
Ecology and Evolution. 2017;7:8507–8514.	 ﻿�   |  8507www.ecolevol.org

 

Received: 3 November 2016  |  Revised: 2 July 2017  |  Accepted: 20 July 2017
DOI: 10.1002/ece3.3321

O R I G I N A L  R E S E A R C H

Inferring detailed space use from movement paths: A unifying, 
residence time-based framework

Dror Kapota1  | Amit Dolev2 | David Saltz1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Mitrani Department of Desert Ecology, Jacob 
Blaustein Institutes for Desert Research, Ben-
Gurion University of the Negev, Midreshet 
Ben-Gurion, Israel
2Science Division, Nature and Parks Authority, 
Jerusalem, Israel

Correspondence
Dror Kapota, Mitrani Department of Desert 
Ecology, Jacob Blaustein Institutes for Desert 
Research, Ben-Gurion University of the Negev, 
Midreshet Ben-Gurion, Israel.
Email: kapota@post.bgu.ac.il

Funding information
Israel Nature and National Parks Protection 
Authority; Israel Ministry of Agriculture, 
Grant/Award Number: 596-0353-07

Abstract
The residence time is the amount of time spent within a predefined circle surrounding 
each point along the movement path of an animal, reflecting its response to resource 
availability/quality. Two main residence time-based methods exist in the literature: (1) 
The variance of residence times along the path plotted against the radius of the circle 
was suggested to indicate the scale at which the animal perceives its resources; and (2) 
segments of the path with homogeneous residence times were suggested to indicate 
distinct behavioral modes, at a certain scale. Here, we modify and integrate these two 
methods to one framework with two steps of analysis: (1) identifying several distinct, 
nested scales of area-restricted search (ARS), providing an indication of how animals 
view complex resource landscapes, and also the resolutions at which the analysis 
should proceed; and (2) identifying places which the animal revisits multiple times and 
performs ARS; for these, we extract two scale-dependent statistical measures—the 
mean visit duration and the number of revisits in each place. The association between 
these measures is suggested as a signature of how animals utilize different habitats or 
resource types. The framework is validated through computer simulations combining 
different movement strategies and resource maps. We suggest that the framework 
provides information that is especially relevant when interpreting movement data in 
light of optimal behavior models, and which would have remained uncovered by either 
coarser or finer analyses.
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1  | INTRODUCTION

Animals move to accommodate changes in the availability of their 
resources over time and space (Sims, Witt, Richardson, Southall, & 
Metcalfe, 2006; Weimerskirch, Pinaud, Pawlowski, & Bost, 2007). 
Studying this process requires the estimation of statistical measures 
from empirical movement paths, for identifying patterns or fitting 
mechanistic movement models (Buderman, Hooten, Ivan, & Shenk, 
2015; Dalziel, Morales, & Fryxell, 2008; Morales, Haydon, Frair, 

Holsiner, & Fryxell, 2004; Patterson, Thomas, Wilcox, Ovaskainen, & 
Matthiopoulos, 2008). These patterns may be complex, depending on 
the cognitive abilities of the animal and the structure of the habitat. 
One such a statistical measure is the residence time (Barraquand & 
Benhamou, 2008; Knell & Codling, 2012; Sur et al., 2014), which is 
time spent within confined areas along the path. Other common mea-
sures are the mean-squared displacement (Johnson, Milne, & Wiens, 
1992), overall tortuosity of the path (Benhamou, 2004), distributions 
of step lengths, turning angles, and movement speeds (Turchin, 1998). 
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While the mean-squared displacement provides holistic characteriza-
tion of the movement (directional or bounded movement, autocor-
related movement etc.), the other measures describe more detailed 
behaviors such as changes in the shape or speed of movement in re-
sponse to the availability of resources (Fryxell et al., 2008).

The residence time captures changes in both the shape and the 
speed of movement. For example, regardless of whether the animal 
moves more tortuously in areas with high food availability or simply 
slows down, it would spend more time in a predefined unit of area. 
Moreover, the allocation of time for different activities is an important 
element in optimal behavior theory, so using time as the main variable 
may also facilitate the interpretation of movement in this context.

