	et	al.,	2014).	However,	such	analyses	can	be	performed	at	an	in-
finite	 range	of	 resolutions,	 and	 as	 behavioral	modes	 are	 performed	
at	a	variety	of	spatiotemporal	scales	(Fauchald	&	Tveraa,	2006;	Fritz,	
Said,	&	Weimerskirch,	2003;	Fryxell	et	al.,	2008),	the	ability	to	discern	
these	modes	depends	strongly	on	the	resolutions	chosen.	There	is	a	
need	to	identify	the	level	of	resolution	that	will	capture	the	main	mo-
tives	of	the	animal’s	behavior.

Fauchald	 and	 Tveraa	 (2003)	 suggested	 a	 residence	 time-	based	
method	 for	 identifying	 the	 scale	 of	 area-	restricted	 searches,	 and	
Barraquand	and	Benhamou	(2008)	suggested	using	the	residence	time	
to	characterize	distinct	behavioral	modes	in	the	path.	These	methods	
can	help	 identifying	 responses	 to	 resource	availability	under	 the	as-
sumption	that	animals	spend	more	time	within	profitable	places	than	
elsewhere,	but	require	some	modifications	and	a	proper	 integration.	
Here,	we	 integrate	 these	methods	 into	 a	 single	 analysis	 framework	
with	 two	 steps:	 (1)	 determining	 distinct	 resolutions	 that	 reflect	 the	
main	scales	(as	there	may	be	more	than	one)	at	which	an	animal	per-
forms	 intensive	search;	and	(2)	at	these	resolutions,	 identifying	con-
fined	places	 to	which	 the	animal	paid	multiple	visits	and	performed	
intensive	 search,	 and	 for	 each	 place	 estimating	 the	 mean	 duration	
spent	per	visit	and	the	number	of	revisits.	The	first	step	indicates	how	
animals	perceive	and	respond	to	a	multiscale	resource	environment,	
and	provides	the	appropriate	resolution	at	which	the	analysis	should	
proceed.	The	second	step	zooms	in	at	a	specific	scale,	indicating	how	
animals	use	patches	of	different	resource	types	at	the	given	scale.	We	
validate	the	performance	of	analysis	using	computer	simulations.

2  | REVIEW OF PREVIOUS METHODS AND 
INTRODUCING THE FRAMEWORK

The	first-	passage	time	(FPT)	is	a	measure	in	statistical	physics,	defined	
as	the	time	it	takes	for	a	moving	particle	to	reach	a	certain	location	for	
the	first	time	(Montroll,	1969).	By	delineating	a	virtual	circle	of	a	radius	
r	around	each	location	along	a	recorded	movement	path	of	an	animal,	

the	FPT	is	defined	as	the	time	it	took	the	animal	to	reach	the		perimeter	
of	the	circle	for	the	first	time.	The	residence	time	(RT)	is	then	defined	
as	 FPTbackward	+	FPTforward,	 namely	 the	 total	 time	 the	 animal	 spent	
within	 the	 virtual	 circle	 from	 first	 entry	 to	 first	 exit	 (Barraquand	&	
Benhamou,	2008;	Fauchald	&	Tveraa,	2003;	Knell	&	Codling,	2012).	
In	this	approach,	locations	with	high	RT	represent	locals	in	which	the	
animal	 performed	 an	 area-	restricted	 search	 (ARS),	 that	 is,	 an	 inten-
sive	search	within	a	confined	area,	characterized	by	a	tortuous	or	slow	
movement.

When	the	size	of	the	virtual	circle	matches	the	size	of	the	area	cov-
ered	by	ARS,	the	difference	in	RT	between	circles	containing	ARS	to	all	
other	circles	will	be	 the	 largest,	and	 therefore,	variation	 in	RT	will	be	
maximized.	On	this	basis,	the	variance	of	log(RT)	can	be	plotted	for	cir-
cles	of	different	r	values	to	obtain	a	variance-	scale	curve	[the	log	trans-
formation	makes	the	variance	independent	of	the	mean—Fauchald	and	
Tveraa	(2003)].	A	peak	in	the	variance-	scale	curve	appears	for	the	radius	
that	matches	the	ARS.	The	radius	associated	with	this	peak	was	sug-
gested	to	quantitatively	indicate	the	characteristic	size	of	a	food	patch.	
This	 suggestion	 was	 later	 criticized	 by	 Barraquand	 and	 Benhamou	
(2008),	stating	that	for	varying	but	close	patch	sizes,	or	for	certain	forms	
of	intensive	search,	the	radius	associated	with	a	peak	in	the	variance-	
scale	curve	is	unreliable	as	a	quantitative	estimator	of	patch	size.