The key task in movement analysis is using the statistical measures 
in order to characterize distinct behavioral modes in the path (head-
ing toward a patch, searching food within the patch, resting etc.) and 
assign these modes and their switching probabilities to various envi-
ronmental elements (Dalziel et al., 2008; Getz & Saltz, 2008; Jonsen, 
Flemming, & Myers, 2005; Morales et al., 2004; Pinto & Spezia, 2015; 
Sur et al., 2014). However, such analyses can be performed at an in-
finite range of resolutions, and as behavioral modes are performed 
at a variety of spatiotemporal scales (Fauchald & Tveraa, 2006; Fritz, 
Said, & Weimerskirch, 2003; Fryxell et al., 2008), the ability to discern 
these modes depends strongly on the resolutions chosen. There is a 
need to identify the level of resolution that will capture the main mo-
tives of the animal’s behavior.

Fauchald and Tveraa (2003) suggested a residence time-based 
method for identifying the scale of area-restricted searches, and 
Barraquand and Benhamou (2008) suggested using the residence time 
to characterize distinct behavioral modes in the path. These methods 
can help identifying responses to resource availability under the as-
sumption that animals spend more time within profitable places than 
elsewhere, but require some modifications and a proper integration. 
Here, we integrate these methods into a single analysis framework 
with two steps: (1) determining distinct resolutions that reflect the 
main scales (as there may be more than one) at which an animal per-
forms intensive search; and (2) at these resolutions, identifying con-
fined places to which the animal paid multiple visits and performed 
intensive search, and for each place estimating the mean duration 
spent per visit and the number of revisits. The first step indicates how 
animals perceive and respond to a multiscale resource environment, 
and provides the appropriate resolution at which the analysis should 
proceed. The second step zooms in at a specific scale, indicating how 
animals use patches of different resource types at the given scale. We 
validate the performance of analysis using computer simulations.

2  | REVIEW OF PREVIOUS METHODS AND 
INTRODUCING THE FRAMEWORK

The first-passage time (FPT) is a measure in statistical physics, defined 
as the time it takes for a moving particle to reach a certain location for 
the first time (Montroll, 1969). By delineating a virtual circle of a radius 
r around each location along a recorded movement path of an animal, 

the FPT is defined as the time it took the animal to reach the perimeter 
of the circle for the first time. The residence time (RT) is then defined 
as FPTbackward + FPTforward, namely the total time the animal spent 
within the virtual circle from first entry to first exit (Barraquand & 
Benhamou, 2008; Fauchald & Tveraa, 2003; Knell & Codling, 2012). 
In this approach, locations with high RT represent locals in which the 
animal performed an area-restricted search (ARS), that is, an inten-
sive search within a confined area, characterized by a tortuous or slow 
movement.

When the size of the virtual circle matches the size of the area cov-
ered by ARS, the difference in RT between circles containing ARS to all 
other circles will be the largest, and therefore, variation in RT will be 
maximized. On this basis, the variance of log(RT) can be plotted for cir-
cles of different r values to obtain a variance-scale curve [the log trans-
formation makes the variance independent of the mean—Fauchald and 
Tveraa (2003)]. A peak in the variance-scale curve appears for the radius 
that matches the ARS. The radius associated with this peak was sug-
gested to quantitatively indicate the characteristic size of a food patch. 
This suggestion was later criticized by Barraquand and Benhamou 
(2008), stating that for varying but close patch sizes, or for certain forms 
of intensive search, the radius associated with a peak in the variance-
scale curve is unreliable as a quantitative estimator of patch size.

Here, we introduce several improvements to the variance-scale 
curve method. Fauchald and Tveraa (2003) examined the variance-
scale curve only for the case of one distinct ARS size and therefore a 
single peak. They indeed discussed the possibility of several distinct 
ARS scales, occurring when several distinct patch sizes exist, or when 
patches are organized in a hierarchical manner (Fauchald & Tveraa, 
2006). But, they treated this issue by performing a nested analysis—
calculating the variance-scale curve for the whole path, using the ra-
dius associated with a peak to calculate RTs, choosing path segments 
with high RTs, and then calculating new variance-scale curves for these 
segments. Nevertheless, when several distinct ARS scales exist, the 
variance-scale curve itself should show several distinct peaks, reflect-
ing a multiscale response for the entire path. We validate this multipeak 
existence by studying variance-scale curves of simulated hierarchical 
ARS movements, and compare the performance of the method using 
variance of log(RT) against using the coefficient of variation in RT.

Another issue raised by Fauchald and Tveraa (2003) is that the pat-
tern formed in the variance-scale curve is shaped by both the distribu-
tion of resources and the response of the animal to this distribution. 
Using simulations, we separate these two effects, such that patterns 
in the variance-scale curve can be assigned directly to the behavior. 
We also address the critique of Barraquand and Benhamou (2008) on 
the method by evaluating the performance of the curve in estimating 
ARS scales for simulated paths where ARS is variable yet found within 
distinct scale domains.

Following the variance-scale method, Barraquand and Benhamou 
(2008) suggested a method to separate the path into segments con-
stituting homogeneous movement bouts, in terms of their RT values. 
These homogeneous movement bouts can be interpreted as different 
behavioral modes, such as ARS, exploration, or directed fast move-
ment. The RT in this case may contain not only FPTbackward + FPTforward, 
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but also additional forward and backward path segments found within 
the circle, as long as the time outside the circle between these seg-
ments is shorter than some predefined threshold. These homoge-
neous movement bouts can then be correlated with environmental 
data providing insight regarding the response of the animal to its envi-
ronment and resources.

Barraquand and Benhamou (2008) did not suggest any robust way 
of choosing a proper resolution for their analysis. They suggested per-
forming the analysis at several resolutions, and choosing what seems 
to be most reliable. This approach does not account for the possibility 
of hierarchical ARS at several distinct scales. Another important issue is 
that the series of path segments has no explicit spatial interpretation. 
Two segments constituting ARS may have been recorded within the 
same place where the animal revisited twice, or at two distinct places. 
Moreover, as Barraquand and Benhamou (2008) suggested adding for-
ward and backward path segments found within the circle into the RT, 
two distinct segments recorded within the same place may be, in part, 
pseudoreplication. The two latter issues were later treated by giving 
the series of residence times an explicit spatiotemporal representa-
tion within the framework of kernel-based utilization distributions 
(Benhamou & Riotte-Lambert, 2012); however, no appropriate solu-
tion was provided for choosing the appropriate resolution. Identifying 
places in which the animal revisited and performed ARS several times 
is important for mapping areas of interest and correlating them with 
environmental variables (Bar-David et al., 2009; Benhamou & Riotte-
Lambert, 2012; Riotte-Lambert, Benhamou, & Chamaillé-Jammes, 
2013). In terms of habitat preference and use, several visits to several 
distinct places having the same environmental properties may have a 
different meaning than several revisits to the same place. We suggest 
an analysis with two steps: First, the variance-scale curve is used for 
identifying the meaningful scale domains in the path; second, at these 
scale domains, we describe a residence time-based algorithm that 
identifies spatially distinct ARS places and calculates the mean visit 
duration, and the number of revisits in these places. These variables 
should, later on, be confronted with environmental data. We validate 
the performance of the analysis using computer simulations.

3  | METHODS

3.1 | Identification of ARS scales

To study the shape of the variance-scale curve for ARS movements at 
one to several scales, and to separate the effects of resource distribu-
tion and the movement behavior on this shape, curves were calculated 
for five different simulated combinations of resource maps and move-
ment strategies (see details in the simulation model section below and 
Appendix S1 Matlab code is found as online supplementary informa-
tion - Appendix S3): (1) simple search for scattered resources; (2) sim-
ple search for patchy resources; (3) ARS for patchy resources; (4) ARS 
for hierarchical patchy resources; and (5) hierarchical ARS for hierar-
chical patchy resources. Simulated paths were resampled (one of each 
ten locations) to mimic the frequency at which real paths are sampled 
by a GPS device. Variance-scale curves were calculated by calculating 

for each radius the residence time of each location along the path 
[residence time calculation follows Barraquand and Benhamou 
(2008)], and then calculating variation among locations for each ra-
dius. Each variance-scale curve was calculated twice, for comparison: 
as the variance of log(RT) against r and as the coefficient of variation 
in RT against r. For each curve, we measured the number of peaks, 
the strength of the peak signature, and the radii of ARS. The latter 
was compared with direct estimations measured from the visualized 
paths. This was possible as the simulations, albeit stochastic in nature, 
created ARS within one or two distinct scale domains, which could be 
distinguished visually (Figure 1). For each simulated scenario, simula-
tions were run 30 times and variance-scale curves were calculated. 
In two scenarios (ARS for patchy resources and ARS for hierarchical 
patchy resources), the pattern was not entirely consistent—additional 
shallow peaks appeared in several runs. We therefore simulated and 
analyzed additional 30 runs for each of the two scenarios, and verified 
using random permutations that the rate of obtaining an additional 
peak does not vary with sample size.