Here,	 we	 introduce	 several	 improvements	 to	 the	 variance-	scale	
curve	 method.	 Fauchald	 and	 Tveraa	 (2003)	 examined	 the	 variance-	
scale	curve	only	for	the	case	of	one	distinct	ARS	size	and	therefore	a	
single	peak.	They	 indeed	discussed	 the	possibility	of	 several	distinct	
ARS	scales,	occurring	when	several	distinct	patch	sizes	exist,	or	when	
patches	 are	 organized	 in	 a	 hierarchical	 manner	 (Fauchald	 &	 Tveraa,	
2006).	But,	they	treated	this	 issue	by	performing	a	nested	analysis—
calculating	the	variance-	scale	curve	for	the	whole	path,	using	the	ra-
dius	associated	with	a	peak	to	calculate	RTs,	choosing	path	segments	
with	high	RTs,	and	then	calculating	new	variance-	scale	curves	for	these	
segments.	 Nevertheless,	when	 several	 distinct	ARS	 scales	 exist,	 the	
variance-	scale	curve	itself	should	show	several	distinct	peaks,	reflect-
ing	a	multiscale	response	for	the	entire	path.	We	validate	this	multipeak	
existence	by	studying	variance-	scale	curves	of	simulated	hierarchical	
ARS	movements,	and	compare	the	performance	of	the	method	using	
variance	of	log(RT)	against	using	the	coefficient	of	variation	in	RT.

Another	issue	raised	by	Fauchald	and	Tveraa	(2003)	is	that	the	pat-
tern	formed	in	the	variance-	scale	curve	is	shaped	by	both	the	distribu-
tion	of	resources	and	the	response	of	the	animal	to	this	distribution.	
Using	simulations,	we	separate	these	two	effects,	such	that	patterns	
in	the	variance-	scale	curve	can	be	assigned	directly	to	the	behavior.	
We	also	address	the	critique	of	Barraquand	and	Benhamou	(2008)	on	
the	method	by	evaluating	the	performance	of	the	curve	in	estimating	
ARS	scales	for	simulated	paths	where	ARS	is	variable	yet	found	within	
distinct	scale	domains.

Following	the	variance-	scale	method,	Barraquand	and	Benhamou	
(2008)	suggested	a	method	to	separate	the	path	into	segments	con-
stituting	homogeneous	movement	bouts,	in	terms	of	their	RT	values.	
These	homogeneous	movement	bouts	can	be	interpreted	as	different	
behavioral	modes,	 such	 as	ARS,	 exploration,	 or	 directed	 fast	move-
ment.	The	RT	in	this	case	may	contain	not	only	FPTbackward	+	FPTforward,	
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but	also	additional	forward	and	backward	path	segments	found	within	
the	circle,	as	 long	as	the	time	outside	the	circle	between	these	seg-
ments	 is	 shorter	 than	 some	 predefined	 threshold.	 These	 homoge-
neous	movement	 bouts	 can	 then	 be	 correlated	with	 environmental	
data	providing	insight	regarding	the	response	of	the	animal	to	its	envi-
ronment	and	resources.

Barraquand	and	Benhamou	(2008)	did	not	suggest	any	robust	way	
of	choosing	a	proper	resolution	for	their	analysis.	They	suggested	per-
forming	the	analysis	at	several	resolutions,	and	choosing	what	seems	
to	be	most	reliable.	This	approach	does	not	account	for	the	possibility	
of	hierarchical	ARS	at	several	distinct	scales.	Another	important	issue	is	
that	the	series	of	path	segments	has	no	explicit	spatial	interpretation.	
Two	segments	constituting	ARS	may	have	been	recorded	within	the	
same	place	where	the	animal	revisited	twice,	or	at	two	distinct	places.	
Moreover,	as	Barraquand	and	Benhamou	(2008)	suggested	adding	for-
ward	and	backward	path	segments	found	within	the	circle	into	the	RT,	
two	distinct	segments	recorded	within	the	same	place	may	be,	in	part,	
pseudoreplication.	The	two	latter	 issues	were	 later	treated	by	giving	
the	 series	 of	 residence	 times	 an	 explicit	 spatiotemporal	 representa-
tion	 within	 the	 framework	 of	 kernel-	based	 utilization	 	distributions	
(Benhamou	&	Riotte-	Lambert,	2012);	however,	no	appropriate	solu-
tion	was	provided	for	choosing	the	appropriate	resolution.	Identifying	
places	in	which	the	animal	revisited	and	performed	ARS	several	times	
is	important	for	mapping	areas	of	interest	and	correlating	them	with	
environmental	variables	(Bar-	David	et	al.,	2009;	Benhamou	&	Riotte-	
Lambert,	 2012;	 Riotte-	Lambert,	 Benhamou,	 &	 Chamaillé-	Jammes,	
2013).	In	terms	of	habitat	preference	and	use,	several	visits	to	several	
distinct	places	having	the	same	environmental	properties	may	have	a	
different	meaning	than	several	revisits	to	the	same	place.	We	suggest	
an	analysis	with	two	steps:	First,	the	variance-	scale	curve	is	used	for	
identifying	the	meaningful	scale	domains	in	the	path;	second,	at	these	
scale	 domains,	 we	 describe	 a	 residence	 time-	based	 algorithm	 that	
identifies	 spatially	 distinct	ARS	places	 and	 calculates	 the	mean	visit	
duration,	and	the	number	of	revisits	 in	these	places.	These	variables	
should,	later	on,	be	confronted	with	environmental	data.	We	validate	
the	performance	of	the	analysis	using	computer	simulations.