3.2 | Identifying revisited ARS places

Revisited ARS places are spatially confined and distinct areas in which 
the animal performed ARS more than once. They are supposed to be 
places of interest for the animal, such as food patches. The location 
and size of ARS places are unknown, but can be inferred indirectly 
from the recorded (known) locations of the animal.

The algorithm has four steps illustrated in Fig. S3: (Matlab code 
is found as online supplementary information - Appendix S3) (1) cal-
culating RTs along the path; (2) filtering non-ARS path segments; (3) 
identifying spatially distinct ARS places; and (4) choosing a represen-
tative location for each ARS place identified. In step (1), the algorithm 
traces, for each recorded location, all backward and forward segments 
of the path passing within the boundaries of its circle (i.e., backward 
and forward RT segments), recording their durations separately. Each 
circle around each location thus has a revisit history—a series of re-
corded revisits within the circle, their timing, and duration (see Fig. S3 
for visual illustration).

In step (2), revisited ARS places are distinguished from other places 
the animal crossed more than once, while en route and recorded path 
segments of the latter are filtered out. As a filtering criterion, it is pos-
sible to use the mean duration per visit or the total duration spent 
around recorded locations, as both should distinguish the long ARS 
revisits from the fast occasional ones; here, we examined and com-
pared both. As a filtering threshold, we suggest the mean or median 
(whichever is largest—as these distributions are strongly left-skewed) 
of the distribution of the criterion chosen.

In step (3), spatially distinct ARS places are identified by consid-
ering the remaining locations as the nodes of a graph, in which con-
nections (edges) exist if two locations are found within the circles of 
each other. ARS places are defined as connected components of this 
graph; that is, subgroups in which any two nodes are indirectly con-
nected to each other (see Fig. S3 for visual illustration and additional 
explanations). These connected components are identified using a 
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recursive depth-first search algorithm (Cormen, Leiserson, Rivest, & 
Stein, 2001).

Step (4) estimates the exact location of each place, its mean visit 
duration, and number of revisits. The mean visit duration and number 
of revisits to recorded locations that are assigned to the same ARS 
place constitute various portions of the full revisit history of this place. 
Therefore, one of the locations in each ARS place should be chosen 
to represent the central location of the place and its revisit history. 
Choosing this location was done using the same two criteria used for 
filtering—we examined both the location with the longest mean du-
ration per visit and the location with the longest total duration spent 
within its circle (Fig. S3).

We used the simulation of simple ARS for patchy resources to 
evaluate the performance of the algorithm including the examination 
of filtering and choosing criteria. As the simulated resource maps 
and movement modes are simple and well defined, we could identify 
ARS places visually from each realized resource map and path. We 
could therefore compare the ARS places identified by the algorithm 
to those identified visually. This allowed us to spot failures and er-
roneous identifications of the algorithm: places that were errone-
ously united because of their proximity, stopping places, which are 
not ARS places (these have long visit duration and were therefore 
filtered in when the mean visit duration was used for filtering and 
choosing locations), and places with occasional, multiple, and short 
revisits (these have long total time and were therefore filtered in 
when the total time was used for filtering and choosing locations). 

The simulation was run 30 times to ensure that the algorithm iden-
tifies most of the ARS places successfully, and to properly estimate 
error rates.

3.3 | The simulation model

Simulations were run for 60,000 time steps on resource maps of 
1,000 × 1,000 cells. Three spatial structures of food items were 
created as follows: scattered, simple patchiness, and two-level hi-
erarchical patchiness (Figure 1). Food items (for scattered resource 
map) and patch centers (for patchy resource maps) were scattered 
over the matrix randomly. The number of food items in a patch (and 
the number of patches in a clump for hierarchical patchiness map) 
and their distances from patch (or clump) center were drawn from 
normal distributions, and their direction was drawn uniformly. Food 
items re-emerged gradually after being exploited. More simulation 
details and parameter values are given in Appendix S1—simulation 
details.