3  | METHODS

3.1 | Identification of ARS scales

To	study	the	shape	of	the	variance-	scale	curve	for	ARS	movements	at	
one	to	several	scales,	and	to	separate	the	effects	of	resource	distribu-
tion	and	the	movement	behavior	on	this	shape,	curves	were	calculated	
for	five	different	simulated	combinations	of	resource	maps	and	move-
ment	strategies	(see	details	in	the	simulation	model	section	below	and	
Appendix	S1	Matlab	code	is	found	as	online	supplementary	informa-
tion	-	Appendix	S3):	(1)	simple	search	for	scattered	resources;	(2)	sim-
ple	search	for	patchy	resources;	(3)	ARS	for	patchy	resources;	(4)	ARS	
for	hierarchical	patchy	resources;	and	(5)	hierarchical	ARS	for	hierar-
chical	patchy	resources.	Simulated	paths	were	resampled	(one	of	each	
ten	locations)	to	mimic	the	frequency	at	which	real	paths	are	sampled	
by	a	GPS	device.	Variance-	scale	curves	were	calculated	by	calculating	

for	 each	 radius	 the	 residence	 time	 of	 each	 location	 along	 the	 path	
[residence	 time	 calculation	 follows	 Barraquand	 and	 Benhamou	
(2008)],	 and	 then	calculating	variation	among	 locations	 for	each	 ra-
dius.	Each	variance-	scale	curve	was	calculated	twice,	for	comparison:	
as	the	variance	of	log(RT)	against	r	and	as	the	coefficient	of	variation	
in	RT	against	 r.	For	each	curve,	we	measured	the	number	of	peaks,	
the	 strength	of	 the	peak	 signature,	 and	 the	 radii	of	ARS.	The	 latter	
was	compared	with	direct	estimations	measured	from	the	visualized	
paths.	This	was	possible	as	the	simulations,	albeit	stochastic	in	nature,	
created	ARS	within	one	or	two	distinct	scale	domains,	which	could	be	
distinguished	visually	(Figure	1).	For	each	simulated	scenario,	simula-
tions	were	 run	30	 times	and	variance-	scale	 curves	were	calculated.	
In	two	scenarios	(ARS	for	patchy	resources	and	ARS	for	hierarchical	
patchy	resources),	the	pattern	was	not	entirely	consistent—additional	
shallow	peaks	appeared	in	several	runs.	We	therefore	simulated	and	
analyzed	additional	30	runs	for	each	of	the	two	scenarios,	and	verified	
using	 random	permutations	 that	 the	 rate	of	obtaining	 an	 additional	
peak	does	not	vary	with	sample	size.

3.2 | Identifying revisited ARS places

Revisited	ARS	places	are	spatially	confined	and	distinct	areas	in	which	
the	animal	performed	ARS	more	than	once.	They	are	supposed	to	be	
places	of	interest	for	the	animal,	such	as	food	patches.	The	location	
and	 size	of	ARS	places	 are	unknown,	but	 can	be	 inferred	 indirectly	
from	the	recorded	(known)	locations	of	the	animal.

The	 algorithm	has	 four	 steps	 illustrated	 in	 Fig.	S3:	 (Matlab	 code	
is	found	as	online	supplementary	information	-	Appendix	S3)	(1)	cal-
culating	RTs	along	the	path;	 (2)	filtering	non-	ARS	path	segments;	 (3)	
identifying	spatially	distinct	ARS	places;	and	(4)	choosing	a	represen-
tative	location	for	each	ARS	place	identified.	In	step	(1),	the	algorithm	
traces,	for	each	recorded	location,	all	backward	and	forward	segments	
of	the	path	passing	within	the	boundaries	of	its	circle	(i.e.,	backward	
and	forward	RT	segments),	recording	their	durations	separately.	Each	
circle	around	each	 location	thus	has	a	revisit	history—a	series	of	re-
corded	revisits	within	the	circle,	their	timing,	and	duration	(see	Fig.	S3	
for	visual	illustration).

In	step	(2),	revisited	ARS	places	are	distinguished	from	other	places	
the	animal	crossed	more	than	once,	while	en route	and	recorded	path	
segments	of	the	latter	are	filtered	out.	As	a	filtering	criterion,	it	is	pos-
sible	 to	 use	 the	mean	duration	per	visit	 or	 the	 total	 duration	 spent	
around	 recorded	 locations,	 as	 both	 should	distinguish	 the	 long	ARS	
revisits	 from	the	 fast	occasional	ones;	here,	we	examined	and	com-
pared	both.	As	a	filtering	threshold,	we	suggest	the	mean	or	median	
(whichever	is	largest—as	these	distributions	are	strongly	left-	skewed)	
of	the	distribution	of	the	criterion	chosen.

In	step	 (3),	 spatially	distinct	ARS	places	are	 identified	by	consid-
ering	the	remaining	locations	as	the	nodes	of	a	graph,	in	which	con-
nections	(edges)	exist	if	two	locations	are	found	within	the	circles	of	
each	other.	ARS	places	are	defined	as	connected	components	of	this	
graph;	that	 is,	subgroups	in	which	any	two	nodes	are	indirectly	con-
nected	to	each	other	(see	Fig.	S3	for	visual	illustration	and	additional	
explanations).	 These	 connected	 components	 are	 identified	 using	 a	
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recursive	 depth-	first	 search	 algorithm	 (Cormen,	 Leiserson,	 Rivest,	&	
Stein,	2001).

Step	(4)	estimates	the	exact	location	of	each	place,	its	mean	visit	
duration,	and	number	of	revisits.	The	mean	visit	duration	and	number	
of	 revisits	 to	 recorded	 locations	 that	 are	 assigned	 to	 the	 same	ARS	
place	constitute	various	portions	of	the	full	revisit	history	of	this	place.	
Therefore,	one	of	the	 locations	 in	each	ARS	place	should	be	chosen	
to	 represent	 the	central	 location	of	 the	place	and	 its	 revisit	history.	
Choosing	this	location	was	done	using	the	same	two	criteria	used	for	
filtering—we	examined	both	the	 location	with	the	 longest	mean	du-
ration	per	visit	and	the	location	with	the	longest	total	duration	spent	
within	its	circle	(Fig.	S3).

We	used	 the	 simulation	of	 simple	ARS	 for	patchy	 resources	 to	
evaluate	the	performance	of	the	algorithm	including	the	examination	
of	 filtering	 and	 choosing	 criteria.	As	 the	 simulated	 resource	maps	
and	movement	modes	are	simple	and	well	defined,	we	could	identify	
ARS	places	visually	from	each	realized	resource	map	and	path.	We	
could	therefore	compare	the	ARS	places	identified	by	the	algorithm	
to	those	identified	visually.	This	allowed	us	to	spot	failures	and	er-
roneous	 identifications	 of	 the	 algorithm:	 places	 that	were	 errone-
ously	united	because	of	their	proximity,	stopping	places,	which	are	
not	ARS	places	 (these	have	 long	visit	duration	and	were	 therefore	
filtered	 in	when	the	mean	visit	duration	was	used	 for	 filtering	and	
choosing	locations),	and	places	with	occasional,	multiple,	and	short	
revisits	 (these	 have	 long	 total	 time	 and	were	 therefore	 filtered	 in	
when	the	total	time	was	used	for	filtering	and	choosing	 locations).	

The	simulation	was	run	30	times	to	ensure	that	the	algorithm	iden-
tifies	most	of	the	ARS	places	successfully,	and	to	properly	estimate	
error	rates.

3.3 | The simulation model

Simulations	were	 run	 for	 60,000	 time	 steps	 on	 resource	maps	 of	
1,000	×	1,000	 cells.	 Three	 spatial	 structures	 of	 food	 items	 were	
created	as	 follows:	 scattered,	 simple	patchiness,	 and	 two-	level	hi-
erarchical	patchiness	(Figure	1).	Food	items	(for	scattered	resource	
map)	and	patch	centers	(for	patchy	resource	maps)	were	scattered	
over	the	matrix	randomly.	The	number	of	food	items	in	a	patch	(and	
the	number	of	patches	 in	a	clump	for	hierarchical	patchiness	map)	
and	their	distances	from	patch	(or	clump)	center	were	drawn	from	
normal	distributions,	and	their	direction	was	drawn	uniformly.	Food	
items	re-	emerged	gradually	after	being	exploited.	More	simulation	
details	and	parameter	values	are	given	 in	Appendix	S1—simulation	
details.