The general movement model used is a correlated random walk 
biased toward or away from a predefined target location. Step length 
is one cell, and the direction at time t, θt, is drawn from a normal 
distribution:

(1)θt∼N(θt−1,v)

v=vb
[

1±p∗cos (θt−1−ωt−1)
]

F IGURE  1 Examples of simulated 
resource maps (gray dots) and movement 
paths (black lines). Scattered resource map 
and simple search (a); patchy resource 
map and area-restricted search (ARS) (b); 
hierarchical resource map and hierarchical 
ARS (c)
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where θt−1 is the previous direction, vb is the basic variance, p is the 
level of attraction to a target location, and ωt−1 is the current direc-
tion to the target location (Benhamou & Bovet, 1989). The attraction 
parameter p ranges from 0 (no attraction to the target location) to 1 
(complete attraction). The sign before p is minus for attraction, or plus 
for repulsion. Different combinations of vb and p yield a variety of 
movement behaviors: from directed movement toward the target to 
concentrated ARS around the target to widely dispersed exploration 
behavior (see Appendix S1—simulation details).

Three foraging strategies were simulated (Figure 1). In the first strat-
egy, a simple search, the forager explores the map and consumes food 
items whenever they are within a predefined perceptual range. In the 
second strategy, a simple ARS, the forager explores the map equipped 
with a limited perceptual range, until it first encounters a food item. 
Then, it starts performing an ARS, which continues as long as additional 
food items are found, and terminates once a predefined giving-up time 
elapses without finding any food item (Charnov, 1976; Krebs, Ryan, & 
Charnov, 1974). Then the forager leaves the patch and reverts to the 
exploration mode. The third strategy, the hierarchical ARS, is the same 
as the simple ARS until the forager leaves a patch. Once leaving a patch, 
the forager starts searching for another patch in the vicinity of the patch 
it just left by performing repeated forays radiating away from the patch 
and back toward it, until finding a new patch or until a predefined giv-
ing-up time elapses (Conradt, Zollner, Roper, Frank, & Thomas, 2003).

4  | RESULTS

4.1 | Identification of ARS scales

The number of peaks in the variance-scale curve indicates the num-
ber of distinct scales to which the forager responds. A simple search 
performed on any resource map (scattered and patchy) yielded low 
and constant variance-scale curve, peaking only at r = 0 because of 
resting stops, in all 30 × 2 simulation runs (Figure 2a,b). No peaks 
were formed if the animal allocated time uniformly over its path, 
even if the resources were organized in a patchy manner. An ARS 
performed in a patchy environment yielded a variance-scale curve 
with one distinct peak in 25 simulation runs, and two shallow peaks 
in five simulation runs (Figure 2c and Table S1). When ARS behavior 
was performed on a resource map with hierarchical patchiness, 23 
simulation runs produced a single peak, and seven runs produced 
two rather shallow peaks. These additional shallow peaks emerged 
when patches were close, and the simulated animal moved between 
them by chance. Hierarchical ARS performed on hierarchical patchy 
resources produced 2–4 distinct peaks in 29 of 30 simulation runs 
(Figure 2e and Table S1). Using variance of log(RT) or the coefficient 
of variation in RT, produced similar results for medium to large radii, 
while for small radii, peaks that appear clearly with the coefficient of 
variation are overflattened or totally absent by the log transforma-
tion (Figure 2). The log transformation tends to produce slightly larger 
estimates for the radius of ARS than the coefficient of variation, and 
in most of the cases, both fall slightly above the range estimated visu-
ally (Table S1). The variance-scale curve thus identifies qualitatively 

the scale domains at which ARS is performed, but as a quantitative 
estimator may be biased high. The bias is larger when the variance of 
log(RT) is used. In all cases, as the radius increases, the variance even-
tually decreases because larger circles contain more heterogeneous 
path segments, so RT values become more similar.