The	general	movement	model	used	 is	 a	 correlated	 random	walk	
biased	toward	or	away	from	a	predefined	target	location.	Step	length	
is	 one	 cell,	 and	 the	 direction	 at	 time	 t,	 θt,	 is	 drawn	 from	 a	 normal	
distribution:

(1)θt∼N(θt−1,v)

v=vb
[

1±p∗cos (θt−1−ωt−1)
]

F IGURE  1 Examples	of	simulated	
resource	maps	(gray	dots)	and	movement	
paths	(black	lines).	Scattered	resource	map	
and	simple	search	(a);	patchy	resource	
map	and	area-	restricted	search	(ARS)	(b);	
hierarchical	resource	map	and	hierarchical	
ARS	(c)
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where θt−1	is	the	previous	direction,	vb	 is	the	basic	variance,	p	 is	the	
level	of	attraction	to	a	target	 location,	and	ωt−1	 is	the	current	direc-
tion	to	the	target	location	(Benhamou	&	Bovet,	1989).	The	attraction	
parameter	p	ranges	from	0	(no	attraction	to	the	target	location)	to	1	
(complete	attraction).	The	sign	before	p	is	minus	for	attraction,	or	plus	
for	 repulsion.	Different	 combinations	 of	 vb	 and	p	 yield	 a	 variety	 of	
movement	behaviors:	from	directed	movement	toward	the	target	to	
concentrated	ARS	around	the	target	to	widely	dispersed	exploration	
behavior	(see	Appendix	S1—simulation	details).

Three	foraging	strategies	were	simulated	(Figure	1).	In	the	first	strat-
egy,	a	simple	search,	the	forager	explores	the	map	and	consumes	food	
items	whenever	they	are	within	a	predefined	perceptual	range.	In	the	
second	strategy,	a	simple	ARS,	the	forager	explores	the	map	equipped	
with	 a	 limited	perceptual	 range,	 until	 it	 first	 encounters	 a	 food	 item.	
Then,	it	starts	performing	an	ARS,	which	continues	as	long	as	additional	
food	items	are	found,	and	terminates	once	a	predefined	giving-	up	time	
elapses	without	finding	any	food	item	(Charnov,	1976;	Krebs,	Ryan,	&	
Charnov,	1974).	Then	the	forager	leaves	the	patch	and	reverts	to	the	
exploration	mode.	The	third	strategy,	the	hierarchical	ARS,	is	the	same	
as	the	simple	ARS	until	the	forager	leaves	a	patch.	Once	leaving	a	patch,	
the	forager	starts	searching	for	another	patch	in	the	vicinity	of	the	patch	
it	just	left	by	performing	repeated	forays	radiating	away	from	the	patch	
and	back	toward	it,	until	finding	a	new	patch	or	until	a	predefined	giv-
ing-	up	time	elapses	(Conradt,	Zollner,	Roper,	Frank,	&	Thomas,	2003).

4  | RESULTS

4.1 | Identification of ARS scales

The	number	of	peaks	in	the	variance-	scale	curve	indicates	the	num-
ber	of	distinct	scales	to	which	the	forager	responds.	A	simple	search	
performed	on	any	 resource	map	 (scattered	and	patchy)	yielded	 low	
and	constant	variance-	scale	curve,	peaking	only	at	 r	=	0	because	of	
resting	 stops,	 in	 all	 30	×	2	 simulation	 runs	 (Figure	2a,b).	 No	 peaks	
were	 formed	 if	 the	 animal	 allocated	 time	 uniformly	 over	 its	 path,	
even	 if	 the	 resources	were	 organized	 in	 a	 patchy	manner.	 An	ARS	
performed	 in	 a	 patchy	 environment	 yielded	 a	 variance-	scale	 curve	
with	one	distinct	peak	in	25	simulation	runs,	and	two	shallow	peaks	
in	five	simulation	runs	(Figure	2c	and	Table	S1).	When	ARS	behavior	
was	 performed	 on	 a	 resource	map	with	 hierarchical	 patchiness,	 23	
simulation	 runs	 produced	 a	 single	 peak,	 and	 seven	 runs	 produced	
two	 rather	 shallow	 peaks.	 These	 additional	 shallow	 peaks	 emerged	
when	patches	were	close,	and	the	simulated	animal	moved	between	
them	by	chance.	Hierarchical	ARS	performed	on	hierarchical	patchy	
resources	 produced	2–4	distinct	 peaks	 in	 29	 of	 30	 simulation	 runs	
(Figure	2e	and	Table	S1).	Using	variance	of	log(RT)	or	the	coefficient	
of	variation	in	RT,	produced	similar	results	for	medium	to	large	radii,	
while	for	small	radii,	peaks	that	appear	clearly	with	the	coefficient	of	
variation	 are	overflattened	or	 totally	 absent	 by	 the	 log	 transforma-
tion	(Figure	2).	The	log	transformation	tends	to	produce	slightly	larger	
estimates	for	the	radius	of	ARS	than	the	coefficient	of	variation,	and	
in	most	of	the	cases,	both	fall	slightly	above	the	range	estimated	visu-
ally	 (Table	S1).	 The	variance-	scale	 curve	 thus	 identifies	qualitatively	

the	scale	domains	at	which	ARS	 is	performed,	but	as	a	quantitative	
estimator	may	be	biased	high.	The	bias	is	larger	when	the	variance	of	
log(RT)	is	used.	In	all	cases,	as	the	radius	increases,	the	variance	even-
tually	decreases	because	 larger	circles	contain	more	heterogeneous	
path	segments,	so	RT	values	become	more	similar.

4.2 | Identification of revisited ARS places

The	algorithm	performed	slightly	different	when	using	the	mean	visit	
duration	versus	total	accumulated	time	as	a	criterion	for	filtering	out	
non-	ARS	path	 segments	 and	 choosing	 the	 recorded	 location	 repre-
senting	each	ARS	place.	Using	the	mean	visit	duration	as	a	filtering	and	
choosing	criterion,	the	algorithm	identified	most	of	the	food	patches	
in	which	ARS	were	performed	 in	 the	 simulated	paths	 (Figure	3	 and	
Table	S2—compare	with	ARS	places	identified	visually).	However,	the	
algorithm	occasionally	identified	also	places	where	a	single	long	stop	
(not	ARS)	occurred,	which	can	be	avoided	by	ignoring	places	with	only	
one	visit.	Using	the	total	accumulated	time	as	a	filtering	and	choos-
ing	criterion,	 the	algorithm	overlooked	places	with	one	or	 two	 long	
ARS	visits,	as	their	total	accumulated	time	is	relatively	low,	and	hence	
consistently	underestimated	the	number	of	ARS	places.	On	the	other	
hand,	 the	algorithm	occasionally	highlighted	places	 that	were	 revis-
ited	multiple	times	for	short	durations	(not	ARS).	Under	the	two	cri-
teria,	when	ARS	places	were	very	close	to	each	other,	locations	from	
one	place	encircled	 locations	 from	 the	other	place,	 leading	 the	 two	
places	 to	be	erroneously	 identified	as	one	 (see	Figure	3).	This	error	
was	slightly	higher	when	using	the	total	accumulated	time,	as	many	
locations	at	the	margin	of	the	ARS	places	were	revisited	multiple	times	
and	not	filtered	out.

F IGURE  2 Variance-	scale	curves	of	simulated	paths.	Simple	
search	for	scattered	resources	(a);	simple	search	for	patchy	resources	
(b);	area-	restricted	search	(ARS)	for	patchy	resources	(c);	ARS	
for	hierarchical	resources	(d);	hierarchical	search	for	hierarchical	
resources	(e).	The	acronym	“var”	stands	for	variance	and	“cv”	stands	
for	coefficient	of	variation
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5  | DISCUSSION

5.1 | Identification of ARS scales

The	 variance-	scale	 curve	 indicates	 the	 scales	 at	 which	 animals	 re-
spond	to	their	environment.	Considering	resources	as	the	only	move-
ment	 driver	 in	 our	 simulations,	 the	 curves	 discriminated	 between	
distinct	scale	domains	formed	in	the	path	when	the	animal	responded	
to	resources	organized	in	a	spatially	hierarchical	manner	(Fauchald	&	
Tveraa,	2006).	The	pattern	formed	in	the	path,	and	hence	the	shape	
of	the	curve,	is	much	more	sensitive	to	the	behavioral	model	than	to	
the	 resource	map	 itself:	Simple	movement	strategies	yielded	simple	
curves	when	performed	on	a	complex	resource	map	 in	the	majority	
of	simulations	runs.	If	a	complex	pattern	in	the	path	does	not	tend	to	
emerge	 spontaneously,	purely	on	basis	of	a	 complex	 resource	map,	
the	variance-	scale	 curve	 is	 indicative	of	 the	behavior	 itself	 and	 can	
discriminate	complex	behaviors	from	simple	ones.

The	way	one	presents	variation	in	RT	is	important.	The	use	of	log	
transformation	 (Fauchald	 &	Tveraa,	 2003)	 relies	 on	 the	 assumption	
that	RT	values	are	distributed	 log-	normally	 (Limpert,	Stahel,	&	Abbt,	
2001),	and	its	tendency	to	overflatten	the	peak	pattern	at	small	radii	
may	indicate	the	deviation	of	RT	distribution	from	log-	normal	at	small	
radii.	 The	 use	 of	 coefficient	 of	 variation	may	 be	 preferred	 in	 cases	
where	small	scales	are	particularly	important.	The	peak	pattern	cannot	
be	regarded	as	a	precise	quantitative	estimator	of	ARS	or	patch	size;	
rather	 it	provides	indication	for	distinct	scale/s	at	which	the	animals	

perceives	and	reacts	to	resources.	Patch	size	in	natural	environments	
is	characteristically	variable	within	each	scale	domain,	making	precise	
estimations	impossible.	On	the	other	hand,	such	precision	is	not	nec-
essary	for	understanding	the	spatial	scales	at	which	animals	view	their	
environment.