4.2 | Identification of revisited ARS places

The algorithm performed slightly different when using the mean visit 
duration versus total accumulated time as a criterion for filtering out 
non-ARS path segments and choosing the recorded location repre-
senting each ARS place. Using the mean visit duration as a filtering and 
choosing criterion, the algorithm identified most of the food patches 
in which ARS were performed in the simulated paths (Figure 3 and 
Table S2—compare with ARS places identified visually). However, the 
algorithm occasionally identified also places where a single long stop 
(not ARS) occurred, which can be avoided by ignoring places with only 
one visit. Using the total accumulated time as a filtering and choos-
ing criterion, the algorithm overlooked places with one or two long 
ARS visits, as their total accumulated time is relatively low, and hence 
consistently underestimated the number of ARS places. On the other 
hand, the algorithm occasionally highlighted places that were revis-
ited multiple times for short durations (not ARS). Under the two cri-
teria, when ARS places were very close to each other, locations from 
one place encircled locations from the other place, leading the two 
places to be erroneously identified as one (see Figure 3). This error 
was slightly higher when using the total accumulated time, as many 
locations at the margin of the ARS places were revisited multiple times 
and not filtered out.

F IGURE  2 Variance-scale curves of simulated paths. Simple 
search for scattered resources (a); simple search for patchy resources 
(b); area-restricted search (ARS) for patchy resources (c); ARS 
for hierarchical resources (d); hierarchical search for hierarchical 
resources (e). The acronym “var” stands for variance and “cv” stands 
for coefficient of variation
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5  | DISCUSSION

5.1 | Identification of ARS scales

The variance-scale curve indicates the scales at which animals re-
spond to their environment. Considering resources as the only move-
ment driver in our simulations, the curves discriminated between 
distinct scale domains formed in the path when the animal responded 
to resources organized in a spatially hierarchical manner (Fauchald & 
Tveraa, 2006). The pattern formed in the path, and hence the shape 
of the curve, is much more sensitive to the behavioral model than to 
the resource map itself: Simple movement strategies yielded simple 
curves when performed on a complex resource map in the majority 
of simulations runs. If a complex pattern in the path does not tend to 
emerge spontaneously, purely on basis of a complex resource map, 
the variance-scale curve is indicative of the behavior itself and can 
discriminate complex behaviors from simple ones.

The way one presents variation in RT is important. The use of log 
transformation (Fauchald & Tveraa, 2003) relies on the assumption 
that RT values are distributed log-normally (Limpert, Stahel, & Abbt, 
2001), and its tendency to overflatten the peak pattern at small radii 
may indicate the deviation of RT distribution from log-normal at small 
radii. The use of coefficient of variation may be preferred in cases 
where small scales are particularly important. The peak pattern cannot 
be regarded as a precise quantitative estimator of ARS or patch size; 
rather it provides indication for distinct scale/s at which the animals 

perceives and reacts to resources. Patch size in natural environments 
is characteristically variable within each scale domain, making precise 
estimations impossible. On the other hand, such precision is not nec-
essary for understanding the spatial scales at which animals view their 
environment.

5.2 | Identifying revisited ARS places

The mean visit duration and number of revisits provide a deeper view 
into the animal’s behavior and relationships with the environment, 
compared with more basic statistical measures such as the residence 
time itself, tortuosity, or turning angles. The mean visit duration within 
confined ARS places indicates the time spent within a food patch per 
visit—an important variable in optimal foraging theory characterizing 
patch use strategies under temporal depletion and uncertainty con-
ditions (Brown, 1992; Charnov, 1976; Mcnamara, 1982). The revisit 
frequency serves as a complementary measure indicating the level of 
attraction to certain places given the mean and variance of their prof-
itability, and is useful especially when temporal patch depletion limits 
the duration per visit (Benhamou & Riotte-Lambert, 2012). Revisit fre-
quency also indicates spatial knowledge, memory, and the patches’ 
renewal rate. These measures can hence be used to investigate move-
ment data in light of optimal behavior models. Moreover, the associa-
tion between the two measures is a signature of how animals use a 
certain habitat or resource type. For example, places with high food 

F IGURE  3 Example of output of the algorithm identifying area-restricted search (ARS) places for simulated paths based on two criteria for 
filtering out locations and choosing representative locations (Simulation No. 7 in Table S1). The mean visit duration (a) and the total accumulated 
time (b). The resource map is colored deep gray; the simulated path is colored red; groups of locations identified to be within ARS places are 
colored light gray, and representative locations for those ARS places as displayed as blue diamonds. In the presented case, when using the mean 
visit duration as filtering criterion, the algorithm successfully identified most of the ARS places, but identifies also one stopping site where one 
long visit occurred (the diamond in [0, 200] in a) and erroneously uniting one site with another, adjacent site. When using the total accumulated 
time as filtering criterion, the algorithm overlooks nine ARS places, where small number of visits occurred, and erroneously uniting three sites 
with other adjacent sites
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density may be featured by many long revisits, while places in which 
fast and high reward is obtained (such as water sources) may be fea-
tured by many short revisits. Places which are not replenished or vary 
greatly in their profitability may be featured by few long revisits.