5.2 | Identifying revisited ARS places

The	mean	visit	duration	and	number	of	revisits	provide	a	deeper	view	
into	 the	 animal’s	 behavior	 and	 relationships	 with	 the	 environment,	
compared	with	more	basic	statistical	measures	such	as	the	residence	
time	itself,	tortuosity,	or	turning	angles.	The	mean	visit	duration	within	
confined	ARS	places	indicates	the	time	spent	within	a	food	patch	per	
visit—an	important	variable	in	optimal	foraging	theory	characterizing	
patch	use	strategies	under	 temporal	depletion	and	uncertainty	con-
ditions	 (Brown,	1992;	Charnov,	1976;	Mcnamara,	1982).	The	revisit	
frequency	serves	as	a	complementary	measure	indicating	the	level	of	
attraction	to	certain	places	given	the	mean	and	variance	of	their	prof-
itability,	and	is	useful	especially	when	temporal	patch	depletion	limits	
the	duration	per	visit	(Benhamou	&	Riotte-	Lambert,	2012).	Revisit	fre-
quency	 also	 indicates	 spatial	 knowledge,	memory,	 and	 the	 patches’	
renewal	rate.	These	measures	can	hence	be	used	to	investigate	move-
ment	data	in	light	of	optimal	behavior	models.	Moreover,	the	associa-
tion	between	the	two	measures	is	a	signature	of	how	animals	use	a	
certain	habitat	or	resource	type.	For	example,	places	with	high	food	

F IGURE  3 Example	of	output	of	the	algorithm	identifying	area-	restricted	search	(ARS)	places	for	simulated	paths	based	on	two	criteria	for	
filtering	out	locations	and	choosing	representative	locations	(Simulation	No.	7	in	Table	S1).	The	mean	visit	duration	(a)	and	the	total	accumulated	
time	(b).	The	resource	map	is	colored	deep	gray;	the	simulated	path	is	colored	red;	groups	of	locations	identified	to	be	within	ARS	places	are	
colored	light	gray,	and	representative	locations	for	those	ARS	places	as	displayed	as	blue	diamonds.	In	the	presented	case,	when	using	the	mean	
visit	duration	as	filtering	criterion,	the	algorithm	successfully	identified	most	of	the	ARS	places,	but	identifies	also	one	stopping	site	where	one	
long	visit	occurred	(the	diamond	in	[0,	200]	in	a)	and	erroneously	uniting	one	site	with	another,	adjacent	site.	When	using	the	total	accumulated	
time	as	filtering	criterion,	the	algorithm	overlooks	nine	ARS	places,	where	small	number	of	visits	occurred,	and	erroneously	uniting	three	sites	
with	other	adjacent	sites



     |  8513KAPOTA eT Al.

density	may	be	featured	by	many	long	revisits,	while	places	in	which	
fast	and	high	reward	is	obtained	(such	as	water	sources)	may	be	fea-
tured	by	many	short	revisits.	Places	which	are	not	replenished	or	vary	
greatly	in	their	profitability	may	be	featured	by	few	long	revisits.

In	addition	to	summarizing	the	revisit	history	of	ARS	places,	it	may	
be	of	interest	to	examine	it	over	time:	periods	when	a	place	is	visited	
more	intensively	than	other	periods	or	change	in	visit	durations	over	
time	hint	on	the	dynamics	of	resources.	The	distribution	of	between-	
visit	periods	hints	on	the	knowledge	the	animal	has	regarding	profit-
able	places.	Knowledge	should	result	in	a	trap-	lining	behavior,	where	
certain	places	are	systematically	 revisited,	but	are	avoided	 for	some	
period	 after	 each	 visit	 to	 accommodate	 temporary	 food	 depletion.	
We	 give	 a	 simple	 example	 for	 such	 analysis	 applied	 on	 simulated	
knowledge-	based	movement	in	Appendix	S2.