In addition to summarizing the revisit history of ARS places, it may 
be of interest to examine it over time: periods when a place is visited 
more intensively than other periods or change in visit durations over 
time hint on the dynamics of resources. The distribution of between-
visit periods hints on the knowledge the animal has regarding profit-
able places. Knowledge should result in a trap-lining behavior, where 
certain places are systematically revisited, but are avoided for some 
period after each visit to accommodate temporary food depletion. 
We give a simple example for such analysis applied on simulated 
knowledge-based movement in Appendix S2.

Three technical points were highlighted by the results and should 
be addressed for any dataset before the analysis is performed: (1) The 
differences between the two criteria for filtering out locations and 
choosing locations to represent ARS places are important. If the goal 
is to identify ARS places, the mean visit duration should be the fa-
vored criterion. But in some cases, places that were relatively briefly 
revisited multiple times are meaningful, so the goals of the specific 
study should direct the choice of a criterion. Alternatively, the anal-
ysis may be performed twice using both criteria, and the results can 
be compared; (2) adjacent, distinct ARS places may be erroneously 
identified as one, especially when patches are very close to each 
other. To overcome this problem, after applying the analysis, the 
connected components should be visualized, and components which 
appear to have a radius twice larger than the characteristic radius of 
ARS places (as indicated by the variance-scale curve) should be split 
manually. The problem becomes crucial for radii, which are large rel-
ative to the whole occurrence area of the animal, making the method 
inappropriate for such cases, for example, for studying home-range 
behavior. For such purposes, utilization distributions are more appro-
priate; (3) performing the analysis using characteristic radii smaller 
than the actual radius of ARS bears a serious problem of erroneously 
counting several in–out movements as several revisits. This problem 
may be overcome by summing into the RT additional time segments 
within the circle, up to some threshold of time outside (Barraquand 
& Benhamou, 2008). However, choosing this threshold demands a 
priori knowledge of the relevant temporal scales. Optionally, given 
the relevant spatial scale, a radius larger than the actual mean radius 
of ARS places (as indicated by the variance-scale curve) can be used. 
When several paths are analyzed and their variance-scale curves in-
dicate a range of radii, we suggest using the upper limit of this range 
for further analysis.

6  | CONCLUSIONS

While the variance-scale curve gives a holistic view of the spatial be-
havior, the visit durations and number of revisits are scale- and habitat-
specific, and provide information regarding the detailed space use. This 
information is remains hidden if only resource selection functions (Manly, 

2002) or other coarse measurements of space use are used. Increasing 
the resolution may reveal new information on the way animals actually 
use their environment. Alternatively, using a highly detailed statistical 
description of the movement would conceal this information within the 
details. Using a mesoscale resolution, our RT-based framework enables 
to extract from relocation data the specific information needed for cor-
relating spatial behavior with the structure of the environment.

Nevertheless, our framework assumes that animals respond to 
resource abundance and distribution in a way that maximizes time 
within profitable places. Different associations between resources 
and movement could manifest themselves differently in terms of the 
RT. For example, an animal having a good knowledge of the location 
of food items could perform short and straight in–out movements 
into a food patch, such that peaks in the variance-scale curve would 
not indicate ARS size or patch size. Choosing the proper scale using 
the variance-scale method in such a case is problematic, but the re-
visit analysis would still be indicative on its own. Such associations 
between movement and resources should emerge when resources 
interact with other factors causing movement—reproduction pros-
pects, conspecific attraction, and predator avoidance (Creel & Winnie, 
2005; Creel, Winnie, Maxwell, Hamlin, & Creel, 2005; Valeix et al., 
2009). The analysis presented here was focused on interactions with 
relatively stationary objects, unlike conspecifics, predators, or moving 
prey items. However predation risk and competition can be viewed as 
an integral part of patch quality, and applying the framework on such 
scenarios is still possible. Prior to its use, one should consider which 
motivations for movement the animal has other than food. Revisiting 
patterns should be judged differently, but will help inferring how dif-
ferent factors govern the way resources are visited and used.
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