Three	technical	points	were	highlighted	by	the	results	and	should	
be	addressed	for	any	dataset	before	the	analysis	is	performed:	(1)	The	
differences	between	 the	 two	criteria	 for	 filtering	out	 locations	 and	
choosing	locations	to	represent	ARS	places	are	important.	If	the	goal	
is	 to	 identify	ARS	places,	 the	mean	visit	duration	should	be	 the	 fa-
vored	criterion.	But	in	some	cases,	places	that	were	relatively	briefly	
revisited	multiple	 times	are	meaningful,	 so	 the	goals	of	 the	specific	
study	should	direct	the	choice	of	a	criterion.	Alternatively,	the	anal-
ysis	may	be	performed	twice	using	both	criteria,	and	the	results	can	
be	 compared;	 (2)	 adjacent,	 distinct	ARS	places	may	be	erroneously	
identified	 as	 one,	 especially	 when	 patches	 are	 very	 close	 to	 each	
other.	 To	 overcome	 this	 problem,	 after	 applying	 the	 analysis,	 the	
connected	components	should	be	visualized,	and	components	which	
appear	to	have	a	radius	twice	larger	than	the	characteristic	radius	of	
ARS	places	(as	indicated	by	the	variance-	scale	curve)	should	be	split	
manually.	The	problem	becomes	crucial	for	radii,	which	are	large	rel-
ative	to	the	whole	occurrence	area	of	the	animal,	making	the	method	
inappropriate	 for	such	cases,	 for	example,	 for	studying	home-	range	
behavior.	For	such	purposes,	utilization	distributions	are	more	appro-
priate;	 (3)	 performing	 the	 analysis	 using	 characteristic	 radii	 smaller	
than	the	actual	radius	of	ARS	bears	a	serious	problem	of	erroneously	
counting	several	in–out	movements	as	several	revisits.	This	problem	
may	be	overcome	by	summing	into	the	RT	additional	time	segments	
within	the	circle,	up	to	some	threshold	of	time	outside	(Barraquand	
&	 Benhamou,	 2008).	 However,	 choosing	 this	 threshold	 demands	 a	
priori	 knowledge	 of	 the	 relevant	 temporal	 scales.	Optionally,	 given	
the	relevant	spatial	scale,	a	radius	larger	than	the	actual	mean	radius	
of	ARS	places	(as	indicated	by	the	variance-	scale	curve)	can	be	used.	
When	several	paths	are	analyzed	and	their	variance-	scale	curves	in-
dicate	a	range	of	radii,	we	suggest	using	the	upper	limit	of	this	range	
for	further	analysis.

6  | CONCLUSIONS

While	the	variance-	scale	curve	gives	a	holistic	view	of	the	spatial	be-
havior,	the	visit	durations	and	number	of	revisits	are	scale-		and	habitat-	
specific,	and	provide	information	regarding	the	detailed	space	use.	This	
information	is	remains	hidden	if	only	resource	selection	functions	(Manly,	

2002)	or	other	coarse	measurements	of	space	use	are	used.	Increasing	
the	resolution	may	reveal	new	information	on	the	way	animals	actually	
use	their	environment.	Alternatively,	using	a	highly	detailed	statistical	
description	of	the	movement	would	conceal	this	information	within	the	
details.	Using	a	mesoscale	resolution,	our	RT-	based	framework	enables	
to	extract	from	relocation	data	the	specific	information	needed	for	cor-
relating	spatial	behavior	with	the	structure	of	the	environment.

Nevertheless,	 our	 framework	 assumes	 that	 animals	 respond	 to	
resource	 abundance	 and	distribution	 in	 a	way	 that	maximizes	 time	
within	 profitable	 places.	 Different	 associations	 between	 resources	
and	movement	could	manifest	themselves	differently	in	terms	of	the	
RT.	For	example,	an	animal	having	a	good	knowledge	of	the	location	
of	 food	 items	 could	 perform	 short	 and	 straight	 in–out	movements	
into	a	food	patch,	such	that	peaks	in	the	variance-	scale	curve	would	
not	indicate	ARS	size	or	patch	size.	Choosing	the	proper	scale	using	
the	variance-	scale	method	in	such	a	case	is	problematic,	but	the	re-
visit	analysis	would	still	be	 indicative	on	 its	own.	Such	associations	
between	movement	 and	 resources	 should	 emerge	when	 resources	
interact	 with	 other	 factors	 causing	 movement—reproduction	 pros-
pects,	conspecific	attraction,	and	predator	avoidance	(Creel	&	Winnie,	
2005;	Creel,	Winnie,	Maxwell,	Hamlin,	&	Creel,	 2005;	Valeix	 et	al.,	
2009).	The	analysis	presented	here	was	focused	on	interactions	with	
relatively	stationary	objects,	unlike	conspecifics,	predators,	or	moving	
prey	items.	However	predation	risk	and	competition	can	be	viewed	as	
an	integral	part	of	patch	quality,	and	applying	the	framework	on	such	
scenarios	is	still	possible.	Prior	to	its	use,	one	should	consider	which	
motivations	for	movement	the	animal	has	other	than	food.	Revisiting	
patterns	should	be	judged	differently,	but	will	help	inferring	how	dif-
ferent	factors	govern	the	way	resources	are	visited	and	used.
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